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1. Introduction

Consider the equation
(−∆+ V (x))u− au = f, (1.1)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant, and the
functionV (x) is decaying to0 at infinity. If a ≥ 0, then the essential spectrum of
the operatorA : E → F corresponding to the left side of problem (1.1) contains the
origin. Consequently, such operator fails to satisfy the Fredholm property. Its image
is not closed, ford > 1 the dimension of its kernel and the codimension of its image
are not finite. The present work is devoted to the studies of the certain properties
of the operators of this kind. Note that the elliptic problems containing the non-
Fredholm operators were treated extensively in recent years (see [10], [11], [12],
[13], [18], [19], [21], [22], [23], [24], [25], [26], [27], also [3]) along with their
potential applications to the theory of reaction-diffusion equations (see [7], [8]).
Fredholm structures, topological invariants and their applications were covered in
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[9]. The works [14] and [17] deal with the understanding of the Fredholm and
properness properties of the quasilinear elliptic systemsof the second order and of
the operators of this kind onRN . The exponential decay and Fredholm properties in
the second-order quasilinear elliptic systems of equations were discussed in [15].
Particularly, whena = 0, our operatorA satisfies the Fredholm property in the
certain properly chosen weighted spaces (see [1], [2], [3],[5], [6]). However, the
case whena is nontrivial is significantly different and the approach developed in
these articles cannot be applied.
One of the important questions about the equations with non-Fredholm operators
is their solvability. We address it in the following setting. Let fn be a sequence of
functions in the image of the operatorA, so thatfn → f in L2(Rd) asn → ∞.
Denote byun a sequence of functions fromH2(Rd) such that

Aun = fn, n ∈ N.

Because the operatorA fails to satisfy the Fredholm property, the sequenceun may
not be convergent. We call a sequenceun, so thatAun → f in L2(Rd) a solution
in the sense of sequences of the equationAu = f (see [18]). If such sequence
converges to a functionu0 in the norm of the spaceE, thenu0 is a solution of this
problem. The solution in the sense of sequences is equivalent in this sense to the
usual solution. However, in the case of non-Fredholm operators this convergence
may not hold or it can occur in some weaker sense. In such case,the solution
in the sense of sequences may not imply the existence of the usual solution. In
this article we will find the sufficient conditions of equivalence of solutions in the
sense of sequences and the usual solutions. In the other words, we will determine
the conditions on sequencesfn under which the corresponding sequencesun are
strongly convergent.
In the first part of the article we consider the equation with the transport term

d4u

dx4
− b

du

dx
− au = f(x), x ∈ R, (1.2)

wherea ≥ 0 and b ∈ R, b 6= 0 are the constants and the right side is square
integrable. The problem with the drift in the context of the Darcy’s law describ-
ing the fluid motion in the porous medium was discussed in [24]. The transport
term is crucial when studying the emergence and propagationof patterns arising
in the theory of speciation (see [20]). Nonlinear propagation phenomena for the
reaction-diffusion type equations containing the drift term was investigated in [4].
Existence of solutions for certain non-Fredholm integro-differential equations with
the bi-Laplacian was considered in [26]. The article [11] deals with the solvability
in the sense of sequences for some fourth order non-Fredholmoperators. The equa-
tion analogous to (1.2) but without the drift term was studied in [27]. But in [27] it
was assumed that the constanta > 0 since makinga trivial there leads to the more
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singular situation. Clearly, the operator contained in theleft side of (1.2)

La, b :=
d4

dx4
− b

d

dx
− a : H4(R) → L2(R) (1.3)

is non-selfadjoint. By means of the standard Fourier transform

f̂(p) :=
1√
2π

∫ ∞

−∞

f(x)e−ipxdx, p ∈ R (1.4)

it can be easily derived that the essential spectrum of the operatorLa, b is given by

λa, b(p) := p4 − a− ibp, p ∈ R.

Evidently, if a > 0 our operatorLa, b is Fredholm, because the origin does not be-
long to its essential spectrum. But whena vanishes, the operatorL0, b does not sat-
isfy the Fredholm property since its essential spectrum contains the origin. Clearly,
in the absence of the transport term we are dealing with the self-adjoint operator

d4

dx4
− a : H4(R) → L2(R), a > 0,

which is non-Fredholm (see [27]). Let us write down the corresponding sequence
of approximate equations withm ∈ N, namely

d4um

dx4
− b

dum

dx
− aum = fm(x), x ∈ R, (1.5)

wherea ≥ 0 andb ∈ R, b 6= 0 are the constants. The right sides of (1.5) tend to
the right side of (1.2) inL2(R) asm → ∞. We define the inner product of two
functions

(f(x), g(x))L2(R) :=

∫ ∞

−∞

f(x)ḡ(x)dx, (1.6)

with a slight abuse of notations when these functions do not belong toL2(R). In-
deed, iff(x) ∈ L1(R) andg(x) ∈ L∞(R), then obviously the integral considered
above is well defined, like for example in the case of the functions contained in
the orthogonality relations (1.8) and (1.9) of Theorems 1.1and 1.2 below. For our
equation (1.2) on the finite intervalI := [0, 2π] with periodic boundary conditions
(see (1.14)), we will use the inner product analogical to (1.6), replacing the real
line with I. In the first part of the present article we will consider the spaceH4(R)
equipped with the norm

‖u‖2H4(R) := ‖u‖2L2(R) +

∥∥∥∥∥
d4u

dx4

∥∥∥∥∥

2

L2(R)

. (1.7)

When dealing with the normH4(I) later on, we will replaceR with I in formula
(1.7). Our first main result is as follows.
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Theorem 1.1.Let the constantsa ≥ 0, b ∈ R, b 6= 0 andf(x) ∈ L2(R).

a) If a > 0, then equation (1.2) admits a unique solutionu(x) ∈ H4(R).

b) If a = 0 andxf(x) ∈ L1(R), then problem (1.2) possesses a unique solution
u(x) ∈ H4(R) if and only if the orthogonality condition

(f(x), 1)L2(R) = 0 (1.8)

is valid.

Evidently, the expression in the left side of (1.8) is well defined by virtue of the sim-
ple argument analogical to the proof of Fact 1 of [22]. Note that the argument of the
case a) of the theorem above does not rely on the orthogonality conditions, as dis-
tinct from the analogous situation without a drift term described in [27]. Therefore,
the introduction of the drift term provides the regularization for the solutions of our
equations. Our next statement is about the solvability in the sense of sequences for
our equation on whole the real line.

Theorem 1.2.Let the constantsa ≥ 0, b ∈ R, b 6= 0 andm ∈ N, fm(x) ∈ L2(R),
so thatfm(x) → f(x) in L2(R) asm → ∞.

a) If a > 0, then equations (1.2) and (1.5) have unique solutionsu(x) ∈ H4(R) and
um(x) ∈ H4(R) respectively, such thatum(x) → u(x) in H4(R) asm → ∞.

b) If a = 0, let xfm(x) ∈ L1(R), so thatxfm(x) → xf(x) in L1(R) asm → ∞.
Furthermore,

(fm(x), 1)L2(R) = 0, m ∈ N (1.9)

is valid. Then problems (1.2) and (1.5) admit unique solutionsu(x) ∈ H4(R) and
um(x) ∈ H4(R) respectively, such thatum(x) → u(x) in H4(R) asm → ∞.

The second part of our work is devoted to the studies of our equation on the finite
interval with the periodic boundary conditions (see (1.14)), i.e. I := [0, 2π], namely

d4u

dx4
− b

du

dx
− au = f(x), x ∈ I, (1.10)

wherea ≥ 0 andb ∈ R, b 6= 0 are the constants and the right side of (1.10) is
continuous and periodic. Clearly,

‖f‖L1(I) ≤ 2π‖f‖C(I) < ∞, ‖f‖L2(I) ≤
√
2π‖f‖C(I) < ∞. (1.11)

Thus,f(x) ∈ L2(I) as well. We use the Fourier transform

fn :=
1√
2π

∫ 2π

0

f(x)e−inxdx, n ∈ Z, (1.12)
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so that

f(x) =
∞∑

n=−∞

fn
einx√
2π

.

Evidently, the non-selfadjoint operator contained in the left side of (1.10)

La, b :=
d4

dx4
− b

d

dx
− a : H4(I) → L2(I) (1.13)

is Fredholm. By means of (1.12), it can be trivially checked that the spectrum of
La, b is given by

λa, b(n) := n4 − a− ibn, n ∈ Z

and the corresponding eigenfunctions are the Fourier harmonics
einx√
2π

, n ∈ Z. The

eigenvalues of the operatorLa, b are simple, as distinct from the situation without
the transport term, when the eigenvalues corresponding ton 6= 0 are two fold de-
generate. The appropriate function space hereH4(I) is given by

{u(x) : I → C | u(x), u′′′′(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π),

u′′(0) = u′′(2π), u′′′(0) = u′′′(2π)}. (1.14)

For the technical purposes, we use the following auxiliary constrained subspace

H4
0 (I) = {u(x) ∈ H4(I) | (u(x), 1)L2(I) = 0}, (1.15)

which is a Hilbert spaces as well (see e.g. Chapter 2.1 of [16]). Clearly, if a > 0,
the kernel of the operatorLa, b is trivial. If a = 0, we consider

L0, b : H4
0 (I) → L2(I).

Evidently, such operator has the trivial kernel as well. We write down the corre-
sponding sequence of the approximate equations withm ∈ N, namely

d4um

dx4
− b

dum

dx
− aum = fm(x), x ∈ I, (1.16)

wherea ≥ 0, b ∈ R, b 6= 0 are the constants. The right sides of (1.16) are
continuous, periodic and converge to the right side of (1.10) in C(I) asm → ∞.
The goal of Theorems 1.3 and 1.4 below is to demonstrate the formal similarity
of the results on the finite interval with periodic boundary conditions to the ones
obtained for the whole real line case in Theorems 1.1 and 1.2 above.

Theorem 1.3.Let the constantsa ≥ 0, b ∈ R, b 6= 0 andf(0) = f(2π), f(x) ∈
C(I).

a) If a > 0, then equation (1.10) admits a unique solutionu(x) ∈ H4(I).
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b) If a = 0, then problem (1.10) possesses a unique solutionu(x) ∈ H4
0 (I) if and

only if the orthogonality condition

(f(x), 1)L2(I) = 0 (1.17)

is valid.

The final main proposition of the article is devoted to the solvability in the sense of
sequences for our equation on the finite intervalI.

Theorem 1.4. Let the constantsa ≥ 0, b ∈ R, b 6= 0 and m ∈ N, so that
fm(0) = fm(2π). Furthermore,fm(x) ∈ C(I) and fm(x) → f(x) in C(I) as
m → ∞.

a) If a > 0, then equations (1.10) and (1.16) have unique solutionsu(x) ∈ H4(I)
andum(x) ∈ H4(I) respectively, so thatum(x) → u(x) in H4(I) asm → ∞.

b) If a = 0, let
(fm(x), 1)L2(I) = 0, m ∈ N. (1.18)

Then problems (1.10) and (1.16) admit unique solutionsu(x) ∈ H4
0 (I) andum(x) ∈

H4
0 (I) respectively, so thatum(x) → u(x) in H4

0 (I) asm → ∞.

Note that in the cases a) of Theorems 1.3 and 1.4 above the argument does not
rely on the orthogonality relations. When there are no transport terms in our prob-
lems, the case is more singular (see formulas (3.1) and (3.7)further down with
a = n4

0, n0 ∈ N).

2. The whole real line case

Proof of Theorem 1.1.Let us first demonstrate that it would be sufficient to solve
our equation inL2(R). Indeed, ifu(x) is a square integrable solution of (1.2) on
the whole real line, directly from this equation under the given conditions we derive
that

d4u

dx4
− b

du

dx
∈ L2(R)

as well. By virtue of the standard Fourier transform (1.4), we have(p4− ibp)û(p) ∈
L2(R), so that

∫ ∞

−∞

p8|û(p)|2dp < ∞. Hence,
d4u

dx4
∈ L2(R), such thatu(x) ∈

H4(R) as well.
To establish the uniqueness of solutions of (1.2), we suppose thatu1(x), u2(x) ∈
H4(R) satisfy (1.2). Then their differencew(x) := u1(x)− u2(x) ∈ H4(R) solves
the homogeneous problem

d4w

dx4
− b

dw

dx
− aw = 0.
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Since the operatorLa, b introduced in (1.3) does not possess any nontrivial zero
modes inH4(R), the functionw(x) is trivial on the real line.
We apply the standard Fourier transform (1.4) to both sides of equation (1.2). This
yields

û(p) =
f̂(p)

p4 − a− ibp
. (2.1)

Thus,

‖u‖2L2(R) =

∫ ∞

−∞

|f̂(p)|2
(p4 − a)2 + b2p2

dp. (2.2)

Let us first discuss the case a) of our theorem. Formula (2.2) gives us

‖u‖2L2(R) ≤
1

C
‖f‖2L2(R) < ∞

as assumed. Here and further downC will designate a finite, positive constant.
Then we turn our attention to the situation when the parameter a vanishes. From
(2.1), we easily express

û(p) =
f̂(p)

p4 − ibp
χ{|p|≤1} +

f̂(p)

p4 − ibp
χ{|p|>1}. (2.3)

Here and belowχA will denote the characteristic function of a setA ⊆ R. Evidently,
the second term in the right side of (2.3) can be estimated from above in the absolute

value by
|f̂(p)|
|b| ∈ L2(R) becausef(x) is square integrable on the whole real line

via our assumption. Let us write

f̂(p) = f̂(0) +

∫ p

0

df̂(s)

ds
ds.

Hence, the first term in the right side of (2.3) can be expressed as

f̂(0)

p4 − ibp
χ{|p|≤1} +

∫ p

0
df̂(s)
ds

ds

p4 − ibp
χ{|p|≤1}. (2.4)

By means of definition (1.4) of the standard Fourier transform, we easily obtain
∣∣∣∣∣
df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xf(x)‖L1(R).

Thus, the second term in (2.4) can be bounded from above in theabsolute value by

1√
2π

‖xf(x)‖L1(R)

|b| χ{|p|≤1} ∈ L2(R).
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Clearly, the first term in (2.4) is contained inL2(R) if and only if f̂(0) is trivial.
This is equivalent to orthogonality relation (1.8).

Let us proceed to establishing the solvability in the sense of sequences for our prob-
lem on whole the real line.

Proof of Theorem 1.2.First we suppose that equations (1.2) and (1.5) admit unique
solutionsu(x) ∈ H4(R) and um(x) ∈ H4(R), m ∈ N respectively, so that
um(x) → u(x) in L2(R) asm → ∞. This will imply thatum(x) also converges to
u(x) in H4(R) asm → ∞. Clearly, from (1.2) and (1.5) we easily obtain that
∥∥∥∥∥
d4

dx4
(um − u)− b

d(um − u)

dx

∥∥∥∥∥
L2(R)

≤ ‖fm − f‖L2(R) + a‖um − u‖L2(R). (2.5)

The right side of (2.5) tends to zero asm → ∞ due to our assumptions. By means
of the standard Fourier transform (1.4), we easily derive that

∫ ∞

−∞

p8|ûm(p)− û(p)|2dp → 0, m → ∞.

Thus,
d4um

dx4
→ d4u

dx4
in L2(R) asm → ∞. Therefore,um(x) → u(x) in H4(R) as

m → ∞ as well. We apply the standard Fourier transform (1.4) to both sides of
(1.5). This gives us

ûm(p) =
f̂m(p)

p4 − a− ibp
, m ∈ N. (2.6)

Let us first discuss the case a) of our theorem. By means of the part a) of Theorem
1.1, equations (1.2) and (1.5) admit unique solutionsu(x) ∈ H4(R) andum(x) ∈
H4(R), m ∈ N respectively. By virtue of (2.6) along with (2.1), we obtainthat

‖um − u‖2L2(R) =

∫ ∞

−∞

|f̂m(p)− f̂(p)|2
(p4 − a)2 + b2p2

dp.

Hence,

‖um − u‖L2(R) ≤
1

C
‖fm − f‖L2(R) → 0, m → ∞

as assumed. Therefore, in the situation whena > 0 we haveum(x) → u(x) in
H4(R) asm → ∞ by means of the argument above.
Let us conclude the proof of the theorem by treating the case when the parameter
a is trivial. According to the result of the part a) of Lemma 3.3of [21], under the
stated assumptions

(f(x), 1)L2(R) = 0 (2.7)

8



is valid. Then by virtue of the part b) of Theorem 1.1, problems (1.2) and (1.5)
possess unique solutionsu(x) ∈ H4(R) andum(x) ∈ H4(R), m ∈ N respectively
if a = 0. Using (2.6) and (2.1), we derive

ûm(p)− û(p) =
f̂m(p)− f̂(p)

p4 − ibp
χ{|p|≤1} +

f̂m(p)− f̂(p)

p4 − ibp
χ{|p|>1}. (2.8)

Obviously, the second term in the right side of (2.8) can be bounded from above in

the absolute value by
|f̂m(p)− f̂(p)|

|b| , so that

∥∥∥∥∥
f̂m(p)− f̂(p)

p4 − ibp
χ{|p|>1}

∥∥∥∥∥
L2(R)

≤ 1

|b|‖fm − f‖L2(R) → 0, m → ∞

as assumed. Orthogonality conditions (2.7) and (1.9) give us

f̂(0) = 0, f̂m(0) = 0, m ∈ N.

Then we express

f̂(p) =

∫ p

0

df̂(s)

ds
ds, f̂m(p) =

∫ p

0

df̂m(s)

ds
ds, m ∈ N, (2.9)

so that it remains to estimate the norm of the term
∫ p

0
[df̂m(s)

ds
− df̂(s)

ds
]ds

p4 − ibp
χ{|p|≤1}.

By means of the definition of the standard Fourier transform (1.4), we easily obtain
that ∣∣∣df̂m(p)

dp
− df̂(p)

dp

∣∣∣ ≤ 1√
2π

‖xfm(x)− xf(x)‖L1(R).

Hence,
∣∣∣∣∣

∫ p

0
[df̂m(s)

ds
− df̂(s)

ds
]ds

p4 − ibp
χ{|p|≤1}

∣∣∣∣∣ ≤
‖xfm(x)− xf(x)‖L1(R)√

2π|b|
χ{|p|≤1},

such that
∥∥∥∥∥

∫ p

0
[df̂m(s)

ds
− df̂(s)

ds
]ds

p4 − ibp
χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ ‖xfm(x)− xf(x)‖L1(R)√
π|b| → 0

asm → ∞ due to the one of our assumptions. Therefore,um(x) → u(x) in L2(R)
asm → ∞. By virtue of the argument above we have thatum(x) → u(x) in H4(R)
asm → ∞ in the situation b) of our theorem as well.
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3. The equation on the finite interval

Proof of Theorem 1.3.Let us first establish that it would be sufficient to solve our
problem inL2(I). Indeed, ifu(x) is a square integrable solution of (1.10), periodic
on I along with its derivatives up to the third order inclusively, directly from our
equation under the given conditions we derive that

d4u

dx4
− b

du

dx
∈ L2(I).

By means of (1.12), we have that(n4 − ibn)un ∈ l2. Thus,
∞∑

n=−∞

n8|un|2 < ∞, so

that
d4u

dx4
∈ L2(I). Thus,u(x) ∈ H4(I) as well.

To show the uniqueness of solutions of (1.10), we discuss thecase ofa > 0. When
a vanishes, we are able to use the similar ideas in the constrained subspaceH4

0 (I).
Let us suppose thatu1(x), u2(x) ∈ H4(I) solve (1.10). Then their difference
w(x) := u1(x)− u2(x) ∈ H4(I) satisfies the homogeneous equation

d4w

dx4
− b

dw

dx
− aw = 0.

Since the operatorLa, b introduced in (1.13) does not have any nontrivialH4(I)
zero modes, the functionw(x) vanishes identically inI.
We apply the Fourier transform (1.12) to both sides of problem (1.10). This yields

un =
fn

n4 − a− ibn
, n ∈ Z, (3.1)

so that

‖u‖2L2(I) =

∞∑

n=−∞

|fn|2
(n4 − a)2 + b2n2

. (3.2)

First we deal with the case a) of our theorem. By virtue of (3.2), we have

‖u‖2L2(I) ≤
1

C
‖f‖2L2(I) < ∞

as assumed (see (1.11)). By means of the argument above,u(x) ∈ H4(I) as well.
Let us conclude the proof of the theorem by treating the case whena = 0. From
(3.1) we easily obtain that

un =
fn

n4 − ibn
, n ∈ Z. (3.3)
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Obviously, the right side of (3.3) is contained inl2 if and only if

f0 = 0, (3.4)

so that

‖u‖2L2(I) =
∑

n∈Z, n 6=0

|fn|2
n8 + b2n2

≤ 1

b2
‖f‖2L2(I) < ∞,

due to the one of our assumptions along with (1.11). The argument above implies
thatu(x) ∈ H4

0 (I) as well. Evidently, (3.4) is equivalent to orthogonality condition
(1.17).

Let us proceed to demonstrating the solvability in the senseof sequences for our
problem on the intervalI with periodic boundary conditions.

Proof of Theorem 1.4.Using the stated assumptions, we obtain that

|f(0)− f(2π)| ≤ |f(0)− fm(0)|+ |fm(2π)− f(2π)| ≤ 2‖fm − f‖C(I) → 0

asm → ∞. Hence,f(0) = f(2π). By means of (1.11) forfm(x), f(x) continuous
on our intervalI, we havefm(x), f(x) ∈ L1(I) ∩ L2(I), m ∈ N. Formula (1.11)
also gives us that

‖fm(x)− f(x)‖L1(I) ≤ 2π‖fm(x)− f(x)‖C(I) → 0, m → ∞. (3.5)

Thus,fm(x) → f(x) in L1(I) asm → ∞. Analogously, (1.11) implies that

‖fm(x)− f(x)‖L2(I) ≤
√
2π‖fm(x)− f(x)‖C(I) → 0, m → ∞. (3.6)

Therefore,fm(x) → f(x) in L2(I) asm → ∞ as well. We apply the Fourier
transform (1.12) to both sides of (1.16). This yields that

um,n =
fm,n

n4 − a− ibn
, m ∈ N, n ∈ Z. (3.7)

First we discuss the situation a) of our theorem. By virtue ofthe part a) of Theorem
1.3, problems (1.10) and (1.16) have unique solutionsu(x) ∈ H4(I) andum(x) ∈
H4(I), m ∈ N respectively. By means of (3.1), (3.6) and (3.7), we have

‖um − u‖2L2(I) =

∞∑

n=−∞

|fm,n − fn|2
(n4 − a)2 + b2n2

≤ 1

C
‖fm − f‖2L2(I) → 0, m → ∞.

Thus,um(x) → u(x) in L2(I) asm → ∞. Let us show thatum(x) converges to
u(x) in H4(I) asm → ∞. Indeed, by virtue of (1.10) and (1.16), we derive

∥∥∥∥∥
d4

dx4
(um − u)− b

d(um − u)

dx

∥∥∥∥∥
L2(I)

≤ ‖fm − f‖L2(I) + a‖um − u‖L2(I).
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The right side of this inequality tends to zero asm → ∞ due to (3.6). Using the
Fourier transform (1.12), we arrive at

∞∑

n=−∞

n8|um,n − un|2 → 0, m → ∞.

Hence,
d4um

dx4
→ d4u

dx4
in L2(I) asm → ∞. Therefore,um(x) → u(x) in H4(I) as

m → ∞ as well.
Let us conclude our article with considering the case when the parametera vanishes.
By means of (1.18) along with (3.5), we obtain

|(f(x), 1)L2(I)| = |(f(x)− fm(x), 1)L2(I)| ≤ ‖fm − f‖L1(I) → 0, m → ∞,

so that the limiting orthogonality condition

(f(x), 1)L2(I) = 0 (3.8)

is valid. By virtue of the part b) of Theorem 1.3 above equations (1.10) and (1.16)
admit unique solutionsu(x) ∈ H4

0 (I) andum(x) ∈ H4
0 (I), m ∈ N respectively

whena is trivial. Using formulas (3.1) and (3.7), we arrive at

um,n − un =
fm,n − fn

n4 − ibn
, m ∈ N, n ∈ Z. (3.9)

Orthogonality relations (3.8) and (1.18) give us that

f0 = 0, fm,0 = 0, m ∈ N.

Let us derive the upper bound for the norm as

‖um − u‖L2(I) =

√√√√
∞∑

n=−∞, n 6=0

|fm,n − fn|2
n8 + b2n2

≤ ‖fm − f‖L2(I)

|b| → 0, m → ∞

via (3.6). Hence,um(x) → u(x) in L2(I) asm → ∞. Therefore,um(x) → u(x)
in H4

0 (I) asm → ∞ as well by means of the argument analogical to the one above
in the proof of the situation a) of the theorem.
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