PRELIMINARY EXAMINATION: APPLIED MATHEMATICS — Part I

Wednesday, August 21, 2024, 11:30am-1:30pm

Work all 3 of the following 3 problems.

1. Let X and Y be Banach spaces and D a linear subspace of X.

(a) State what it means for an operator $T: D \to Y$ to be closed.

(b) State the Closed Graph Theorem.

(c) Let $T: D \to Y$ be a closed linear operator. Show that T is bounded on D if and only if D is a closed subspace of X.

2. Let X be a Banach space, Y a normed linear space, and $T_n \in B(X, Y)$ for n = 1, 2, ...Suppose that $\{T_n x\}_{n=1}^{\infty}$ is Cauchy in Y for every $x \in X$.

(a) State the Uniform Boundedness Theorem.

(b) Show that $\{||T_n||\}_{n=1}^{\infty}$ is bounded.

(c) If Y is a Banach space and T is defined by $T_n x \to T x$ for $x \in X$, show that T is a well-defined operator and that $T \in B(X, Y)$.

3. Let *H* be a separable Hilbert space with maximal orthonormal basis $\{u_k\}_{k=1}^{\infty}$, let $H_n = \text{span}\{u_1, \ldots, u_n\}$, and let P_n denote the orthogonal projection of *H* onto H_n . Suppose that $A: H \to H$ is bounded and linear and $f \in H$. If for all n

$$P_n A x_n = P_n f$$

has a solution $x_n \in H_n$ such that

$$||x_n|| \le \alpha ||P_n f||,$$

where $\alpha > 0$ is independent of n.

- (a) Recall that $||x||^2 = \sum_{k=1}^{\infty} |\langle x, u_k \rangle|^2$. From this fact, prove that $P_n x \to x$ as $n \to \infty$.
- (b) Show that there is at least one solution to Ax = f.