Research Papers

Back to Home Page

 68.
Benjamini-Schramm limits of high genus translation surfaces: research announcement

with Kasra Rafi and Hunter Vallejos

arXiv


 67.
The Aldous-Lyons Conjecture II: Undecidability
with Michael Chapman and Thomas Vidick
arXiv


 66.
 The Aldous-Lyons Conjecture I: Subgroup Tests

with Michael Chapman, Alexander Lubotzky and Thomas Vidick
submitted.
arXiv


 65.
Algebraic dynamical systems from LDPC codes satisfy a strong negation of the weak Pinsker property
with Tim Austin, and Chris Shriver submitted.
arXiv


 64.
 Locally compact sofic entropy theory, part I

To appear in Trans. Amer. Math. Soc. arXiv


 63.
Entropy for actions of free groups under bounded orbit equivalence.
with Yuqing Frank Lin To appear in Israel J. of Math. arXiv


 62.
Locally compact sofic groups

 with Peter Burton  Israel J. Math. 251 (2022), no. 1, 239–270 arXiv


 61.
A multiplicative ergodic theorem for von Neumann algebra valued cocycles
with Ben Hayes, Yuqing (Frank) Lin Comm. Math. Phys. 384 (2021), no. 2, 1291–1350. arXiv

 60.
A topological dynamical system with two different positive sofic entropies

with Dylan Airey and Yuqing (Frank) Lin
Trans. Amer. Math. Soc. Ser. B 9 (2022), 35–98. arXiv
video
talk slides
 59.
 Flexible stability and nonsoficity

 with Peter Burton Trans. Amer. Math. Soc. 373 (2020), no. 6, 4469–4481.  arXiv


 58.
 Failure of the L^1 pointwise ergodic theorem for PSL(2,R).

 with Peter Burton
Geom. Dedicata 207 (2020), 61–80.
 arXiv


 57.
 Sofic homological invariants and the Weak Pinsker Property

Amer. J. Math. 144 (2022), no. 1, 169–226.  arXiv

 56.
 Superrigidity, measure equivalence, and weak Pinsker entropy
 with Robin Tucker-Drob Groups Geom. Dyn. 16 (2022), no. 1, 247–286.  arXiv


55.

A brief introduction to sofic entropy theory



Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, 1847–1866, World Sci. Publ., Hackensack, NJ, 2018

arXiv

 video
 talk slides

54.

Finitary random interlacements and the Gaboriau-Lyons problem



Geom. Funct. Anal. 29 (2019), no. 3, 659–689.

arXiv



53.

All properly ergodic Markov chains over a free group are orbit equivalent



Unimodularity in randomly generated graphs, 155–174, Contemp. Math., 719, Amer. Math. Soc., Providence, RI, 2018.

arXiv



52.

The space of stable weak equivalence classes of measure-preserving actions


with Robin Tucker-Drob

J. Funct. Anal. 274 (2018), no. 11, 3170–3196.

arXiv



51.

Examples in the entropy theory of countable group actions



Ergodic Theory Dynam. Systems 40 (2020), no. 10, 2593–2680.

arXiv



50.

Invariant random subgroups of semidirect products


with Ian Biringer and Omer Tamuz

Ergodic Theory Dynam. Systems 40 (2020), no. 2, 353–366.To appear in Ergodic Theory and Dynamical Systems.

arXix



49.

Zero entropy is generic



Entropy 18 (2016), no. 6, Paper No. 220, 20 pp.

arXiv



48.

Integrable orbit equivalence rigidity for free groups



Israel J. Math. 221 (2017), no. 1, 471–480. 

arXiv



47.

Hyperbolic geometry and pointwise ergodic theorems


with Amos Nevo

Ergodic Theory Dynam. Systems 39 (2019), no. 10, 2689–2716.

arXiv



46.

von Neumann's problem and extensions of non-amenable equivalence relations


with Daniel Hoff and Adrian Ioana

Groups Geom. Dyn. 12 (2018), no. 2, 399–448.

arXiv



45.

Simple and large equivalence relations



Proc. Amer. Math. Soc. 145 (2017), no. 1, 215–224.

arXiv



44.

Equivalence relations that act on bundles of hyperbolic spaces



Ergodic Theory Dynam. Systems 38 (2018), no. 7, 2447–2492.

arXiv



43.

Mean convergence of Markovian spherical averages for measure-preserving actions of the free group


with Alexander Bufetov and Olga Romaskevich

Geom. Dedicata 181 (2016), 293–306.

arXiv



42.

Property (T) and the Furstenberg entropy of nonsingular actions


with Yair Hartman and Omer Tamuz

Proc. Amer. Math. Soc. 144 (2016), no. 1, 31–39.

arXiv



41.

Generic stationary measures and actions


with Yair Hartman and Omer Tamuz

Trans. Amer. Math. Soc. 369 (2017), no. 7, 4889--4929.

arXiv



40.

Characteristic random subgroups of geometric groups and free abelian groups of infinite rank


with Rostislav Grigorchuk and Rostyslav Kravchenko

Trans. Amer. Math. Soc. 369 (2017), no. 2, 755–781.

arXiv



39.

L1-measure equivalence and group growth
(Appendix to: Integrable measure equivalence for groups of polynomial growth by Tim Austin)



Groups Geom. Dyn. 10 (2016), no. 1, 117–154.

arXiv



38.

Weak density of orbit equivalence classes of free group actions



Groups Geom. Dyn. 9 (2015), no. 3, 811–830.

arXiv



37.

Cheeger constants and L2-Betti numbers



Duke Math. J. 164 (2015), no. 3, 569–615.

arXiv



36.

von-Neumann and Birkhoff ergodic theorems for negatively curved groups


with Amos Nevo

Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 5, 1113–1147.

arXiv



35.

Amenable equivalence relations and the construction of ergodic averages for group actions


with Amos Nevo

J. Anal. Math. 126 (2015), 359–388.

arXiv



34.

Entropy theory for sofic groupoids I: the foundations



Journal d'Analyse Mathématique , Volume 124, Issue 1, pp 149--233.

arXiv



33.

The type and stable type of the boundary of a Gromov hyperbolic group



Geometriae Dedicata, October 2014, Volume 172, Issue 1, pp 363--386.

arXiv



32.

A horospherical ratio ergodic theorem for actions of free groups


with Amos Nevo

Groups Geom. Dyn. 8(2):331--353, 2014.

arXiv



31.

Invariant random subgroups of lamplighter groups (new version as of Sept 2, 2013)


with Rostislav Grigorchuk and Rostyslav Kravchenko

Israel J. Math. 207 (2015), no. 2, 763–782.

arXiv



30.

Invariant random subgroups of the free group



Groups Geom. Dyn. 9 (2015), no. 3, 891–916.

arXiv



29.

A Juzvinskiĭ Addition Theorem for Finitely Generated Free Group Actions


with Yonatan Gutman

Ergodic Theory Dynam. Systems 34 (2014), no. 1, 95–109.

arXiv



28.

Harmonic models and spanning forests of residually finite groups


with Hanfeng Li

J. Funct. Anal. 263, no. 7, (2012), 1769--1808

arXiv



27.

On a co-induction question of Kechris


with Robin Tucker-Drob

Israel J. of Math. March 2013, Volume 194, Issue 1, pp 209--224

arXiv



26.

Random walks on coset spaces with applications to Furstenberg entropy



Invent. Math.  Volume 196, Issue 2 (2014), Page 485-510

arXiv



25.

Pointwise ergodic theorems beyond amenable groups


with Amos Nevo

Ergod. Th. and Dynam. Sys. (2013), 33, 777--820

arXiv



24.

Geometric covering arguments and ergodic theorems for free groups


with Amos Nevo

L’Enseignement Mathématique, Volume 59, Issue 1/2, 2013, pp. 133--164

arXiv



23.

Every countably infinite group is almost Ornstein



Dynamical systems and group actions, 67–78, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012.

arXiv



22.

Sofic entropy and amenable groups



Ergodic Theory Dynam. Systems 32 (2012), no. 2, 427–466

arXiv



21.

Stable orbit equivalence of Bernoulli shifts over free groups



Groups Geom. Dyn. 5 (2011), no. 1, 17–38.

arXiv



20.

Orbit equivalence, coinduced actions and free products



Groups Geom. Dyn. 5 (2011), no. 1, 1–15.

arXiv



19.

Entropy for expansive algebraic actions of residually finite groups



Ergodic Theory Dynam. Systems. 31 (2011), no. 3, 703--718.

arXiv



18.

Weak isomorphisms between Bernoulli shifts



Israel J. of Math, (2011) Volume 183, Number 1, 93-102

arXiv



17.

Nonabelian free group actions: Markov processes, the Abramov-Rohlin formula and Yuzvinskii's formula



Ergodic Theory Dynam. Systems 30 (2010), no. 6, 1629--1663.

arXiv



Corrigendum


with Yonatan Gutman

Ergodic Theory and Dynam. Systems  33 Issue 02  / April 2013, pp 643 - 645.

arXiv



16.

The ergodic theory of free group actions: entropy and the f-invariant.



Groups Geom. Dyn. 4 (2010), no. 3, 419--432

arXiv



15.

A new measure conjugacy invariant for actions of free groups



Ann. of Math., vol. 171 (2010), No. 2, 1387--1400.

arXiv



14.

Measure conjugacy invariants for actions of countable sofic groups



J. Amer. Math. Soc., 23 (2010), 217-245.

arXiv



13.

Invariant measures on the space of horofunctions of a word hyperbolic group



Ergodic Theory Dynam. Systems. 30 (2010), no. 1, 97--129.

arXiv



12.

Free groups in lattices



Geometry & Topology, 13, (2009), 3021--3054.

arXiv



11.

A generalization of the prime geodesic theorem to counting conjugacy classes of free subgroups



Geom. Dedicata, 124, (2007), 37--67.

arXiv



10.

A Solidification Phenomenon in Random Packings


with Russell Lyons, Charles Radin and Peter Winkler

SIAM J. Math. Anal. 38 (2006), no. 4, 1075--1089.




 9.

Fluid/Solid Transition in a Hard-Core System


with Russell Lyons, Charles Radin and Peter Winkler

Phys. Rev. Lett. 96, 025701 (2006)




 8.

Uniqueness and symmetry in problems of optimally dense packings


with Charles Holton, Charles Radin and Lorenzo Sadun

Math. Phys. Electron. J. 11 (2005), Paper 1, 34 pp.

arXiv



 7.

On the Gromov Norm of the Product of Two Surfaces


with Mike Develin, Jesus De Loera and Francisco Santos

Topology 44 (2005), no. 2, 321--339. erratum: Topology 47 (2008), no. 6, 471--472.

arXiv



 6.

Couplings of Uniform Spanning Forests



Proc. Amer. Math. Soc. 132 (2004), no. 7, 2151--2158.

arXiv



 5.

Optimally Dense Packings of Hyperbolic Space


with Charles Radin

Geom. Dedicata 104 (2004), 37--59.

arXiv



 4.

On the existence of completely saturated packings and completely reduced coverings



Geom. Dedicata 98 (2003), 211--226.

arXiv



 3.

Densest Packing of Equal Spheres in Hyperbolic Space


with Charles Radin

Discrete Comput. Geom. 29 (2003), no. 1, 23--39. 




 2.

Periodicity and Circle Packing in the Hyperbolic Plane



Geom. Dedicata 102 (2003), 213--236.

arXiv



 1.

Circle Packing in Hyperbolic Space



Math. Phys. Electron. J. 6 (2000), Paper 6, 10 pp. (electronic).




 

This material is based upon work supported by the National Science Foundation under Grants No. 0901835 (9/1/09-2/28/10), 0968762 (9/1/09-8/31/12), 0954606 (5/15/10-4/30/15) and 1500389 (May 2015-April 2018). The collaborative work with Amos Nevo was supported by the Binational Science Foundation under Grant No. 2008274 (9/1/09-8/31/13).

Any opinions, findings and conclusions or recomendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF) or the Binational Science Foundation.