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Abstract: We study the solvability of some linear nonhomogeneouptélequa-
tions and establish that under certain technical conditthe convergence ih? of
their right sides yields the existence and the convergemdé*iof the solutions.
The problems involve the fourth order differential operatwith or without the
Fredholm property, particularly the fourth derivative ogger, on the whole real
line or on a finite interval with periodic boundary conditsoriWe demonstrate that
the transport term contained in these equations providesetjularization of the
solutions.
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1. Introduction

Consider the equation
(—A+V(x))u—au = f, (1.1)

whereu € E = H?*(RY) andf € F = L*(R?), d € N, a is a constant, and the
functionV (z) is decaying td at infinity. If « > 0, then the essential spectrum of
the operato : £ — F corresponding to the left side of problem (1.1) contains the
origin. Consequently, such operator fails to satisfy treRplm property. Its image

is not closed, forl > 1 the dimension of its kernel and the codimension of its image
are not finite. The present work is devoted to the studieset#rtain properties
of the operators of this kind. Note that the elliptic probteoontaining the non-
Fredholm operators were treated extensively in recensy@ae [10], [11], [12],
[13], [18], [19], [21], [22], [23], [24], [25], [26], [27], 0 [3]) along with their
potential applications to the theory of reaction-diffusiequations (see [7], [8]).
Fredholm structures, topological invariants and theirliappons were covered in
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[9]. The works [14] and [17] deal with the understanding o ffredholm and
properness properties of the quasilinear elliptic systeftise second order and of
the operators of this kind dR” . The exponential decay and Fredholm properties in
the second-order quasilinear elliptic systems of equatiare discussed in [15].
Particularly, wheru = 0, our operatorA satisfies the Fredholm property in the
certain properly chosen weighted spaces (see [1], [2],[53].[6]). However, the
case when is nontrivial is significantly different and the approachveeped in
these articles cannot be applied.

One of the important questions about the equations withFredholm operators
is their solvability. We address it in the following settiniget f,, be a sequence of
functions in the image of the operatdr, so thatf,, — f in L?*(RY) asn — oo.
Denote byu,, a sequence of functions froht?(R¢) such that

Aup, = fn, n € N.

Because the operatar fails to satisfy the Fredholm property, the sequencenay
not be convergent. We call a sequenge so thatdu,, — f in L?(R%) a solution
in the sense of sequences of the equation= f (see [18]). If such sequence
converges to a function, in the norm of the spacg, thenu, is a solution of this
problem. The solution in the sense of sequences is equivaleéhis sense to the
usual solution. However, in the case of non-Fredholm opesahis convergence
may not hold or it can occur in some weaker sense. In such dasesolution
in the sense of sequences may not imply the existence of thne aslution. In
this article we will find the sufficient conditions of equiealce of solutions in the
sense of sequences and the usual solutions. In the othes woeedwill determine
the conditions on sequencgs under which the corresponding sequenagsare
strongly convergent.

In the first part of the article we consider the equation wlid transport term

— —b— —au= f(x), x€R, (1.2)

wherea > 0 andb € R, b # 0 are the constants and the right side is square
integrable. The problem with the drift in the context of tharBy’s law describ-
ing the fluid motion in the porous medium was discussed in .[Z4]e transport
term is crucial when studying the emergence and propagafigatterns arising
in the theory of speciation (see [20]). Nonlinear propagaphenomena for the
reaction-diffusion type equations containing the driftievas investigated in [4].
Existence of solutions for certain non-Fredholm integiftecential equations with
the bi-Laplacian was considered in [26]. The article [11§ldevith the solvability
in the sense of sequences for some fourth order non-Fredbfménators. The equa-
tion analogous to (1.2) but without the drift term was stddre [27]. Butin [27] it
was assumed that the constant 0 since making: trivial there leads to the more



singular situation. Clearly, the operator contained inléfieside of (1.2)

Lovi=——b——a: H'R)— L*R) (1.3)

is non-selfadjoint. By means of the standard Fourier ti@nsf

~ 1 o0 4
= — x)e "Prdx, eR 1.4
fr) === [t p (1.4
it can be easily derived that the essential spectrum of teeadqr L, , is given by

Ao, b(p) == p4 —a—1ibp, peR.

Evidently, if« > 0 our operatorL,, ; is Fredholm, because the origin does not be-
long to its essential spectrum. But whenanishes, the operatdy, , does not sat-
isfy the Fredholm property since its essential spectruntatos the origin. Clearly,
in the absence of the transport term we are dealing with tii@dmint operator

@ H*(R) — L*(R) >0

—_— — Q: a

d,r4 ) Y
which is non-Fredholm (see [27]). Let us write down the cgpanding sequence
of approximate equations with € N, namely

—b—— —auy, = f(r), = €R, (1.5)

wherea > 0 andb € R, b # 0 are the constants. The right sides of (1.5) tend to
the right side of (1.2) inL?(R) asm — oo. We define the inner product of two
functions

(f(2). 9(2)) cagey = / " f@)g(e)de, (1.6)

with a slight abuse of notations when these functions do eturiy toZ?(R). In-
deed, iff(z) € L}(R) andg(x) € L>=(R), then obviously the integral considered
above is well defined, like for example in the case of the fiamst contained in
the orthogonality relations (1.8) and (1.9) of Theoremsahd 1.2 below. For our
equation (1.2) on the finite intervél:= [0, 27| with periodic boundary conditions
(see (1.14)), we will use the inner product analogical t&)lreplacing the real
line with I. In the first part of the present article we will consider thaseH*(R)
equipped with the norm

d*u ’
dz?

[l 7a gy = llullZem) + (1.7)

L3(R)

When dealing with the norn#/*(7) later on, we will replace with I in formula
(1.7). Our first main result is as follows.
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Theorem 1.1.Let the constants > 0, b € R, b # 0 and f(z) € L*(R).
a) If a > 0, then equation (1.2) admits a unique solutioixy) € H*(R).

b) If « = 0 andzf(x) € L'(R), then problem (1.2) possesses a unique solution
u(r) € H*(R) if and only if the orthogonality condition

(f(2), )2 =0 (1.8)
is valid.

Evidently, the expression in the left side of (1.8) is wellided by virtue of the sim-
ple argument analogical to the proof of Fact 1 of [22]. Notd the argument of the
case a) of the theorem above does not rely on the orthogpualiditions, as dis-
tinct from the analogous situation without a drift term désed in [27]. Therefore,
the introduction of the drift term provides the regulariaatfor the solutions of our
equations. Our next statement is about the solvability ensénse of sequences for
our equation on whole the real line.

Theorem 1.2.Let the constants > 0, b € R, b # 0andm € N, f,,(z) € L*(R),
so thatf,,(z) — f(z)in L*(R) asm — oc.

a) If a > 0, then equations (1.2) and (1.5) have unique solutiong € H*(R) and
u,(z) € H*(R) respectively, such that,, (v) — u(x) in H*(R) asm — oo.

b) If a = 0, letzf,,(z) € L'(R), so thatz f,,(z) — = f(z) in L'(R) asm — oc.
Furthermore,

(fm(z), D)2y =0, meN (1.9)
is valid. Then problems (1.2) and (1.5) admit unique sohgio(r) € H*(R) and
un,(z) € H*(R) respectively, such that,,(z) — u(z) in H*(R) asm — oc.

The second part of our work is devoted to the studies of ouatgu on the finite
interval with the periodic boundary conditions (see (1)1i4¢. I := [0, 27|, namely

d*u  du
- h— = = I 1.1
= bdaz auv = f(z), x€l, (1.10)

wherea > 0 andb € R, b # 0 are the constants and the right side of (1.10) is
continuous and periodic. Clearly,

1l < 27l fllowy <00, N fll2ay < V2rfllew) < oo (1.11)

Thus, f(z) € L?(I) as well. We use the Fourier transform

1 [ ,-
fn = \/—Q_W/o f(x)e " dx, n€Z, (1.12)



so that

f(x) = Z fn\/—2—ﬂ_-

n=—oo

Evidently, the non-selfadjoint operator contained in @if¢ $ide of (1.10)

Lopi=——b——a: H' ) — L*I) (1.13)

is Fredholm. By means of (1.12), it can be trivially checkkdttthe spectrum of
L, » is given by
Ao p(n) i=n*—a—im, necZ

and the corresponding eigenfunctions are the Fourier ha'm;%, n € Z. The

™
eigenvalues of the operatdr, , are simple, as distinct from the situation without
the transport term, when the eigenvalues correspondimg-#00 are two fold de-
generate. The appropriate function space H&t€l) is given by

{u(x) : I — Clu(z),u""(x) € L*(I), u(0)=u(27r), u'(0)=1'(27),
u’(0) =u"(2m), " (0) =" (2m)}. (1.14)
For the technical purposes, we use the following auxilianystrained subspace
Hy(I) = {u(w) € HY(I) | (u(z), )2y = 0}, (1.15)

which is a Hilbert spaces as well (see e.g. Chapter 2.1 of).[X8garly, ifa > 0,
the kernel of the operatat, , is trivial. If « = 0, we consider

Lo v: Hy(I)— L*(I).

Evidently, such operator has the trivial kernel as well. Wé&ewdown the corre-
sponding sequence of the approximate equationswithN, namely

—b—— — auy, = f(z), =z €1, (1.16)

wherea > 0, b € R, b # 0 are the constants. The right sides of (1.16) are
continuous, periodic and converge to the right side of (Lil@'(/) asm — oc.
The goal of Theorems 1.3 and 1.4 below is to demonstrate ttmeatosimilarity

of the results on the finite interval with periodic boundaonditions to the ones
obtained for the whole real line case in Theorems 1.1 andido?ea

Theorem 1.3.Let the constants > 0, b € R, b # 0 and f(0) = f(2n), f(x) €
C(I).

a) If a > 0, then equation (1.10) admits a unique solutidn’) € H*(I).
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b) If « = 0, then problem (1.10) possesses a unique solution € H;(I) if and
only if the orthogonality condition

(f(2), D2y =0 (1.17)
is valid.

The final main proposition of the article is devoted to thevabllity in the sense of
sequences for our equation on the finite interizal

Theorem 1.4. Let the constanta > 0, b € R, b # 0 andm € N, so that
fm(0) = fn(27). Furthermore,f,,(x) € C(I) and f,,(x) — f(z) in C(I) as

m — OQ.

a) If a > 0, then equations (1.10) and (1.16) have unique solutigng € H*(I)
andu,,(z) € H*(I) respectively, so that,,(z) — u(z) in H*(I) asm — oc.

b) Ifa =0, let
(fm(2), 1) 20y =0, meN. (1.18)

Then problems (1.10) and (1.16) admit unique solutigng € H; (1) andu,,(z) €
H{(I) respectively, so that,,(z) — u(z) in H}(I) asm — oco.

Note that in the cases a) of Theorems 1.3 and 1.4 above thenargudoes not

rely on the orthogonality relations. When there are no pariserms in our prob-

lems, the case is more singular (see formulas (3.1) and {GrfHer down with
__ 4

a =ny, ny € N).

2. The whole real line case

Proof of Theorem 1.1Let us first demonstrate that it would be sufficient to solve
our equation inZ?(R). Indeed, ifu(x) is a square integrable solution of (1.2) on
the whole real line, directly from this equation under theegi conditions we derive

that i p
u u
— —ph— e L*R
dzt dx € L'(R)

as well. By virtue of the standard Fourier transform (1.49,vave(p* — ibp)t(p) €
4

* d
L*(R), so that/ pPlu(p)|Pdp < oo. Hence,d—li € L*(R), such thatu(r) €
o x
H*(R) as well.
To establish the uniqueness of solutions of (1.2), we supfitatu, (), us(z) €
H*(R) satisfy (1.2). Then their differenee(z) := u;(z) — us(z) € H*(R) solves
the homogeneous problem



Since the operatoL, ;, introduced in (1.3) does not possess any nontrivial zero
modes inf*(R), the functionw(x) is trivial on the real line.

We apply the standard Fourier transform (1.4) to both sidegoation (1.2). This
yields

o f)
u(p) = pr—— (2.1)
Thus, R
o) 2

Let us first discuss the case a) of our theorem. Formula (223 gis

1
HuH%Q(R) < 5Hf|’%2(R) <0

as assumed. Here and further do@/nvill designate a finite, positive constant.
Then we turn our attention to the situation when the paramet@nishes. From
(2.1), we easily express

_ f(p) f(p)
u(p) = o iy X< + o A>T (2.3)
Here and below 4 will denote the characteristic function of a setC R. Evidently,

the second term in the right side of (2.3) can be estimated &ioove in the absolute

o~

/()|
. ol .
via our assumption. Let us write

value by ¢ L*(R) becausef(z) is square integrable on the whole real line

-~

Fio = Foy+ [" s

Hence, the first term in the right side of (2.3) can be expkase

F (s)
f 0 pdf?ds
MX{WSH + mxﬂmgl} (24)

By means of definition (1.4) of the standard Fourier tranmsfore easily obtain

df(p)
dp

< —=lef @l

Thus, the second term in (2.4) can be bounded from above @b ute value by

1l f (@)l o)

e L*(R).
\/% |b‘ X{lp|<1} ( )




~

Clearly, the first term in (2.4) is contained ir¥(R) if and only if £(0) is trivial.
This is equivalent to orthogonality relation (1.8). [ |

Let us proceed to establishing the solvability in the sefisequences for our prob-
lem on whole the real line.

Proof of Theorem 1.Zirst we suppose that equations (1.2) and (1.5) admit unique
solutionsu(zr) € H*R) andu,,(z) € H*R), m € N respectively, so that

U (z) — u(z) in L*(R) asm — oo. This will imply thatw,, (x) also converges to
u(x) in H4(R) asm — oo. Clearly, from (1.2) and (1.5) we easily obtain that

d4
dat

d(ty, —u)

=) = b
(u w) .

< | fim = fllz2w) + alltm — ul[z2@®). (2.5)

L*(R)

The right side of (2.5) tends to zero as— oo due to our assumptions. By means
of the standard Fourier transform (1.4), we easily deriat th

/ P am(p) — A(p)Pdp = 0, m — oo,

d*uy, due. 774
Thus,W — o in L*(R) asm — oco. Thereforeu,,(x) — u(z) in H*(R) as
m — oo as well. We apply the standard Fourier transform (1.4) td lsades of
(1.5). This gives us

Tm(p) = Jm(P) m € N. (2.6)

Copt—a—ibp’
Let us first discuss the case a) of our theorem. By means ofatti@pof Theorem
1.1, equations (1.2) and (1.5) admit unique solutiofs) € H*(R) andu,,(z) €
H*(R), m € N respectively. By virtue of (2.6) along with (2.1), we obtirat

s [ )~ T
it =l = |

Hence, .
| — ul|L2@) < 5||fm — fllze@ — 0, m — o0

as assumed. Therefore, in the situation whern 0 we haveu,,(z) — u(x) in
H*(R) asm — oo by means of the argument above.

Let us conclude the proof of the theorem by treating the cdsnvihe parameter
a is trivial. According to the result of the part a) of Lemma 813[21], under the
stated assumptions

(f(2), 1) r2@ =0 2.7)



is valid. Then by virtue of the part b) of Theorem 1.1, probdeth.2) and (1.5)
possess unique solutiongr) € H*(R) andu,,(z) € H4(R), m € N respectively
if a = 0. Using (2.6) and (2.1), we derive

_ fnp) — F()

Fu(p) — F(p)
4 _ ibp (28)

Xiplsty + 7 5, Xdiel>1-

Obviously, the second term in the right side of (2.8) can hanlded from above in

the absolute value blfm |b_| )| . so that
Am p)— Ap
Intp) — /p) (4) »f< )X{\p\>1} < o fm = fllze@y — 0, m — o0
p*t —ibp . |b)|

as assumed. Orthogonality conditions (2.7) and (1.9) give u
F0)=0, fn(0)=0, meN.

Then we express

Fo = [ D20 R = [P men. @9

so that it remains to estimate the norm of the term

fo dfm(s d ]ds

p4 - ibp
By means of the definition of the standard Fourier transfdrm)( we easily obtain
that

X{lp|<1}-

dfn(p) ’
— < Tfm(x) —xf(x
e By R O e
Hence,
J1He - s | efae) - 2@l
p* —ibp tpi<ty) = o b {Ipl<1}
such that
‘ fo dfms(s . dd(SS)]dSX{l o - ||1‘fm(1‘) —:Ef(ZE)HLl(R) 0
4 5 pI= -~
p* — ibp . vy

asm — oo due to the one of our assumptions. Therefarg(x) — u(z) in L*(R)
asm — oo. By virtue of the argument above we have tha{z) — u(x) in H*(R)
asm — oo in the situation b) of our theorem as well. [ |
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3. The equation on the finite interval

Proof of Theorem 1.3Let us first establish that it would be sufficient to solve our
problem inL?(I). Indeed, ifu(z) is a square integrable solution of (1.10), periodic
on I along with its derivatives up to the third order inclusivedyrectly from our
equation under the given conditions we derive that

By means of (1.12), we have that! — ibn)u, € 2. Thus, >~ n®fu,|* < oo, SO
du .

that@ € L*(I). Thus,u(z) € H*(I) as well.

To show the unigueness of solutions of (1.10), we discussdke ofz > 0. When

a vanishes, we are able to use the similar ideas in the consttaubspacé/; (7).

Let us suppose that,(z), us(z) € H*(I) solve (1.10). Then their difference

w(z) = ui(z) — ux(z) € H(I) satisfies the homogeneous equation

Since the operatof, , introduced in (1.13) does not have any nontrivi&d(7)
zero modes, the functiom(z) vanishes identically id.
We apply the Fourier transform (1.12) to both sides of pnob(&.10). This yields

In
= 7 3.1
Un T i S 3-1)
so that
2 _ - |fn|2 32
”u”L2(I) - Z <n4_a)2+b2n2' ( . )

First we deal with the case a) of our theorem. By virtue of 32 have

1
||U||%2(1) < 5||f||i2(1) <0

as assumed (see (1.11)). By means of the argument aboves H*(7) as well.
Let us conclude the proof of the theorem by treating the cdsenw = 0. From
(3.1) we easily obtain that

Jn

n4 —ibn’

n € 2. (3.3)

Up =
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Obviously, the right side of (3.3) is containediinif and only if

jb ::07 (3'4)
so that

| ful? 1
[ull72ry = Z oE e < b—QHf”%m) < 00,
neZ, n#0

due to the one of our assumptions along with (1.11). The aegdimbove implies
thatu(x) € Hg(I) as well. Evidently, (3.4) is equivalent to orthogonalityndition
(1.17). |

Let us proceed to demonstrating the solvability in the se&isequences for our
problem on the interval with periodic boundary conditions.

Proof of Theorem 1.4Using the stated assumptions, we obtain that

1£(0) = f2m)[ < 1F(0) = frm(O)] + |fin (2m) — f(2m)[ < 2] fim = fllony = O

asm — oo. Hence,f(0) = f(2x). By means of (1.11) fof,,(x), f(z) continuous
on our intervall, we havef,,(x), f(z) € L*(I) N L*(I), m € N. Formula (1.11)
also gives us that

[fm(2) = F(@) |1y < 27 fin(2) = F(@) oy = 0, m = oo (3.5)

Thus, f,.(z) — f(z)in L*(I) asm — oco. Analogously, (1.11) implies that
1 fm(x) = F@)l2) < V2r[| fn(2) = f(@)llogy = 0, m =00, (3.6)

Therefore, f,,(x) — f(x) in L*(I) asm — oo as well. We apply the Fourier
transform (1.12) to both sides of (1.16). This yields that

fmn

Um,n = 1

n* —a —ibn’

meN, neZ. (3.7)

First we discuss the situation a) of our theorem. By virtuthefpart a) of Theorem
1.3, problems (1.10) and (1.16) have unique solutigny € H*(I) andu,,(z) €
H*(I), m € N respectively. By means of (3.1), (3.6) and (3.7), we have

- |fm,n _fn‘z 1
Hum - uH%Q(I) = Z (n4 _ CL)2 + p2n2 < EHfm - f”%Q(I) — 0, m — oo.

Thus,u,,(z) — u(z) in L*(I) asm — oo. Let us show that,,(z) converges to
u(x) in H4(I) asm — oo. Indeed, by virtue of (1.10) and (1.16), we derive

d4
dzt

d(ty, — u)
dx

(Up — ) — b < W fm = fllizzay + allum — ull 2.

L*(I)
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The right side of this inequality tends to zeroras— oo due to (3.6). Using the
Fourier transform (1.12), we arrive at

Z n8|um7n —u,* =0, m— oo,

Ay, du. I
Hence, T4 g in L*(I1) asm — oo. Thereforeu,,(x) — u(x)in H*(I) as
m — oo as well.

Let us conclude our article with considering the case whep#rameted vanishes.

By means of (1.18) along with (3.5), we obtain

|(f (), 1)L2(1)| = |(f(z) = fin(2), 1)L2(1)| < [ fm — f||L1(1) — 0, m— oo,

so that the limiting orthogonality condition

(f(2), )2y =0 (3.8)

is valid. By virtue of the part b) of Theorem 1.3 above equai@l.10) and (1.16)
admit unique solutions(x) € Hy(I) andu,,(x) € Hi(I), m € N respectively
whena is trivial. Using formulas (3.1) and (3.7), we arrive at

fm,n - fn

Upp —Up = —F—>—, meN, neZ (3.9)
n* —ibn

Orthogonality relations (3.8) and (1.18) give us that
fOIO, fm,O:07 mEN.

Let us derive the upper bound for the norm as

NS = fal> W = fllizay
[t — ull 2y = Z S+ 2n? < 0] — 0, m— o0

via (3.6). Hencey,,(z) — wu(z) in L*(I) asm — oo. Thereforeu,,(r) — u(z)
in H3(I) asm — oo as well by means of the argument analogical to the one above
in the proof of the situation a) of the theorem. [ |
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