Differential Topology Prelim Exam, August 2024

High-quality answers to some questions are preferred to lower-quality answers to more questions. Point allocations are shown on the right.

(1) Let *p* be a monic polynomial whose real roots are distinct. Let

$$S(p) = \{(x, y, z) \in \mathbb{R}^3 : p(x) + y^2 + z^2 = 0\}.$$

(a) Prove that S(p) is a submanifold of \mathbb{R}^3 .

[3 points]

(b) Assuming p has even degree, identify S(p) up to diffeomorphism with a familiar manifold (depending on p).

[3]

(c) Let q be another monic polynomial whose real roots are distinct. Characterize when S(p) is transverse to S(q).

[4]

(2) (a) Consider the 1-form $d\theta$ on $S^1 \subset \mathbb{R}^2$ (here θ is the polar angle). Prove that there is no C^{∞} function $f: S^1 \to \mathbb{R}$ with $d\theta = df$.

(b) Define $\rho \colon \mathbb{R}^2 \setminus \{0\} \to S^1$, $\rho(v) = v/|v|$. Compute $\rho^*(d\theta)$ in terms of the (x, y)-coordinates of \mathbb{R}^2 .

[3]

(c) Define the 1-form $\alpha = y \, dx - x \, dy$ on $\mathbb{R}^2 \setminus \{0\}$. Prove that there do not exist a C^{∞} map $g : \mathbb{R}^2 \setminus \{0\} \to S^1$ and a 1-form β on S^1 such that $\alpha = g^*\beta$.

- (3) This question is about the Grassmannian $Gr_k(\mathbb{R}^n)$ of k-dimensional vector subspaces of \mathbb{R}^n . $Gr_k(\mathbb{R}^n)$ is covered by the subsets $\{G(U) : U \in Gr_k(V)\}$, where G(U) consists of the subspaces W such that the orthogonal projection $p_U : \mathbb{R}^n \to U$ restricts to an isomorphism $p_U|_W : W \to U$. It is proposed to construct a C^{∞} atlas on $Gr_k(\mathbb{R}^n)$ in which G_U is the domain of a chart.
 - (a) By thinking of $W \in G(U)$ as the graph of a linear map, exhibit a bijection $\phi_U \colon G(U) \to \text{Hom}(U, U^{\perp})$ with the vector space of linear maps.

(b) Suppose that $W \in Gr_k(\mathbb{R}^n)$ is the graph of $\alpha \colon U \to U^{\perp}$ and of $\beta \colon V \to V^{\perp}$. Explain why, if $u + \alpha u = v + \beta v \in W$, we have

$$v = p_V(u + \alpha u)$$

and that this formula defines an isomorphism $\mu_{\alpha} = p_V \circ (I + \alpha) \colon U \to V$. Show that $\beta v = (I + \alpha)\mu_{\alpha}^{-1}v - v$.

[3]

(c) Explain concisely why $\{(G(U), \phi_U) : U \in Gr_k(V)\}$ is a C^{∞} atlas for the Grassmannian. [You are *not* asked to prove that the topology is Hausdorff and second countable.]

[5]