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Abstract. We study distributions of persistent homology barcodes associated

to taking subsamples of a fixed size from metric measure spaces. We show that

such distributions provide robust invariants of metric measure spaces, and
illustrate their use in hypothesis testing and providing confidence intervals for

topological data analysis.

1. Introduction

Topological data analysis assigns homological invariants to data presented as a
finite metric space (a “point cloud”). If we imagine this data as measurements
sampled from some abstract universal space M , the structure of that space is a
metric measure space, having a notion both of distance between points and a no-
tion of probability for the sampling. The usual homological approach to samples is
to assign a simplicial complex and compute its homology. The construction of the
associated simplicial complex for a point cloud depends on a choice of scale param-
eter. The insight of “persistence” is that one should study homological invariants
that encode change across scales; the correct scale parameter is a priori unknown.
As such, a first approach to studying the homology of M from the samples is to
simply compute the persistent homology of the sampled point cloud.

We can gain some perspective from imagining that we could make measurements
on M directly and interpret these measurements in terms of random sample points.
With this in mind, we immediately notice some defects with homology and persis-
tent homology as invariants of M . While the homology of M captures information
about the global topology of the metric space, the probability space structure plays
no role. This has bearing even if we assume M is a compact Riemmannian manifold
and the probability measure is the volume measure for the metric: handles which
are small represent subsets of low probability but contribute to the homology in the
same way as large handles. In this particular kind of example, persistent homology
can identify this type of phenomenon (by encoding the scales at which homological
features exist); however, in a practical context, the metric on the sample may be
ad hoc (e.g., [3]) and less closely related to the probability measure. In this case,
we could have handles that are medium size with respect to the metric but still
low probability with respect to the measure. Homology and persistent homology
have no mechanism for distinguishing low probability features from high probabil-
ity features. A closely related issue is the effect of small amounts of noise (e.g., a
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situation in which a fraction of the samples are corrupted). A small proportion of
bad samples can arbitrarily change the persistent homology. These two kinds of
phenomena are linked, insofar as decisions about whether low probability features
are noise or not is part of data analysis.

The disconnect with the underlying probability measure presents a significant
problem when trying to adapt persistent homology to the setting of hypothesis
testing and confidence intervals. Hypothesis testing involves making quantitative
statements about the probability that the persistent homology computed from a
sampling from a metric measure space is consistent with (or refutes) a hypothesis
about the actual persistent homology. Confidence intervals provide a language to
understand the variability in estimates introduced by the process of sampling. Be-
cause low probability features and a small proportion of bad samples can have a
large effect on persistent homology computations, the persistent homology groups
make poor test statistics for hypothesis testing and confidence intervals. To obtain
useable test statistics, we need to develop invariants that better reflect the under-
lying measure and are less sensitive to large perturbation. To be precise about this,
we use the statistical notion of robustness.

A statistical estimator is robust when its value cannot be arbitrarily perturbed
by a constant proportion of bad samples. For instance, the sample mean is not
robust, as a single extremely large sample value can dominate the result. On the
other hand, the sample median is robust. As we discuss in Section 4, persistent
homology is not robust. A small number of bad samples can cause large changes
in the persistent homology, essentially as a reflection of the phenomenon of large
metric low probability handles (including spurious ones).

Using the idea of an underlying metric measure space M , formally the process of
sampling amounts to considering random variables on the probability space Mn =
M × · · · ×M equipped with the product probability measure. The k-th persistent
homology of a size n sample is a random variable on Mn taking values in the set B
of finite barcodes [23], where a barcode is essentially a multiset of intervals of the
form [a, b). The set B of barcodes is equipped with a metric, the bottleneck metric
[7], and we show in Section 3 that it is separable and that its completion B is also
a space of barcodes. Then B is Polish, i.e., complete and separable, which makes it
amenable to probability theory (see also [18] for such results). In particular, various
metrics on the set of distributions on B metrize weak convergence, including the
Prohorov metric dPr and the Wasserstein metric dW . We consider the following
probability distribution on barcode space B:

Definition 1.1. For a metric measure space (X, ∂X , µX) and fixed n, k ∈ N, define
the kth n-sample persistent homology as

Φnk (X, ∂X , µX) = (PHk)∗(µ
⊗n
X ),

the probability distribution on the set of barcodes B induced by pushforward along
PHk from the product measure µnX on Xn.

In other words, Φnk is the probability measure on the space of barcodes where
the probability of a subset A is the probability that a size n sample from M has
k-th persistent homology landing in A.

Although complicated, Φnk (M) is a continuous invariant of M in the following
sense. The moduli space of metric measure spaces admits a metric (in fact sev-
eral) that combine the ideas of the Gromov-Hausdorff distance on compact metric
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spaces and weak convergence of probability measures [22]. We follow [11], and use
the Gromov-Prohorov metric, dGPr. We prove the following theorem in Section 5
(where it is restated as Theorem 5.2).

Theorem 1.2. Let (X, ∂X , µX) and (Y, ∂Y , µY ) be compact metric measure spaces.
Then we have the following inequality relating the Prohorov and Gromov-Prohorov
metrics:

dPr(Φ
n
k (X, ∂X , µX),Φnk (Y, ∂Y , µY )) ≤ ndGPr((X, ∂X , µX), (Y, ∂Y , µY )).

As a consequence of the continuity implied by the previous theorem, we can use
Φnk to develop robust statistics: If we change M by adjusting the metric arbitrarily
on ε probability mass to produce M ′, then the Gromov-Prohorov distance satisfies
dGPr(M,M ′) ≤ ε.

A first question that arises is how to interpret Φnk in practice, where we are given
a large finite sample S which we regard as drawn from M . Making S a metric
measure space via the subspace metric from M and the empirical measure, we can
compute Φnk (S) as an approximation to Φnk (M). This procedure is justified by the
fact that as the sample size increases, the empirical metric converges almost surely
in dGPr to M ; see Lemma 5.4. (This kind of approximation is intimately connected
with resampling methodology, a topic we study in the paper [1].)

A problem with Φnk is that it can be hard to interpret or summarize the infor-
mation contained in a distribution of barcodes, unlike distributions of numbers for
which there are various moments (e.g., the mean and the variance) which provide
concise summaries of the distribution. One approach is to develop “topological
summarizations” of distributions of barcodes, a subject we pursue in the paper [2].
In this paper, we instead consider cruder invariants which take values in R. One
such invariant is the distance with respect to a reference distribution on barcodes
P, chosen to represent a hypothesis about the persistent homology of M .

Definition 1.3. Let (X, ∂X , µX) be a compact metric measure space and let P be
a fixed reference distribution on B. Fix k, n ∈ N. Define the homological distance
on X relative to P to be

HDn
k ((X, ∂X , µX),P) = dPr(Φ

n
k (X, ∂X , µX),P).

We also produce a robust statistic MHDn
k related to HDn

k without first computing
the distribution Φnk . To construct MHDn

k , we start with a reference bar code and
compute the median distance to the barcodes of subsamples.

Definition 1.4. Let (X, ∂X , µX) be a compact metric measure space and let P be
a fixed reference barcode B ∈ B. Fix k,m ∈ N. Let D denote the distribution on R
induced by applying dB(B,−) to the barcode distribution Φnk (X, ∂X , µX). Define
the median homological distance relative to P to be

MHDn
k ((X, ∂X , µX),P) = median(D).

The use of the median rather than the mean in the following definition ensures
that we compute a robust statistic. To be precise, for functions from finite metric
spaces to metric spaces, we use the following definition of robustness.

Definition 1.5. Let f be a function from finite metric spaces to a metric space
(B, d). We say that f is robust with robustness coefficient r > 0 if for any non-empty
finite metric space (X, ∂), there exists a bound δ such that for any isometry of X
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into a finite metric space (X ′, ∂′), |X ′|/|X| < 1+r implies d(f(X, ∂), f(X ′, ∂′)) < δ,
where |X| denotes the number of elements of X.

For example, under the analogous definition on finite multi-subsets of R (in
place of finite metric spaces), median defines a function to R that is robust with
robustness coefficient 1− ε for any ε since expanding a multi-subset X to a larger
one X ′ with fewer than twice as many elements will not change the median by more
than the diameter of X. Similarly, for a finite metric space X, expanding X to X ′,
the proportion of n-element samples of X ′ which are samples of X is (|X|/|X ′|)n;
when this number is more than 1/2, the median value of any function f on the
set of n-element samples of X ′ is then bounded by the values of f on n-element
samples of X. Since (N/(N + rN))n > 1/2 for r < 21/n − 1, any such function f
will be robust with robustness coefficient r satisfying this bound, and in particular
for r = (ln 2)/n.

Theorem 1.6. For any n, k,P, the function MHDn
k (−,P) from finite metric spaces

(given the uniform probability measure) to R is robust with robustness coefficient
> (ln 2)/n.

The function Φnk from finite metric spaces to distributions on B and the function
HDn

k from finite metric spaces to R are robust for any robustness coefficient for
trivial reasons since the Gromov-Prohorov metric is bounded. However, for these
functions we can give explicit uniform estimates for how much these functions
change when expanding X to X ′ just based on |X ′|/|X|. We introduce the following
notion of uniform robustness strictly stronger than the notion of robustness.

Definition 1.7. Let f be a function from finite metric spaces to a metric space
(B, d). We say that f is uniformly robust with robustness coefficient r > 0
and estimate bound δ if for any non-empty finite metric space (X, ∂) and any
isometry of (X, ∂) into a finite metric space (X ′, ∂′), |X ′|/|X| < 1 + r implies
d(f(X, ∂), f(X ′, ∂′)) < δ.

Uniform robustness gives a uniform estimate on the change in the function from
expanding the finite metric space. For example, the median function does not
satisfy the analogous notion of uniform robustness for functions on finite multi-
subsets of R. We show in Section 5 that Φnk and HDn

k satisfy this stronger notion
of uniform robustness.

Theorem 1.8. For fixed n, k, Φnk is uniformly robust with robustness coefficient r
and estimate bound nr/(1+r) for any r. For fixed n, k,P, HDn

k (−,P) is uniformly
robust with robustness coefficient r and estimate bound nr/(1 + r) for any r.

As with Φnk itself, the law of large numbers and the convergence of empirical
metric measure spaces tells us that given a sufficiently large finite sample S ⊂ M ,
we can approximate HDn

k and MHDn
k of the metric measure space M in a robust

fashion from the persistent homology computations from S. (See Lemmas 5.4, 6.5,
and 6.8 below.)

In light of the results on robustness and asymptotic convergence, HD, MHD, and
Φ (as well as various distributional invariants associated to Φ) provide good test
statistics for hypothesis testing. Furthermore, one of the benefits of the numerical
statistics HDn

k and MHDn
k is that we can use standard techniques to obtain confi-

dence intervals, which provide a means for understanding the reliability of analyses
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of data sets. We discuss hypothesis testing and the construction of confidence in-
tervals in Section 6, and explore examples in Sections 7 and 8. In this paper we
primarily focus on analytic methods which use asymptotic normality results; how-
ever, these statistics are well-suited for the construction of resampling confidence
intervals. In the follow-up paper [1] we establish the asymptotic consistency of the
bootstrap for HDn

k and MHDn
k .

We regard this paper as a first step towards providing a foundation for the inte-
gration of standard statistical methodology into computational algebraic topology.
Our goal is to provide tools for practical use in topological data analysis. In a sub-
sequent paper [1], we provide theoretical support for the use of resampling methods
to understand the distributional invariants Φnk , HDn

k , and MHDn
k . We also study

elsewhere topological summarizations in order to understand distributions of bar-
codes [2].

The paper is organized as follows. In Section 2, we provide a rapid review
of the necessary background on simplicial complexes, persistent homology, and
metric measure spaces. In Section 3, we study the space of barcodes, establishing
foundations needed to work with distributions of barcodes. In Section 4, we discuss
the robustness of persistent homology. In Section 5, we study the properties of
Φnk , MHDn

k , and HDn
k and prove Theorem 1.2. We discuss hypothesis testing and

confidence intervals in Section 6, which we illustrate with synthetic examples in
Section 7. Section 8 applies these ideas to the analysis of the natural images data
in [3].

2. Background

2.1. Simplicial complexes associated to point clouds. Computational alge-
braic topology proceeds by assigning a simplicial complex (which usually also de-
pends on a scale parameter ε) to a finite metric space (X, ∂). Recall that a simplicial
complex is a combinatorial model of a topological space, defined as a collection of
nonempty finite sets Z such that for any set Z ∈ Z, every nonempty subset of
Z is also in Z. Associated to such a simplicial complex is the “geometric realiza-
tion”, which is formed by gluing standard simplices of dimension |Z| − 1 via the
subset relations. (The standard n-simplex has n+ 1 vertexes.) The most basic and
widely used construction of a simplicial complex associated to a point cloud is the
Vietoris-Rips complex:

Definition 2.1. For ε ∈ R, ε ≥ 0, the Vietoris-Rips complex VRε(X) is the
simplicial complex with vertex set X such that [v0, v1, . . . , vn] is an n-simplex when
for each pair vi, vj , the distance ∂(vi, vj) ≤ ε.

Observe that the Vietoris-Rips complex is determined by its 1-skeleton. The
construction is functorial in the sense that for a continuous map f : X → Y with
Lipshitz constant κ and for ε ≤ ε′, there is a commutative diagram

(2.2)

VRε(X) //

��

VRκε(Y )

��
VRε′(X) // VRκε′(Y ).

The Vietoris-Rips complex is easy to compute, but can be unmanageably large;
for a set of points Y = {y1, y2, . . . , yn} such that ∂(yi, yj) ≤ ε, every subset of Y
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specifies a simplex of the Vietoris-Rips complex. More closely related to classical
constructions in algebraic topology is the Cech complex.

Definition 2.3. For ε ∈ R, ε ≥ 0, the Cech complex Cε(X) is the simplicial complex
with vertex set X such that [v0, v1, . . . , vn] is an n-simplex when the intersection⋂

0≤i≤n

B ε
2
(vi)

is non-empty, where here Br(x) denotes the r-ball around x.

The Cech complex has analogous functoriality properties to the Vietoris-Rips
complex. In Euclidean space, the topological Cech complex associated to a cover
of a paracompact topological space satisfies the nerve lemma: if the cover consists
of contractible spaces such all finite intersections are contractible or empty, the
resulting simplicial complex is homotopy equivalent to the original space.

Remark 2.4. It is also often very useful to define complexes with the vertices re-
stricted to a small set of landmark points; the weak witness complex is perhaps
the best example of such a simplicial complex [21]. We discuss this construction
further in Section 8, as it is important in the applications.

The theory we develop in this paper is relatively insensitive to the specific details
of the construction of a simplicial complex associated to a finite metric space (and
scale parameter). For reasons that will become evident when we discuss persistence
in Subsection 2.3 below, the only thing we require is a procedure for assigning a
complex to ((M,∂), ε) that is functorial in the vertical maps of diagram (2.2) for
κ = 1.

2.2. Homological invariants of point clouds. In light of the previous subsec-
tion, given a finite metric space (X, ∂), one defines the homology at the feature scale
ε to be the homology of a simplicial complex associated to (X, ∂); e.g., H∗(VRε(X))
or H∗(Cε(X)). This latter definition is supported by the following essential consis-
tency result, which is in line with the general philosophy that we are studying an
underlying continuous geometric object via finite sets of samples.

Theorem 2.5 (Niyogi-Smale-Weinberger [19]). Let (M,∂) be a compact Riemann-
ian manifold equipped with an embedding γ : M → Rn, and let X ⊂ M be a finite
sample drawn according to the volume measure on M . Then for any p ∈ (0, 1), there
are constants δ (which depends on the curvature of M and the embedding γ) and
Nδ,p such that if ε < δ and |X| > Nδ,p then the probability that H∗(Cε(X)) ∼= H∗(M)
is an isomorphism is > p.

In fact, Niyogi, Smale, and Weinberger prove an effective version of the previous
result, in the sense that there are explicit numerical bounds dependent on p and
a “condition number” which incorporates data about the curvature of M and the
twisting of the embedding γ.

Work by Latschev provides an equivalent result for VRε(X), with somewhat
worse bounds, defined in terms of the injectivity radius of M [16]. Alternatively, one
can obtain consistency results for VRε(X) using the fact that there are inclusions

Cε(X) ⊆ VRε(X) ⊆ C2ε(X).

While reassuring, an unsatisfactory aspect of the preceding results is the depen-
dence on a priori knowledge of the feature scale ε and the details of the intrinsic
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curvature of M and the nature of the embedding. A convenient way to handle
the fact that it is often hard to know a good choice of ε at the outset is to con-
sider multi-scale homological invariants that encode the way homology changes as
ε varies. This leads us to the notion of persistent homology [10].

2.3. Persistent homology. Given a diagram of simplicial complexes indexed on
N (i.e., a direct system),

X0 → X1 → . . .→ Xn → . . . ,

there are natural inclusions H∗(Xi)→ H∗(Xj) for i ≤ j.
We say that a class α ∈ Hp(Xi) is born at time i if it is not in the image of

Hk(Xj) for j < i, and we say a class α ∈ Hk(Xi) dies at time i if the image of α is
0 in Hk(Xj) for j ≥ i. This information about the homology can be packaged up
into an algebraic object:

Definition 2.6. Let {Xi} be a direct system of simplicial complexes. The pth
persistent kth homology group of Xi is defined to be

Hk,p(Xi) = Zik/(B
i+p
k ∩ Zik),

where Z and B denote the cycle and boundary groups respectively. Alternatively,
Hk,p(Xi) is the image of the natural map

Hk(Xi)→ Hk(Xi+p).

When working over a field and in the presence of suitable finiteness hypotheses,
barcodes provide a convenient reformulation of information from persistent homol-
ogy. Specifically, assume that the direct system of simplicial complexes stabilizes
at a finite stage and all homology groups are finitely-generated. Then a basic clas-
sification result of Zomorodian-Carlsson [23] describes the persistent homology in
terms of a barcode, a multiset of non-empty intervals of the form [a, b) ⊂ R. An in-
terval in the barcode indicates the birth and death of a specific homological feature.
For reasons we explain below, the barcodes appearing in our context will always
have finite length intervals.

The Rips (or Cech) complexes associated to a point cloud (X, ∂X) fit into this
context by looking at a sequence of varying values of ε:

VRε1(X)→ VRε2(X)→ . . . .

We can do this in several ways, for example, using the fact that the Vietoris-Rips
complex changes only at discrete points {εi} and stabilizes for sufficiently large ε,
or just choosing and fixing a finite sequence εi independently of X. The theory
we present below makes sense for either of these choices, and we use the following
notation.

Notation 2.7. Let (X, ∂X) be a finite metric space. For k ∈ N, denote the persis-
tent homology of X as

PHk((X, ∂X)) = PHk,p({V Rε(−)
(X)})

for some chosen sequence 0 < ε1 < ε2 < · · · and p ≥ 0.

More generally, we can make analogous definitions for any functor

Ψ: M× R>0 → sComp,
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whereM is the category of finite metric spaces and metric maps and sComp denotes
the category of simplicial complexes. We will call such a Ψ “good” when the
homotopy type changes for only finitely values in R. In this case, we can choose
the directed system of values of εi to contain these transition values.

We note that for large values of the parameter ε, V Rε(X) will be contractible.
Therefore, if we use the reduced homology group in dimension 0, we get Hk(V Rε) =
0 for all k for large ε. The bar codes associated to these persistent homologies
therefore have only finite length bars. For convenience in computation, we typically
cut off ε at a moderately high value before this breakdown occurs. The result is a
truncation of the bar code to the cut-off point.

2.4. Gromov-Hausdorff stability and the bottleneck metric. By work of
Gromov, the set of isometry classes of finite metric spaces admits a useful metric
structure, the Gromov-Hausdorff metric. For a pair of finite metric spaces (X1, ∂1)
and (X2, ∂2), the Gromov-Hausdorff distance is defined as follows: For a compact
metric space (Z, ∂) and closed subsets A,B ⊂ Z, the Hausdorff distance is defined
to be

dZH(A,B) = max(sup
a∈A

inf
b∈B

∂(a, b), sup
b∈B

inf
a∈A

∂(a, b)).

One then defines the Gromov-Hausdorff distance between X1 and X2 to be

dGH(X1, X2) = inf
Z,γ1,γ2

dZH(X1, X2),

where here γ1 : X1 → Z and γ2 : X2 → Z are isometric embeddings.
Since the topological invariants we are studying ultimately arise from finite met-

ric spaces, a natural question to consider is the degree to which point clouds that
are close in the Gromov-Hausdorff metric have similar homological invariants. This
question does not in general have a good answer in the setting of the homology of
the point cloud, but in the context of persistent homology, Chazal, et al. [6, 3.1]
provide a seminal theorem in this direction that we review as Theorem 2.9 below.

The statement of Theorem 2.9 involves a metric on the set of barcodes called
the bottleneck distance and defined as follows. Recall that a barcode {Iα} is a
multiset of non-empty intervals. Given two non-empty intervals I1 = [a1, b1) and
I2 = [a2, b2), define the distance between them to be

d∞(I1, I2) = ||(a1, b1)− (a2, b2)||∞ = max(|a1 − a2|, |b1 − b2|).
We also make the convention

d∞([a, b), ∅) = |b− a|/2
for b > a and d∞(∅, ∅) = 0. For the purposes of the following definition, we define
a matching between two barcodes B1 = {Iα} and B2 = {Jβ} to be a multi-subset
C of the underlying set of

(B1 ∪ {∅})× (B2 ∪ {∅})
such that C does not contain (∅, ∅) and each element Iα of B1 occurs as the first
coordinate of an element of C exactly the number of times (counted with multiplic-
ity) of its multiplicity in B1, and likewise for every element of B2. We get a more
intuitive but less convenient description of a matching using the decomposition of
(B1 ∪{∅})× (B2 ∪{∅}) into its evident four pieces: The basic data of C consists of
multi-subsets A1 ⊂ B1 and A2 ⊂ B2 together with a bijection (properly accounting
for multiplicities) γ : A1 → A2; C is then the (disjoint) union of the graph of γ
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viewed as a multi-subset of B1×B2, the multi-subset (B1−A1)×{∅} of B1×{∅},
and the multi-subset {∅} × (B2 − A2) of {∅} × B2. With this terminology, we can
define the bottleneck distance.

Definition 2.8. The bottleneck distance between barcodes B1 = {Iα} and B2 =
{Jβ} is

dB(B1, B2) = inf
C

sup
(I,J)∈C

d∞(I, J),

where C varies over all matchings between B1 and B2.

Although expressed slightly differently, this agrees with the bottleneck metric as
defined in [7, §3.1] and [6, §2.2]. On the set of barcodes B with finitely many finite
length intervals, dB is obviously a metric. More generally, for any p > 0, one can
consider the `p version of this metric,

dB,p(B1, B2) = inf
C

( ∑
(I,J)∈C

d∞(I, J)p
)1/p

.

For simplicity, we focus on dB in this paper, but analogues of our main theorems
apply to these variant metrics as well.

We have the following essential stability theorem:

Theorem 2.9 (Chazal, et. al. [6, 3.1]). For each k, we have the bound

dB(PHk(X),PHk(Y )) ≤ dGH(X,Y ).

Note that truncating bar codes is a Lipshitz map B → B with Lipshitz constant
1, so the bound above still holds when we use a large parameter cut-off in defining
PHk.

2.5. Metric measure spaces and the Gromov-Prohorov distance. To es-
tablish more robust convergence results, we work with suitable metrics on the set
of compact metric measure spaces. Specifically, following [11, 17, 22] we use the
idea of the Gromov-Hausdorff metric to extend certain standard metrics on distri-
butions (on a fixed metric measure space) to a metric on the set of all compact
metric measure spaces.

A basic metric of this kind is the Gromov-Prohorov metric [11]. (For the fol-
lowing formulas, see Section 5 of [11] and its references.) This is defined in terms
of the standard Prohorov metric dPr (metrizing weak convergence of probability
distributions) as

dGPr((X, ∂X , µX), (Y, ∂Y , µY )) = inf
(φX ,φY ,Z)

d
(Z,∂Z)
Pr ((φX)∗µX , (φY )∗µY ),

where the inf is computed over all isometric embeddings φX : X → Z and φY : Y →
Z into a target metric space (Z, ∂Z).

It is very convenient to reformulate both the Gromov-Hausdorff and Gromov-
Prohorov distances in terms of relations. For setsX and Y , a relation R ⊂ X×Y is a
correspondence if for each x ∈ X there exists at least one y ∈ Y such that (x, y) ∈ R
and for each y′ ∈ Y there exists at least one x′ ∈ X such that (x′, y′) ∈ R. For a
relation R on metric spaces (X, ∂X) and (Y, ∂Y ), we define the distortion as

dis(R) = sup
(x,y),(x′,y′)∈R

|∂X(x, x′)− ∂Y (y, y′)|.



10 BLUMBERG, GAL, MANDELL, AND PANCIA

The Gromov-Hausdorff distance can be expressed as

dGH((X, ∂X), (Y, ∂Y )) =
1

2
inf
R

dis(R),

where we are taking the infimum over all correspondences R ⊂ X × Y .
Similarly, we can reformulate the Prohorov metric as follows. Given two measures

µ1 and µ2 on a metric space X, let a coupling of µ1 and µ2 be a measure ψ on
X ×X (with the product metric) such that ψ(X × −) = µ2 and ψ(− ×X) = µ1.
Then we have

dPr(µ1, µ2) = inf
ψ

inf{ε > 0 | ψ {(x, x′) ∈ X ×X | ∂X(x, x′) ≥ ε} ≤ ε}.

This characterization of the Prohorov metric turns out to be useful when work-
ing with the Gromov-Prohorov metric in light of the (trivial) observation that if
dGPr((X, ∂X , µX), (Y, ∂Y , µY )) < ε then there exists a metric space Z and embed-
dings ι1 : X → Z and ι2 : Y → Z such that dPr((ι1)∗µX , (ι2)∗µY ) < ε.

3. Probability measures on the space of barcodes

This section is introduces the spaces of barcodes BN and B used in the distri-
butional invariants Φnk of Definition 1.1. These spaces are complete and separable
under the bottleneck metric. This implies in particular that the Prohorov metric
on the set of probability measures in BN or B metrizes convergence in probability,
which justifies the perspective in the stability theorem 1.2 and the definition of the
invariants HDn

k (−,P) in Definition 1.3.
A barcode is by definition a multi-set of intervals, in our case of the form [a, b)

for 0 ≤ a < b < ∞. The set I of all intervals of this form is of course in bijective
correspondence with a subset of R2. A multi-set A of intervals is a multi-subset of
I, which concretely is a function from I to the natural numbers N = {0, 1, 2, 3, . . . }
which counts the number of multiples of each interval in A. We denote by |A| the
cardinality of A, which we define as the sum of the values of the function I → N
specified by A (if finite, or countably or uncountably infinite, if not). The space
B of barcodes of the introduction is the set of multi-sets of intervals A such that
|A| <∞. We have the following important subsets of B

Definition 3.1. For N ≥ 0, let BN denote the set of multi-sets of intervals (in I)
A with |A| ≤ N .

The main result on BN is the following theorem, proved below. (Similar results
can also be found in [18].)

Theorem 3.2. For each N ≥ 0, BN is complete and separable under the bottleneck
metric.

Since the homology Hk (with any coefficients) of any complex with n vertices
can have rank at most

(
n
k+1

)
, our persistent homology barcodes will always land in

one of the BN , with N depending just on the size of the samples. As we let the size
of the samples increase, N may increase, and so it is convenient to have a target
independent of the number of samples. The space B =

⋃
BN is clearly not complete

under the bottleneck metric, so we introduce the following space of barcodes B.

Definition 3.3. Let B be the space of multi-sets A of intervals (in I) with the
property that for every ε > 0 the cardinality of the multi-subset of A of those
intervals of length more than ε has finite cardinality.
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Clearly barcodes in B have at most countable cardinality, and the bottleneck
metric extends to a function dB : B × B → R. A straightforward greedy argument
shows that for X,Y ∈ B, dB(X,Y ) = 0 only if X = Y , and so dB extends to a
metric on B. We prove the following theorem.

Theorem 3.4. B is the completion of B =
⋃
BN in the bottleneck metric. In

particular B is complete and separable in the bottleneck metric.

Proof of Theorems 3.2 and 3.4. The multi-sets of intervals with rational endpoints
provides a countable dense subset for BN . To see that B is dense in B, given A in
B and ε > 0, let Aε be the multi-subset of A of those intervals of length > ε. Then
by definition of B, Aε is in B, and by definition of the bottleneck metric, using the
matching coming from the inclusion of Aε in A, we have that

dB(A,Aε) ≤ ε/2 < ε.

It just remains to prove completeness of BN and B. For this, given a Cauchy
sequence 〈Xn〉 in B it suffices to show that Xn converges to an element X in B and
that X is in BN if all the Xn are in BN .

Let 〈Xn〉 be a Cauchy sequence in B. By passing to a subsequence if necessary,
we can assume without loss of generality that for n,m > k, dB(Xm, Xn) < 2−(k+2).
For each n, we have dB(Xn, Xn+1) < 2−(n+1); choose a matching Cn such that
d∞(I, J) < 2−(n+1) for all (I, J) ∈ C. For each n, define a finite sequence of
intervals In1 ,. . . , Inkn inductively as follows. Let k0 = 0. Let k1 be the cardinality of

the multi-subset of X1 consisting of those intervals of length > 1, and let I11 ,. . . , I1k1
be an enumeration of those intervals. By induction, In1 ,. . . , Inkn is an enumeration

of the intervals in Xn of length > 2−n+1 such that for i ≤ kn−1, the intervals In−1i

and Ini correspond under the matching Cn−1. For the inductive step, we note that
if Ini corresponds to J under Cn, then d∞(Ini , J) < 2−(n+1), so the length ||J || of
J is bigger than ||Ini || − 2−n, and

||J || > 2−n+1 − 2−n = 2−n = 2−(n+1)+1.

Thus, we can choose In+1
i to be the corresponding interval J for i ≤ kn, and we can

choose the remaining intervals of length > 2−(n+1)+1 in an arbitrary order. Write
Ini = [ani , b

n
i ) and let

ai = lim
n→∞

ani , bi = lim
n→∞

bni .

Since |ani − a
n+1
i | < 2−(n+1) and |bni − b

n+1
i | < 2−(n+1), we have

|ani − ai| ≤ 2−n, |bni − bi| ≤ 2−n.

Let X be the multi-subset of I consisting of the intervals Ii = [ai, bi) for all i (or
for all i ≤ max kn if {kn} is bounded).

First, we claim that X is in B. Given ε > 0, choose N large enough that 2−N+2 <
ε. Then for i > kN , the interval Ii first appears in Xni for some ni > N . Looking at
the matchings CN ,. . . , Cni−1, we get a composite matching CN,ni between XN and

Xni . Since each Cn satisfied the bound 2−(n+1), the matching CN,ni must satisfy
the bound

ni−1∑
n=N

2−(n+1) = 2−N − 2−ni .
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Since all intervals of length > 2−N+1 in XN appear as an INj , we must have that
the length of Inii in Xni must be less than

2−N+1 + 2(2−N − 2−ni) = 2−N+2 − 2−ni+1.

Since each endpoint in Ii differs from the endpoint of Inii by at most 2−ni , the
length of Ii can be at most

2−N+2 − 2−ni+1 + 2 · 2−ni = 2−N+2 < ε.

Thus, the cardinality of the multi-subset of X of those intervals of length > ε is at
most kN .

Next we claim that 〈Xn〉 converges toX. We have a matching ofXn withX given
by matching the intervals In1 ,. . . , Inkn in Xn with the corresponding intervals I1,. . . ,
Ikn in X. Our estimates above for |ani − ai| and |bni − bi| show that d∞(Ini , Ii) ≤
2−n. By construction, each leftover interval in Xn has length ≤ 2−n+1 and the
previous paragraph shows that each leftover interval in X has length < 2−n+2.
Thus, dB(Xn, X) < 2−n+1.

Finally we note that if each Xn is in BN for fixed N , then each kn ≤ N and so
X is in BN . �

4. Failure of robustness

Inevitably physical measurements will result in bad samples. As a consequence,
we are interested in invariants which have limited sensitivity to a small proportion
of arbitrarily bad samples. Many standard invariants not only have high sensitivity
to a small proportion of bad samples, but in fact have high sensitivity to a small
number of bad samples. We use the following terminology.

Definition 4.1. A function f from the set of finite metric spaces to R is fragile
if there exists a constant k such that for every non-empty finite metric space X
and constant N there exists a metric space X ′ and an isometry X → X ′ such that
|X ′| ≤ |X|+ k and |f(X ′)− f(X)| > N .

Informally, fragile in Definition 4.1 means that adding a small constant number
of points to any metric space can arbitrarily change the value of the invariant. In
particular, a fragile function is not robust in the sense of Definition 1.4 for any
robustness coefficient r > 0, but fragile is much more unstable than just failing to
be robust (note the quantifier on the space X). As we indicated in the introduction,
Gromov-Hausdorff distance is not robust; here we show it is fragile.

Proposition 4.2. Let (Z, dZ) be a non-empty finite metric space. The function
dGH(Z,−) is fragile.

Proof. Given N > 0, consider the space X ′ which is defined as a set to be the
disjoint union of X with a new point w, and made a metric space by setting

d(w, x) = α, x ∈ X,
d(x1, x2) = dX(x1, x2), x1, x2 ∈ X,

where α > diam(Z) + 2dGH(Z,X) + 2N . We claim

|dGH(Z,X)− dGH(Z,X ′)| > N.

Given any metric space (Y, dY ) and isometries f : X ′ → Y , g : Z → Y , we need
to show that dY (f(X ′), g(Z)) > N + dGH(Z,X). We have two cases. First, if no
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point z of Z has dY (g(z), f(w)) ≤ N+dGH(Z,X), then we have dY (f(X ′), g(Z)) >
N + dGH(Z,X). On the other hand, if some point z of Z has dY (g(z), f(w)) <
N + dGH(Z,X), then every point z in Z satisfies dY (g(z), f(w)) ≤ N + diam(Z) +
dGH(Z,X). Choosing some x in X, we see that for every z in Z, dY (f(x), g(z)) ≥
α− (N + diam(Z) + dGH(Z,X)). It follows that

dY (f(X ′), g(Z)) ≥ α− (N + diam(Z) + dGH(Z,X)) > N + dGH(Z,X). �

The homology and persistent homology of a point cloud turns out to be a some-
what less sensitive invariant. Nonetheless, a similar kind of problem can occur. It
is instructive to consider the case of H0 or PH0. By adding ` points far from the
original metric space X, one can change either H0 or PH0 by rank `. The further
the distance of the points, the longer the additional bars in the bar code and we
see for example that the distance dB(B,−) in the bottleneck metric from any fixed
bar code B is a fragile function. (If we are truncating the bar codes, dB is bounded
by the length of the interval we are considering, so technically is robust, but not in
a meaningful way.) We can also consider the rank of H0 or of PH0 in a range; here
the distortion of the function depends on the number of points, but we see that the
function is not robust.

For Hk and PHk, k ≥ 0, the same basic idea obtains: we add small spheres
sufficiently far from the core of the points in order to adjust the required homology.
We work this out explicitly for PH1.

Definition 4.3. For each integer k > 0 and real ` > 0, let the metric circle S1
k,`

denote the metric space with k points {xi} such that

d(xi, xj) = ` (min(|i− j|, |k − i− j|)) .

For ε < `, the Rips complex associated to S1
k,` is just a collection of disconnected

points. It is clear that as long as k ≥ 4, when ` ≤ ε < 2`, |Rε(S1
k,`)| has the

homotopy type of a circle. In fact, we can say something more precise:

Lemma 4.4. For

` ≤ ε <
⌈
k

3

⌉
`,

the rank of H1(Rε(S
1
k,`)) is at least 1.

Proof. Consider the map f from Rε(S
1
k,`) to the unit disk D2 in R2 that sends xi to

(cos(2π i
n ), sin(2π i

n )) and is linear on each simplex. The condition ε < dk3 e` precisely
ensures that whenever {xi1 , . . . , xin} forms a simplex σ in the Rips complex, the
image vertices f(xi1), . . . , f(xin) lie on an arc of angle < 2

3π on the unit circle,
and so f(σ) in particular lies in an open half plane through the origin. It follows
that the origin (0, 0) is not in the image of any simplex, and f defines a map from
Rε(S

1
k,`) to the punctured disk D2 − {(0.0)}. Since ` ≤ ε, we have the 1-cycle

[x1, x2] + · · ·+ [xk−1, xk] + [xk, x1]

of Rε(S
1
k,`) which maps to a 1-cycle in D2 − {(0, 0)} representing the generator of

H1(D2 − {0, 0}). �

The length ` and number k ≥ 4 is arbitrary, so again, we conclude that func-
tions like dB(B,PH1(−)) are fragile. Results for higher dimensions (using similar
standard equidistributed models of n-spheres) are completely analogous.
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Proposition 4.5. Let B be a barcode. The functions dB(B,PHk(−)) from finite
metric spaces to R are fragile.

In terms of rank, the lemma shows that we can increase the rank of first persistent
homology group of a metric space X on an interval [a, b] by m simply by adding
extra points. One can also typically reduce persistent homology intervals by adding
points “in the center” of the representing cycle. It is somewhat more complicated
to precisely analyze the situation, so we give a representative example: Suppose the
cycle is represented by a collection of points {xi} such that the maximum distance
d(xi, xj) ≤ δ. Then adding a point which is a distance δ from each of the other
points reduces the lifetime of that cycle to δ. In any case, the results of the lemma
are sufficient to prove the following proposition.

Proposition 4.6. The function that takes a finite metric space to the rank of
PHk on a fixed interval [a, b] is not robust (in the sense of Definition 1.4) for any
robustness coefficient r.

These computations suggest a problem with the stability of the usual invariants
of computational topology. A small number of bad samples can lead to arbitrary
changes in these invariants.

5. The main definition and theorem

Fix a good functorial assignment of a simplicial complex to a finite metric space
and a scale parameter ε. Recall that we write PHk of a finite metric space to denote
the persistent homology of the associated direct system of complexes. Motivated
by the concerns of the preceding section, we make the following definition.

Definition 5.1. For a metric measure space (X, ∂X , µX) and fixed n, k ∈ N, define
the kth n-sample persistent homology as

Φnk (X, ∂X , µX) = (PHk)∗(µ
⊗n
X ),

the probability distribution on B induced by pushforward along PHk from the
product measure µnX on Xn.

The goal of this section is to prove the main theorem. For this (and in the
remainder of the section), we assume that we are computing PH using the Rips
complex.

Theorem 5.2. Let (X, ∂X , µX) and (Y, ∂Y , µY ) be compact metric measure spaces.
Then we have the following inequality:

dPr(Φ
n
k (X, ∂X , µX),Φnk (Y, ∂Y , µY )) ≤ ndGPr((X, ∂X , µX), (Y, ∂Y , µY )).

Proof. Assume that dGPr((X, ∂X , µX), (Y, ∂Y , µY )) < ε. Then we know that there
exist embeddings ι1 : X → Z and ι2 : Y → Z into a metric space Z and a coupling
µ̂ between (ι1)∗µX and (ι2)∗µY such that the probability mass of the set of pairs
(z, z′) under µ̂ such that ∂Z(z, z′) ≥ ε is less than ε.

We can regard the restriction of µ̂⊗n to the full measure subspace (X × Y )n

of (Z × Z)n as a probability measure on Xn × Y n. This then induces a coupling
between PHk(µ⊗nX ) and PHk(µ⊗nY ) on B, which we now study. Consider n sam-
ples {(x1, y1), (x2, y2), . . . , (xn, yn)} from Z × Z drawn according to the product
distribution µ̂⊗n. Now consider the probability that

α = sup
1≤i,j≤n

|∂X(xi, xj)− ∂Y (yi, yj)| ≥ 2ε.
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The triangle inequality implies that

|∂X(xi, xj)− ∂Y (yi, yj)| ≤ sup(∂Z(xi, xj), ∂Z(yi, yj)) ≤ ∂Z(xi, yi) + ∂Z(xj , yj).

Therefore, the union bound implies that the probability that α ≥ 2ε is bounded by
n∑
i=1

Pr(∂Z(xi, yi) ≥ ε) ≤ nε.

Next, define a relation R that matches xi and yi. By definition, the distortion of
this relation is disR = α, and so

dGH({xi}, {yi}) ≤
1

2
α.

By the stability theorem of Chazal, et. al. [6, 3.1] (Theorem 2.9 above), this implies
that the probability that

dB(PHk({xi}),PHk({yi})) ≥ ε

is bounded by nε. This further implies that the probability that

dB(PHk({xi}),PHk({yi})) ≥ nε

is also bounded by nε. Therefore, we can conclude that

dPr(Φ
n
k (X, ∂X , µX),Φnk (Y, ∂Y , µY )) ≤ nε. �

One of the consequences of Theorem 5.2 is that Φnk provide robust descriptors for
metric measure spaces (X, ∂X , µX). Specifically, observe that if we have (X, ∂X) ⊂
(X ′, ∂X′) and a probability measure µX′ that restricts to µX on X, then

dPr(i∗µX , µX′) ≤ 1− µX′(X).

Thus, when X ′ \X has probability < ε,

dPr(Φ
n
k (X, ∂X , µX),Φnk (X ′, ∂

′

X , µX′)) ≤ nε.

In particular, when X and X ′ are finite metric spaces with the uniform measure,
we get

dPr(Φ
n
k (X, ∂X , µX),Φnk (X ′, ∂

′

X , µX′)) ≤ n(1− |X|/|X ′|).
As an immediate consequence we obtain the following result.

Theorem 5.3. For fixed n, k, Φnk is uniformly robust with robustness coefficient r
and estimate bound nr/(1 + r) for any r.

To study more general metric measure spaces, the Glivenko-Cantelli theorem
implies that consideration of large finite samples will suffice.

Lemma 5.4. Let S1 ⊂ S2 ⊂ . . . ⊂ Si ⊂ . . . be a sequence of randomly drawn
samples from (X, ∂X , µX). We regard Si as a metric measure space using the
subspace metric and the empirical measure. Then Φnk (Si) converges almost surely
to Φnk ((X, ∂X , µX)).

Proof. This is a consequence of the fact that {Si} converges almost surely to
(X, ∂X , µX) in the Gromov-Prohorov metric (which can be checked directly or
for instance follows from the analogous result for the Gromov-Wasserstein dis-
tance [22, 3.5.(iii)] and the comparison between the Gromov-Prohorov distance
and the Gromov-Wasserstein distance [11, 10.5]. �
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Remark 5.5. It would be useful to prove analogues of the main theorem for other
methods of assigning complexes; e.g., the witness complex (see Remark 2.4 and
Section 8).

6. Hypothesis testing, confidence intervals, and numerical invariants

In this section, we discuss hypothesis testing and the closely related issue of
confidence intervals for our barcode distribution invariants. The basic goal is to
provide quantitative ways of saying what an observed empirical barcode distribution
means. The model for hypothesis testing is that we have two empirical distributions
(obtained from some kind of sampling) and we want to estimate the probability that
they were drawn from the same distribution. We demonstrate how to do this for
Φnk in some synthetic examples in the next section. In Section 8, we apply this to
validate part of the analysis of the natural images dataset in [3].

In our setting we cannot assume anything about the class of possible hypotheses
and so we are forced to rely on non-parametric methods. Most results on non-
parametric tests for distribution comparison work only for distributions on R and
the first step is to project the data into this framework. In our examples, we use
two kinds of projections.

Definition 6.1. Let (X, ∂X , µX) be a compact metric measure space. Fix k, n ∈ N.
Define the distance distribution D2 on R to be the distribution on R induced by
applying dB(−,−) to pairs (b1, b2) drawn from Φnk (X, ∂X , µX)⊗2. Let B be a fixed

barcode in B, and define DB to be the distribution induced by applying dB(B,−).

We will demonstrate hypothesis testing for comparison of distributions using
these projections and the two-sample Kolmogorov-Smirnov statistic [8, §6]. This
test gives a way to determine whether two observed empirical distributions were
obtained from the same underlying distribution; moreover, for distributions on R
the p-values of the test statistic are independent of the underlying distribution as
long as the samples are identically independently drawn.

To compute the Kolmogorov-Smirnov test statistic for two sets of samples S1
and S2, we first compute the empirical approximations E1 and E2 to the cumulative
density functions,

Ei(t) = |{x ∈ Si | x ≤ t}|/|Si|,
and use the test statistic supt |E1(t) − E2(t)|. (In practice, |Si| is large and we
approximate Ei using Monte Carlo methods.) Standard tables (e.g., in the appendix
to [8]) or the built-in Matlab functions can then be used to compute p-values for
deciding if the statistic allows us to reject the hypothesis that the distributions are
the same.

Remark 6.2. Our choice of the Kolmogorov-Smirnov test was arbitrary and for
purposes of illustration; one might also consider the Mann-Whitney test or various
other nonparametric techniques for testing whether samples were drawn from the
same underlying distribution.

As a second demonstration of hypothesis testing, we can apply a χ2 test to dis-
crete distributions constructed by the following procedure. Fix a finite set {Bj} ⊂ B
of reference barcodes, where 1 ≤ j ≤ m. For each barcode with nonzero probabil-
ity measure in (the given empirical approximation to) Φnk , assign the count to the
nearest reference barcode. (In general, we compute the empirical approximation to
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Φnk using Monte Carlo methods.) Let Ai(j) denote the count for reference barcode
Bj in sample i (for i = 1, 2). The test statistic in the test is defined to be

χ2 =

m∑
j=1

(A1(j)−A2(j))2

A1(j) +A2(j)
.

As the notation suggest, asymptotically this has a χ2 distribution with m′ − 1
degrees of freedom (where m′ is the number of reference barcodes with nonzero
counts). As such, we can again look up the p-values for this distribution in standard
tables.

Remark 6.3. Independence of distribution for p-values above hold asymptotically
as a consequence of the Glivenko-Cantelli theorem; however, in general we may
worry if our sample sizes are large enough for the p-value to be correct.

Another approach it to use summary test statistics. A very natural test statistic
associated to Φnk measures the distance to a fixed hypothesis distribution.

Definition 6.4. Let (X, ∂X , µX) be a compact metric measure space and let P be
a fixed reference distribution on B. Fix k, n ∈ N. Define the homological distance
on X relative to P to be

HDn
k ((X, ∂X , µX),P) = dPr(Φ

n
k (X, ∂X , µX),P).

The proof of Lemma 5.4 applies to show that large finite samples suffice to
approximate HDn

k .

Lemma 6.5. Let S1 ⊂ S2 ⊂ . . . ⊂ Si ⊂ . . . be a sequence of randomly drawn
samples from (X, ∂X , µX). We regard Si as a metric measure space using the
subspace metric and the empirical measure. Then for P a fixed reference distribution
on B, HDn

k (Si,P) converges almost surely to HDn
k ((X, ∂X , µX),P).

An immediate consequence of Theorem 5.2 is the following robustness result
(paralleling Theorem 5.3).

Theorem 6.6. For fixed n, k,P, HDn
k (−,P) is uniformly robust with robustness

coefficient r and estimate bound nr/(1 + r) for any r.

Alternatively, a virtue of distributions on R is that they can be naturally summa-
rized by moments; in contrast, moments for distributions on barcode space are very
hard to understand (for example, geodesics between close points are not unique).
The first moment is the mean, which could be used as a test statistic. Because we
have emphasized robust statistics, we work instead with the median (or a trimmed
mean, see Remark 6.9) and introduce the following test statistic:

Definition 6.7. Let (X, ∂X , µX) be a compact metric measure space and let P be
a fixed reference barcode B ∈ B. Fix k, n ∈ N. Let D denote the distribution on R
induced by applying dB(B,−) to the barcode distribution Φnk (X, ∂X , µX). Define
the median homological distance relative to P to be

MHDn
k ((X, ∂X , µX),P) = median(D).

Again, the Glivenko-Cantelli theorem implies that consideration of large finite
samples will suffice.
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Lemma 6.8. Let S1 ⊂ S2 ⊂ . . . ⊂ Si ⊂ . . . be a sequence of randomly drawn sam-
ples from (X, ∂X , µX). We regard Si as a metric measure space using the subspace
metric and the empirical measure. Let P be a fixed reference barcode, and assume
that D((X, ∂X , µX),P) has a distribution function with a positive derivative at the
median. Then MHDn

k (Si,P) almost surely converges to MHDn
k ((X, ∂X , µX),P).

Proof. As in the proof of Lemma 5.4, the fact that {Si} converges almost surely to
(X, ∂X , µX) in the Gromov-Prohorov metric implies that D(Si) weakly converges
to D. Now the central limit theorem for the sample median (see for instance [20,
III.4.24]) implies the convergence of medians. �

Remark 6.9. To remove the (possibly hard to verify) hypothesis in Lemma 6.8, one
can replace the median with a trimmed mean (i.e., the mean of the distribution
obtained by throwing away the top and bottom k%, for some constant k).

As discussed in the introduction, a counting argument yields the following ro-
bustness result.

Theorem 6.10. For any n, k,P, the function MHDn
k (−,P) from finite metric

spaces (given the uniform probability measure) to R is robust with robustness coef-
ficient > (ln 2)/n.

A particular advantage of HDn
k and MHDn

k is that we can define confidence
intervals using the standard non-parametric techniques for determining confidence
intervals for the median [9, §7.1]. Specifically, we use appropriate sample quantiles
(order statistics) to determine the bounds for an interval which contains the actual
median with confidence 1−α. For example, a simple approximation can be obtained
from the fact that order statistics asymptotically obey binomial distributions, which
lead to the following definition using the normal approximation to the binomial
distribution.

Definition 6.11. Let (X, ∂X , µX) be a metric measure space, P a fixed barcode,

and P̃ a fixed distribution on barcodes. Fix 0 ≤ α ≤ 1 and n, k. Given m empirical
approximations to HDn

k (−, P̃) or MHDn
k (−,P), let {sm} denote the samples sorted

from smallest to largest. Let uα denote the α
2 significance threshold for a standard

normal distribution. The 1− α confidence interval for the sample median is given
by the interval [

sbm+1
2 −

1
2

√
muαc, sdm+1

2 + 1
2

√
muαe

]
.

Note that a further advantage of HDn
k and MHDn

k is that the asymptotics we
rely on for the confidence intervals in the preceding definition do not depend on the
convergence result in the main theorem, and as a consequence we can apply these
confidence intervals when studying filtered complexes generated by a procedure
other than the Rips complex, e.g., the witness complex. We give examples in
Section 8 of both sorts of confidence interval.

More sophisticated estimates involving better techniques for non-parametric con-
fidence intervals for the population median can also be adopted. Of course, such
non-parametric estimates depend on the convergence to the binomial approxima-
tion, which we cannot know a priori (cf. Remark 6.3 above). Furthermore, this
requires empirical estimates of the distribution Φnk (X, ∂X , µX). But provided this
is available, we can perform confidence-interval based hypothesis testing.
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Remark 6.12. All of the inference procedures described in this section require re-
peated sampling of samples of size k. This raises the question that, given the
opportunity to obtain m samples of size k, is it more sensible to regard this as
m samples of size of size k or one sample of size mk (or something in between)?
Considerations of the latter sort quickly lead to consideration of bootstrap and re-
sampling methods; we believe that bootstrap confidence intervals are most likely
to be useful in this setting. We study resampling, proving asymptotic consistency
and studying the convergence behaviors in the companion paper [1].

Finally, in principle we would like to be able to use the distribution invariant
Φnk (X, ∂X , µX) (or perhaps other distributions of barcodes) in likelihood statistics.
For example, given a hypothesis barcode B, we can empirically estimate the prob-
ability that one would see a barcode within ε of B when sampling n points. This
then in principle allows us to test whether a particular sample (or collection of
samples) is consistent with the hypothesis Hypnk (X;B, ε) that B is within ε of the
barcode of a sample of size n drawn from (X, ∂X , µX). More generally, we can
distinguish between (X, ∂X , µX′) and (X ′, ∂X′ , µX′) by calculating likelihoods of
the hypotheses Hypnk (X;B, ε) and Hypnk (X ′;B, ε). Specifically, given an observed
barcode B obtained by sampling n points from an unknown metric measure space
(Z, ∂Z , µZ), we can compute the likelihood

LX = L(X, ∂X , µX) = Pr(dB(B, B̃) < ε | B̃ drawn from Φnk (X, ∂X , µX)).

The ratio LX/LX′ provides a test statistic for comparing the two hypotheses.
A significant difficulty with this approach, however, is that in order to compute
the thresholds on LX/LX′ for deciding which hypothesis to accept at a given p-
value, we require knowledge of the distribution of the likelihood scores induced by
Φnk (X, ∂X , µX) and Φnk (X ′, ∂X′ , µX′), which in general must be obtained by Monte
Carlo simulation (i.e., repeated sampling).

We can overcome the difficulty above by instead testing the likelihood of a more
distributional statement. For a metric measure space (X, ∂X , µX) and a subset S of
B, we can estimate the likelihood that the distribution Φnk (X) has mass ≥ ε on S as

follows. For any hypothetical distribution on B with mass ≥ ε on S, the probability
of an empirical sample of size N having q or fewer elements in S is bounded above
by the binomial cumulative distribution function

BD(N, q, ε) =

q∑
i=0

(
N

i

)
εi(1− ε)N−i.

Then given an empirical approximation E to Φnk obtained from N samples, we can
test the hypothesis that Φnk has mass ≥ ε in S, by taking q to be the number of
such elements in E . When BD(N, q, ε) < α, we can reject this hypothesis at the
1− α level.

Remark 6.13. In the test statistics in this section, we have suggested using Monte
Carlo methods to estimate distributions Φnk , but not to estimate p-values. The
reason is that that the space of possible null hypotheses is often so large that it is
infeasible to imagine doing the required Monte Carlo simulations.

7. Demonstration of hypotheses testing on synthetic examples

Synthetic Example 1: The annulus and the annulus plus diameter linage.
To demonstrate hypothesis testing methodology for Φnk , we first consider a simple
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example which illustrates the robustness of the distributional invariants. We gen-
erated a set S1 of 1000 points by sampling uniformly (via rejection sampling) from
an annulus of inner radius 0.8 and outer radius of 1.2 in R2 (see Figure 1). The
underlying manifold is homotopy equivalent to a circle, and computing the bar-
code for the first homology group (with cutoff of 0.75) yields a single long interval,
displayed in Figure 2.

Figure 1. Annulus with inner radius 0.8 and outer radius 1.2
(left), and same annulus together with diameter linkage given by
the nine points (0, 0.8), (0, 0.6), (0, 0.4), (0, 0.2), (0, 0), (0,−0.2),
(0,−0.4), (0,−0.6), (0,−0.8) (right).

Figure 2. Barcode for annulus via the Rips complex with 1000
points. Horizontal scale goes from 0 to 0.75. (Vertical scale is not
meaningful.)

We then added the set of points X

{(0, 0.8), (0, 0.6), (0, 0.4), (0, 0.2), (0, 0), (0,−0.2), (0,−0.4), (0,−0.6), (0,−0.8)}

to form the set S2 = S1 ∪ X. By adding these 9 points, the point cloud now
appears to have been sampled from an underlying manifold homotopy equivalent
to a figure 8 when the parameter is between 0.2 and our cutoff 0.75. (See Figure 1.)
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Figure 3. Barcode for the annulus plus diameter linkage via the
Rips complex with 1000 points. Horizontal scale goes from 0 to
0.75. (Vertical scale is not meaningful.)

Computing the barcode for the first homology group now yields two long intervals,
displayed in Figure 3.

We computed empirical approximations to Φ75
1 (S1) and Φ75

1 (S2), using 1000 sam-
ples of size 75 and barcode cutoffs of 0.75. Comparing the empirical distance distri-
butions D2 (as in Definition 6.1) using the Kolmogorov-Smirnov statistic suggested
they were drawn from the same distribution at the 95% confidence level. Fixing
a reference barcode B1 with a single long bar and using the associated distance
distribution produced the same result.

For the χ2 test on these samples, we found that the resulting distributions had
nontrivial mass clustered in three regions: around a barcode B0 with no long inter-
vals, a barcode B1 with one long interval, and a barcode B2 with two long intervals.
Assigning each point in the empirical approximation to the nearest such barcode,
the distribution of masses were 0.236, 0.749, and 0.015 for S1 and 0.234, 0.741, and
0.025 for S2. The χ2 test suggested they were drawn from the same distribution at
the 95% confidence level.

This example also begins to illuminate a relationship between the distributional
invariants and density filtering. Notice that the second interval at the bottom of
Figure 3 starts somewhat later, reflecting a difference in average interpoint distance
between the original samples and the additional points added. As a consequence,
one might imagine that appropriate density filtering would also detect these points.
On the one hand, in many cases density filtering is an excellent technique for con-
centrating on regions of interest. On the other hand, it is easy to construct examples
where density filtering fails (for instance, we can build examples akin to the one
studied here where the “connecting strip” has comparable density to the rest of
the annulus simply by reducing the number of sampled points or by expanding the
outer radius while keeping the number of sampled points fixed). More generally,
studying distributional invariants (such as Φ) by definition allows us to integrate
information from different density scales. In practice, we expect there to be a syn-
ergistic interaction between density filtering and the use of Φnk ; see Section 8 for an
example.

Synthetic Example 2: Friendly circles. Next, we considered a somewhat more
complicated example. We sampled 750 points uniformly in the volume measure from
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the circle centered at (0, 0) of radius 2, and 750 points uniformly in the volume
measure from the circle centered at (0.8, 0) of radius 1. We then added uniform
noise sampled from [−2, 2] × [−2, 2] ⊂ R2. (See Figure 4.) Without noise, we
saw the expected pair of long bars in the barcode for the first persistent homology
group, computed using the Rips complex. However, as noise was added, the results
of computing barcodes using the Rips complex degraded very rapidly, as we see in
Figure 5.

Figure 4. Two circles with noise (indicated by gray box).

Even with only 10 noise points, we see 3 bars, and with 90 noise points there
are 12. (These results were stable across different samples; we report results for a
representative run.)

We computed Φ300
1 for the same point clouds (i.e., the two circles plus varying

numbers of noise points), using 1000 samples of size 300 and a cutoff of 0.75. The
resulting empirical distributions had essentially all of their weight concentrated
around barcodes with a small number of long intervals. We clustered the points
in the empirical estimate of Φ300

1 around barcodes with fixed numbers of long bars
(from 0 to the cutoff), assigning each point to the nearest barcode. The results are
summarized in Table 1 below.

Table 1. Distribution summaries for Φ300
1

Number of noise pts 0 bars 1 bars 2 bars 3 bars 4 bars 5 bars

0 0 303 696 1 0 0
10 0 305 589 106 0 0
20 0 278 590 132 0 0
30 0 285 594 119 2 0
40 1 259 584 149 6 1
50 0 289 553 154 4 0
60 0 254 591 146 7 2
70 0 277 564 154 5 0
80 1 229 543 196 29 2
90 0 229 533 207 28 3
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Figure 5. Barcode for two circles with 10, 50, and 90 noise points.
Horizontal scale goes from 0 to 0.75. (Vertical scale is not mean-
ingful.)

A glance at the table shows that the majority of the weight is clustered around a
barcode with 2 long bars and that the data overwhelming supports a hypothesis of
≤ 3 barcodes under all noise regimes. We can be more precise using the likelihood
statistic of the last section to evaluate the hypothesis H that the observed empiri-
cal approximation to Φnk was drawn from an underlying barcode distribution with
weight ≥ 5% on barcodes with more than 3 long bars. In the strictest tests with 80
and 90 noise points, 31 out of 1000 samples were near bar codes with more than 3
long bars, and so we estimate that the probability of the distribution having ≥ 5%
of the mass at 4 or more bar codes as ≤ BD(1000, 31, .05) < 0.22%. Put another
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way, we can reject the hypothesis that the actual distribution has more than 5%
mass at 4 or more bar codes at the 99.7% level.

8. Application: confidence intervals for the natural images dataset

8.1. Setup. In this section, we compute the confidence intervals based on MHDn
k

for a subset of patches from the natural images data set as described in [3]. We
briefly review the setup. The dataset consists of 15000 points in R8, generated as
follows. From the natural images, 3 × 3 patches (dimensions given in pixels) were
sampled and the top 20% with the highest contrast were retained. These patches
were then normalized twice, first by subtracting the mean intensity and then scaling
so that the Euclidean norm is 1. The resulting dataset can be regarded as living
on the surface of an S7 embedded in R8. After performing density filtering (with
a parameter value of k = 15; refer to [3] for details) and randomly selecting 15000
points, we are left with the dataset M(15, 30). At this density, one tends to see
a barcode corresponding to 5 cycles in the H1. In the Klein bottle model, these
cycles are generated by three circles, intersecting pairwise at two points (which can
be visualized as unit circles lying on the xy-plane, the yz-plane, and the xz-plane).

8.2. Results. We computed an empirical approximation to Φ500
1 (M(15, 30)) and

found that (after clustering, as above) the weight was distributed as 0.1 % with one
bar, 1.1 % with two bars, 7.4% with three bars, 34.2% with four bars, and 57.2%
with five bars. Analyzing likelihoods, we can see that the underlying distribution
has at least 95% of its mass on two, three, or four bars at the the 99.7% confidence
level.

We also analyze the results using MHD. We use as the hypothesis barcode the
multi-set {(a, c), (a, c), (a, c), (a, c), (a, c)}, where a is chosen to be smaller than the
minimum value at which any signal appears in the first Betti number and c is the
maximum bar length found in the dataset (and is typically an arbitrary value ob-
tained as the cutoff for the maximal filtration value; we used the value reported
in [3], which is 2). We approximate MHD500

1 (M(15, 30)) by the empirical distri-
bution based on 1000 samples. We find using the non-parametric esimate based
on the interval statistics that the 95% confidence interval for MHD500

1 (M(15, 30) is
[0.442, 0.476]. The 99% confidence interval for MHD500

1 (M(15, 30)) is [0.436, 0.481].
These results represents high confidence for the data to be further than 0.442 but
closer than 0.476 to the reference barcode. On the other hand, when we compute
the confidence intervals using the reference barcode the empty set, we find that
both the 95% and 99% confidence intervals are the cutoff value of 2. We find
similar results for hypothesis barcodes with fewer than five bars.

We interpret these results to suggest that the hypothesis barcode is the best
summarization amongst barcode distributions that put all of their mass on a single
barcode. Of course, these results also suggest that when sampling at 500 points,
we simply do not expect to see a distribution that is heavily concentrated around a
single barcode. In the next subsection, we discuss the use of the witness complex,
which does result in such a distribution.

Remark 8.1. To validate the non-parametric estimate of the confidence interval,
we also used bootstrap resampling to compute bootstrap confidence intervals. Al-
though we do not justify or discuss further this procedure herein (see instead [1]),
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we note that we observed the reassuring phenomenon that the bootstrap confi-
dence intervals agreed closely with the non-parametric estimates for both the 95%
confidence intervals and the 99% confidence intervals in each instance.

8.3. Results with the witness complex. Because of the size of the datasets
involved, in the analysis performed in [3], rather than the Rips complex VR they
used the weak witness complex. The weak witness complex for a metric space (X, ∂)
depends on a subset W ⊂ X of witnesses; the size of the complexes is controlled
by |W | and not |X|.

Definition 8.2. For ε ∈ R, ε ≥ 0 and witness setW ⊂ X, the weak witness complex
Wε(X,W ) is the simplicial complex with vertex set W such that [v0, v1, . . . , vn] is
an n-simplex when for each pair vi, vj , there exists a point p ∈ X (a witness) such
that the distances ∂(vi, p) ≤ ε.

When working with the witness complex, we adapt our basic approach to study
the induced distribution on barcodes which comes from fixing the point cloud and
repeatedly sampling a fixed number of witnesses. The theoretical guarantees we
obtained for the Rips complex in this paper do not apply directly; we intend to
study the robustness and asymptotic behavior of this process in future work. Here,
we report preliminary numerical results.

Again, we use as the hypothesis barcode the multi-set {(0, c), (0, c), (0, c), (0, c),
(0, c)} as above. We approximated MHDn

1 (M(15, 30)) (various n) by the empirical
distribution obtained by sampling n landmark points from M(15, 30), computing
the barcode, and computing the distance to the reference barcode. Doing this 1000
times, we find using the non-parametric esimate based on the interval statistics that
the 95% confidence interval for MHD100

1 (M(15, 30)), is [0.024, 0.027]. The 99% con-
fidence interval for MHD100

1 (M(15, 30)) was also [0.024, 0.027]. When we computed
the 95% confidence interval for MHD150

1 (M(15, 30) we obtained [0.021, 0.023]. The
99% confidence interval for MHD150

1 (M(15, 30)) was [0.021, 0.024]. This represents
high confidence for the data to be further than 0.021 (for Φ150

1 ) and 0.024 (for Φ100
1 )

but closer than 0.024 (for Φ150
1 ) and 0.027 (for Φ100

1 ) to the reference barcode. We
obtained essentially the same results MHD500

1 as for MHD150
1 . We interpret these

results to mean that the underlying distribution is essentially concentrated around
the hypothesis barcode; the distance of 0.025 is essentially a consequence of noise.

Remark 8.3. In contrast, when we compute MHD25
1 (M(15, 30)), we find the con-

fidence interval is [1.931, 1.939]. When we compute MHD75
1 (M(15, 30)), we find

that the confidence interval is [1.859, 1.866]. This represents high confidence that
MHD25

1 and MHD75
1 are far from this reference barcode, which in light of the con-

fidence intervals above for MHD150
1 and MHD500

1 appear to indicate that samples
sizes 25 and 75 are too small.
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