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Abstract: We establish the solvability of certain linear nonhomogerseequa-
tions and demonstrate that under reasonable technicaltiomsdthe convergence
in L2(IR?) of their right sides implies the existence and the convergémZ?(R?)
of the solutions. In the first part of the work the equatioroimes the logarithmic
Laplacian. In the second part we generalize the resultsetetby incorporating
a shallow, short-range scalar potential into the problerhe @rgument relies on
the methods of the spectral and scattering theory for thefmedholm Schrodinger
type operators. As distinct from the preceding articleshenstubject, for the opera-
tors involved in the equations the essential spectra filinthele real line.
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1. Introduction
Let us consider the problem

(A +V(z)u—au=f, (1.1)

withu € £ = H?(RY) andf € F = L*(R?), d € N, a is a constant antf (z) is a
function tending td at infinity. If « > 0, then the essential spectrum of the operator
A E — F,which corresponds to the left side of equation (1.1) comstttie origin.
Consequently, such operator does not satisfy the Fredhmpepy. Its image is
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not closed, for > 1 the dimension of its kernel and the codimension of its image
are not finite. The present work is devoted to the studieset#rtain properties
of the logarithms of the operators of this kind. We recallt glfptic problems with
non-Fredholm operators were treated extensively in regeats (see [14], [15],
[16], [17], [18], [31], [32], [33], [34], [35], [36], [37]. B8], [39] [40], [42],
also [6]) along with their potential applications to thedhgeof reaction-diffusion
problems (see [9], [10]). Fredholm structures, topololgivaariants and their ap-
plication were discussed in [11]. The work [12] deals wit fimite and infinite di-
mensional attractors for the evolution equations of matteral physics. The large
time behavior of the solutions of a class of fourth-ordepatic equations defined
on unbounded domains using the Kolmogoreentropy as a measure was treated
in [13]. The attractor for a nonlinear reaction-diffusioysgem in an unbounded
domain in the space of three dimensions was considered ih Th@ articles [20]
and [28] are devoted to the understanding of the Fredholnpamgkrness proper-
ties of the quasilinear elliptic systems of the second oaael of the operators of
this kind onR”. The exponential decay and Fredholm properties in the skecon
order quasilinear elliptic systems of equations were awrsd in [21]. The article
[37] is dedicated to the studies of the Laplace operator diiith from the point of
view of the non-Fredholm operators. The linearized Cahlharil equations were
covered in [33] and [38]. Standing lattice solitons in theadete NLS equation
with saturation were discussed in [1]. In the particularecafena is trivial, our
operatorA mentioned above satisfies the Fredholm property in somesgdgogho-
sen weighted spaces (see [2], [3], [4], [5], [6]). But theuatton whena # 0 is
significantly different and the method developed in theselas cannot be used.
One of the important questions concerning the equatiortsvain-Fredholm opera-
tors is their solvability. We address it in the following seg. Let f,, be a sequence
of functions in the image of the operatdr so thatf,, — f in L?(R%) asn — oo.
We denote by, a sequence of functions froit?(R?), so that

Au, = fn, n € N.

Because the operatot does not satisfy the Fredholm property, the sequence
may not be convergent. We call a sequengesuch thatdu,, — f a solution in
the sense of sequences of probldm = f (see [31]). If such sequence converges
to a functionu, in the norm of the spacg, thenu, is a solution of this equation.
The solution in the sense of sequences is equivalent in émsesto the usual so-
lution. However, in the case of the non-Fredholm operatbis,convergence may
not hold or it can occur in some weaker sense. In such caseoth@on in the
sense of sequences may not imply the existence of the ugutibso In the present
article we will find sufficient conditions of equivalence afstions in the sense of
sequences and the usual solutions. In the other words, Wdetdrmine the condi-
tions on the sequencegs under which the corresponding sequencgare strongly
convergent. The solvability in the sense of sequences équithblems involving the
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Schrodinger type non-Fredholm operators was considargthl], [17], [34], [40],
[41], [42]. The current work is our attempt to generalizestheesults by dealing
with the solvability of the linear equations involving iniin left sides the logarithm
of such second order differential operators without thedrodm property, which
can be defined using the spectral calculus.

Let us first consider the equation

[%In(—A)]u —au=f(r), z€R?Y deN, a€R (1.2)
with a square integrable right side. The logarithmic Lajaladn(—A) is the op-
erator with Fourier symbaRIn|p|. It arises as formal derivativé;|,_,(—A)° of
fractional Laplacians at = 0. The operatof—A)® is actively used, for example in
the studies of the anomalous diffusion problems (see e.g] gdd the references
therein). Spectral properties of the logarithmic Lapladia an open set of finite
measure with Dirichlet boundary conditions were discusse[26] (see also [7]).
The studies of If-A) are relevant for the understanding of the asymptotic sglectr
properties of the family of fractional Laplacians in theilimm— 0*. In [23] it has
been shown that this operator enables to characterize dependence of solution
to fractional Poisson problems for the full range of expdsere (0, 1). The prob-
lem analogical to (1.2) but with the standard Laplace opeiiatthe context of the
solvability in the sense of sequences was discussed in T34 operator in the left
side of our equation (1.2) is given by

lo = %In(—A) —a, a€R (1.3)

and is considered oh?(R?), d € N. By means of the standard Fourier transform,
it can be easily derived that the essential spectrum of {4 @yen by

A(p) =Inp| —a, a€R. (1.4)

Note that as distinct from the preceding works dealing wht non-Fredholm op-
erators mentioned above, (1.4) fills not a semi-axis but thelevreal line. Thus,
the inverse of (1.3) is not bounded.

Let us write down the corresponding sequence of the appeieirquations with
n € Nas

O N

The right sides of (1.5) are assumed to be square integratdle@verging to the
right side of (1.2) inL?(R?) asn — oo. The inner product of two functions is
defined as

(f(2), 9(x)) L2ray = » f(x)g(x)de, deN, (1.6)

with a slight abuse of notations when these functions do atariy toZ?(R?). In-
deed, iff(z) € L'(R%) andg(x) is bounded, then it is clear that the integral in the
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right side of (1.6) makes sense, like for instance in the ca$ehe functions in-
volved in the orthogonality relations of our theorems bel®woughout the article,
the sphere of radius > 0 in R? centered at the origin will be denoted &% Let us
first state the solvability relations for problem (1.2).

Theorem 1.1.Let f(x) € L*(RY), xf(x) € L}(R?), whered € Nanda € R.

a) If d = 1 then equation (1.2) admits a unique solutiofxr) € L*(R) if and only
if the orthogonality conditions

)
e:l:ze T

(f). Nor )LQ(R) ~0 (1.7)

hold.

b) If d > 2 then problem (1.2) possesses a unique solutign € L*(R?) if and
only if the orthogonality relations

eipx

=0, pess (1.8)

<f(x>’ (27)% )L2<Rd>

are valid.

Our second main proposition deals with the issue of the bdliyain the sense of
sequences for our problem.

Theorem 1.2. Letn € N, d € N, f,(z) € L*(RY), zf,(x) € L*(R?), so that
fo(z) = f(z)in L2(RY) andz f,(z) — o f(x) in L*(RY) asn — oo.

a) If d = 1, let the orthogonality conditions

e:l:ie“m

(50 ) 1o
hold for alln € N. Then equations (1.2) and (1.5) have unique solutioig <
L*(R) andu,(z) € L*(R) respectively, so that, (z) — u(z) in L*(R) asn — oo.
b) If d > 2, let the orthogonality relations

=0 (1.9)

etz

(2m)% >L2<Rd>

(fn(:c), =0, pess (1.10)
hold for all » € N. Then problems (1.2) and (1.5) admit unique solutiofis)
L*(RY) andu, (z) € L*(R?) respectively, such that,(z) — u(z) in L*(R?) as
n — oo. Let us demonstrate that the limiting orthogonality corafis

Throughout the article we use the hat symbol to designatestdr@dard Fourier

transform .

(2m)’?

f(p) = /Rd f(x)e P*dz, peR? deN. (1.11)
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The second part of our work deals with the studies of the prabl
1
bln(—A + V(a:))]u —au=f(r), v€R’ aecR (1.12)

with a square integrable right side as before. The corredipgrsequence of ap-
proximate equations for € N is given by

Em@A+v@w%,ﬂW:ﬁm¢ z R (1.13)

The square integrable right sides in (1.13) tend to the sgte of (1.12) inL.?(R?)
asn — oo. Let us make the following technical assumptions on thessgqadtential
contained in the problems above. Note that the conditioris(an, which is shallow
and short-range will be analogical to those given in Assuonpi.1 of [36] (see
also [35], [37]). The essential spectrum of such a Schgetioperator A+ V' (x)
fills the nonnegative semi-axis (see e.g. [24]).

Assumption 1.3.The potential functio (z) : R® — R satisfies the bound
C
Vi) < ——————
V@ <
with some) > 0 andx = (z1, 22, 73) € R3 a.e. and it is such that

19 2 1 8
49§(47r) 3||V||EW(R3)||V||2%(R3) <1 and \/CHLSHVHL%(RS) <Ar. (1.14)

Here and below' stands for a finite positive constant ang; s given on p.98 of
[27] is the constant in the Hardy-Littlewood-Sobolev inefity

(v) 2 w3
——dzdy| < e L2 (R°).
)/Rs R3 |$—y‘2 !Ey CHLS||f1||L2(R3) h (R

By virtue of Lemma 2.3 of [36], under Assumption 1.3 abovelm@$cal potential,
the operator-A + V() on L*(R?) is self-adjoint and unitarily equivalent teA

via the wave operators (see [25], [30])
Q:I: — g — ”mt_):Fooeit(—A—i—V)eitA’

where the limit is understood in the strond sense (see e.g. [29] p.34, [8] p.90).
Thus, the operator

Lw:§M—A+V@»—m 4 eR (1.15)

involved in the left sides of problems (1.12) and (1.13) édexed onZ?(R?) and
defined via the spectral calculus has only the essentiatrsipec

X(k)=Inlk| —a, a€eR (1.16)
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and no nontrivialL?(R?) eigenfunctions. Note that (1.16) fills the whole real line
similarly to the no potential case. By means of the spediebtem, the functions
of the continuous spectrum of (1.15) satisfy

Logr(r) = (Ink| —a)or(x), keR?) acR (1.17)

in the integral formulation the Lippmann-Schwinger eqotfor the perturbed
plane waves (see e.g. [29] p.98)

eikx 1 ei\k||a:—y|

or() = (Veor)(y)dy (1.18)

2m)3 AT Jre [z — ]
and the orthogonality relations
(pr(2), 0q(2)r2@msy) = 6(k —q), k,q € R (1.19)

Particularly, when the vectar= 0, we havep,(x). Let us designate the generalized
Fourier transform with respect to these functions usingitle symbol as

Fk) = (f(@), ox(2)) 23y, k € R®. (1.20)

(1.20) is a unitary transform ob?*(R?). The integral operator contained in (1.18) is
being denoted as

1 [ ilkllz—y]

(Qp)(x) := (Ve)(y)dy, » € L*(R%).

dr s |2 =yl

Let us consider) : L>(R3) — L>(R?). Under Assumption 1.3, via Lemma 2.1
of [36] the operator nornfj@||. is bounded above by the expressidgiv’), which

is the left side of the first inequality in (1.14), such tii&Y’) < 1. Corollary 2.2 of
[36] under our conditions gives us the estimate

(k)] < 1 ()l 22 es) - (1.21)

1 1
(2m)2 1 —1(V)
Our statement on the solvability of equation (1.12) is aoves.

Theorem 1.4. Let Assumption 1.3 holdi(z) € L*(R?) andzf(z) € L'(R?).
Then equation (1.12) admits a unique solutiof) € L?(R?) if and only if the
orthogonality conditions

(f (@), px(2))r2@sy =0, k€S2, (1.22)
are valid.

The final main proposition of our work deals with the solvapiln the sense of
sequences for problem (1.12).



Theorem 1.5. Let Assumption 1.3 holdh € N, f,(z) € L*R?), zf,(z) €
L'(R3), so thatf,(z) — f(z)in L*(R3) and zf,(z) — xf(x) in L}(R?) as
n — oo. Let in addition

(fu(@), ou(2)r2@e) =0, k€ S (1.23)

hold for all » € N. Then problems (1.12) and (1.13) possess unique solutions
u(x) € L*(R?) andu,(z) € L*(R?) respectively, so that, (z) — u(z) in L*(R?)
asn — oo.

Let us note that (1.22) and (1.23) are the orthogonalityticeda to the function

of the continuous spectrum of our Schrodinger type operagdistinct from the

Limiting Absorption Principle in which one needs to orthogtize to the standard
Fourier harmonics (see e.g. Lemma 2.3 and Proposition 2[22]).

2. Solvability in the sense of sequences in the no potentisdse

Proof of Theorem 1.1ITo demonstrate the uniqueness of solutions for our equation
we suppose that (1.2) has two solution$z), uy(z) € L*(R%), d € N. Clearly,
their differencew(z) := ui(z) — ug(x) € L*(R?) as well and it solves the homo-
geneous problem

[%In(—A)}w —aw = 0.

Since the operatdy, on L?(R?) given by (1.3) has only the essential spectrum and
no nontrivial zero modesy(x) vanishes irR.
We apply the standard Fourier transform (1.11) to both sidgsoblem (1.2) and
arrive at
ap) = L2 2.1)
n(2)

Let us first consider the case b) of our theorem when the dimes$ the problem
d > 2. For the technical purposes we introduce the sphericat laye

As={peR?|e"(1-8) <|p|<e*(1+68)}, 0<d<1, d>2, (22

so that

(2.3)

Here and further downi® will stand for the complement of a set C R?. The
characteristic function of a set is being denoted ag, and|A| will designate the
Lebesgue measure of a setWe will use the sets

At = {p e R | [p| > e"(1 +6)}, (2.4)
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A5 = {p e R p| < (1 - 8)}, (2.5)

such that
A = A§+ UAS.

Obviously, the second term in the right side of (2.3) can pessed as

f(p) f(p)
() ()

We have the trivial upper bounds

(2.6)

~

) T oo
in(2)] " = ey = F

ea

o~

)||n((z)‘> ’XA? : —IL{% 5 € LR,

ea

as assumed. Let us write

-~ ~ Pl of(s, o
flo) = Fier.oy+ [ 20

a

Here and below will stand for the angle variables on the sphere. This ersalde
to express the first term in the right side of (2.3) as

a |p| 8f(s<7

e’ o
MXA& + f X 5’
In(‘%‘) In('%')

By means of the definition of the standard Fourier transfdrrhl), we easily obtain
that

2.7)

of )| _
I|p| ( )
Thus, the second term in (2.7) can be bounded from above @b ute value by

sllzf(@)pmey, pE R d>2. (2.8)

Ip| — e

o in(2) "

Hence, it remains to analyze the term

[f (@)l 21 ey 45 < Cllaf(@)ll s mayxa, € L*(RY).

fle®, o)
Ine(ga> XAs-

8
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It can be easily verified that (2.9) is square integrabledfanly if f(e“, o) istrivial.
This is equivalent to orthogonality conditions (1.8).

Let us complete the proof of our theorem by treating the cpgdan the dimension
of the problemd = 1. We define the intervals on the real line

I = [ef(1-0), (1 +0)], I = [—e*(1+0), —*(1-3)],  (2.10)
where0 < § < 1, so that
Is:=I UI;.
Moreover,
It = (=00, —e*(1+6)) U (e*(1 + ), +o0), (2.11)
I = (—e(1—9), e"(1 —9)), (2.12)
such that

If=IMUIg.

Let us express

_ f(p) f(p) /() /()
u(p) = |n<;> Xrr + In(f%) Xie+ + |n<;> Xi- + |n<;> Xpe- (2.13)

Clearly, the second term in the right side of (2.13) can benedéd in the absolute
value as

~

|f(p>| X[(?* S |n|<f1.(]j_>|5> c LQ(R)

as assumed. Similarly, for the fourth term in the right siti€al 3) we have

~

/)] /)] :
S Tna—g) S ®)

as well. Obviously,

P df(s)
_'_ /ea Wd

which enables us to write the first term in the right side 018 .as

a p df(s
(6) fea ds (214)

()" ()



By virtue of the definition of the standard Fourier transfddnil), we have

1
’ dp ’S Tl @l (2.15)

This is the analog of formula (2.8) in one dimension. The sdderm in (2.14) can
be bounded from above in the absolute value by

a

o(2)
which is square integrable on the real line. Let us consigefitst term in (2.14).

It can be trivially checked that

f(ea) 2
In(%) X1t € L*(R)

if and only if f(e“) vanishes. This is equivalent to the orthogonality relation

eieax
(f(:c% \/%>L2(R) = 0.

fo) = feery+ [ as

_ea

(@)l @) Xip < Cllef(@)llo X

\/_fo

Clearly,

which allows us to express the third term in the right side2018) as

fl=e") Jh L
@erL In(lil) “ir

The second term in (2.16) can be estimated from above in tha&atiely value by

(2.16)

el

which belongs td.?(R). Finally, we analyze the first term in (2.16). It can be easily
verified that

\/—||$f( JJIFZYES im S Cllef @)@

f(_€a> c LQ(R)

n(2) "
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~

if and only if f(—e®) = 0. This is equivalent to the orthogonality condition

fla) ) o,
( Va2r L2(R)

which completes the proof of our theorem. [ |

Let us proceed to establishing the solvability in the sefiseguences for our equa-
tion in the no potential case.

Proof of Theorem 1.2Ne recall the result of Lemma 4.1 of [42]. Under the stated
assumptions, we havg (r) € L*(RY), n € N, d € N, so that

fulz) = f(z) in L'(RY) as n — oco. (2.17)

Let us first treat the case b) of the theorem when the dimerwidhe problem
d > 2. By means of Theorem 1.1, each equation (1.5) admits a ursgugion
u,(z) € L*(R?Y), n € N. We demonstrate that the limiting orthogonality condition

ez

=0, peSs 2.18
(QW)g)LQ(Rd) P (2.18)

(f@),

are valid. Using (1.10) along with (2.17), we easily obtdiattforp € S%,

etz ipx

€
(2m)% >L2(Rd>

(2m)2 ) 12(RY)

<

(7).

— |(F@) - fule),

1
< —lfulz) = f@) ey = 0, n— oo
(2m)3
Therefore, by virtue of Theorem 1.1 equation (1.2) posseasenique solution
u(x) € L*(R?), d > 2. Let us apply the standard Fourier transform (1.11) to both
sides of problems (1.5). This yields

) =22 e, (2.19)
(5
such that
i (p) — (p) = Mm N Mmg- (2.20)
&)

o) -iw) Lo -Jw) (2.21)



The first term in (2.21) can be easily bounded from above imbs®lutely value by

[fu(p) = f(p)
In(1+9)

TN Xact
n(z)
asn — oo as assumed. Similarly, the second term in (2.21) can balighesti-
Wn(P) — f(p)]
=In(1 —9)

, such that

pwy m”f”@) = f@)z2@a) —= 0

mated from above in the absolutely value , SO that

[fn(@) = f (@)l 2wty = 0

_ < - -
2rd) — —In(1 —9)
asn — oo as well. Let us recall our orthogonality conditions (2.18p41.10).
They give us that
flet,0) =0, Ju(e*,0)=0, neN.
Then

- Pl 9 f (s, . el 9 (s,
For= [ Das = [T s nen

which enables us to express the first term in the right sid2.@fy as

f|p| [afn(sa 8f(sa i|d$

|n(m> XAs-

From the definition of the standard Fourier transform (1\&é )easily derive that

0fu(p)  Of(p >’
|p| |p| (2 )

(2.22)

Plefule) =z f(o)l|gs, d=2. (2.23)
Hence, expression (2.22) can be bounded from above in tlduddsalue by

Ip| — e

[z fn(x) = 2f(2) ]| @) Xa; < Cllzfulr) — 2f (@)]| 2 @e)Xa5,

d
(2 )2
such that for the norm we have

f\p\ [afn(sa 8f(sa i|d5

|n(m> XAs

< Ollafulz) — 2 f (@)]| 11 @y |Asl 2 — 0
L2(R%)
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asn — oo due to the one of our assumptions. Therefore,
un(z) = u(z) in L*RY), n—o0, d>2

in the situation b) of our theorem. We conclude the proof bystdering the case
a) when the dimension of the problein= 1. By virtue of the result of Theorem
1.1, each equation (1.5) possesses a unique solutian € L*(R), n € N. Let us
establish that the limiting orthogonality relations

;-
e:l:ze T

hold. We use (1.9) along with (2.17) to obtain that

) —0 (2.24)
L2(R)

+ie®x +ie®x

e

‘(f(x), V2 )L%R)‘ B ‘(f(x) ~ fal2), eﬁ)m(ﬂg)‘ =

() = f(@)||pr@y = 0, n — oo.

1

Thus, by means of Theorem 1.1 above, problem (1.2) admitsquersolution
u(x) € L*(R). By applying the standard Fourier transform (1.11) to badles of
equations (1.5), we obtain the analog of formula (2.19) ie dimension, so that

—In(g> X + In(?) Xre=- (2.25)

The second term in the right side of (2.25) can be bounded &loove in the abso-
fa(p) = F(0)]

lute value by in(L 5 9) . such that
fa(p) = F(p)
5 n - 2 O’
Py | S S s

as assumed. The fourth term in the right side of (2.25) carstirated from above
n(p) — /()]
—In(1—9)

in the absolute value , SO that

| fu(2) = f(2)|[L2@) — 0, n — 00

1
= Tl = s
ST
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as well. Let us recall orthogonality conditions (2.24) ah®}. They imply that
fle) =0, Ju(e")=0, neN,

such that

]/C\(p) = /j dj;is) ds, j/;(p) = /j df;is) ds, mn € N.

Thus, the first term in the right side of (2.25) can be written a

p [dfn( s) df(s ]ds

e ds

|n('p'>

By virtue of the definition of the standard Fourier transfdfinil 1), we easily obtain

that R
dfu(p) df ( )
dp ’ ¢—W fal) — 2 f(2)|| 01wy (2.27)

Clearly, formula (2.27) is the one dimensional analog a?32. Hence, expression
(2.26) can be bounded from above in the absolute value by

X+ (2.26)

8

a

p—e€
In(@>

() = 2f(2) ]|l @)

Xip < Cllefu(z) =2 f ()|l r@xiy

1
\/—2—7T||$fn

so that for the norm we have
p [dfu(s) _ df(s)
ea |: ds - ?] dS

‘ |n('p'> X

asn — oo due to the one of our assumptions. Orthogonality relati@4) and
(1.9) give us that

< Cv20et||xfo(z) — 2 f ()| 1) — O

L2(R)

f(_ea) = 07 fn(_ea) — 0, n e N

Hence,

- P df - P df,
for= [ L g - [ e wen

such that the third term in the right side of (2.25) can be esped as

J’p |:dfn(s) df(s i| ds

ds

n(Z)

14
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Using formula (2.27), we estimate (2.28) from above in theohltte value by

p+e”

()

() =z f(@)| 1w

Xi- < Cllafu(z) —zf (@) Lr@x;;-

1
oY ]
Then for the norm we have

P [dfu(s) _ df(s)
i S [— - T}d‘s’

ds
asn — oo as assumed. Therefore,

< CV20er||zfo(z) — 2 f ()| 1w — O

n(Z) "

L*(R)

un(z) = u(x) in L*(R), n— oo
in the situation a) of our theorem as well. [ |
3. Solvability in the sense of sequences with a scalar potesit

Proof of Theorem 1.4.Let us first establish the uniqueness of solutions for our
problem. We suppose that there exigtr), us(z) € L?(R?) satisfying (1.12). Then
their square integrable differene€x) := u;(z) — us(z) solves the homogeneous
equation

L,w=0.

Since the operatok,, defined in (1.15) has no nontrivial zero modes belonging to
L*(R?) as discussed above(z) vanishes identically ifR?.

For the technical purposes we introduce the spherical layeur space of three
dimensions as

By = {keR|e"(1—6) < |k| <e*(1+0)}, 0<d<l.  (3.)

| Bs| will stand for its Lebesgue measure. Let us apply the geizedhlFourier
transform (1.20) with the functions of the continuous speutof our Schrodinger
operator to both sides of problem (1.12). This yields

F ) f#) 62

u(k) = In(%) XB; T |n<§> X B

Bt i={k e R®||k| > e"(1+0)}, (3.3)
B ={keR*||k| <e*(1—0)}, (3.4)

We define the sets

so that
B§ = B§+ U Bj§ .
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The second term in the right side of (3.2) can be easily wriéte
f (k) f (k)
O Xpet+ T I B
In( ) In (?)
Evidently, we have the upper bound

f f (g3
]ll](i)') ’XBE* = In|(1<i>|5) < L&

e(l

(3.5)

via the one of our assumptions. Similarly,

f f 23
’lnégg’xgg— < % e L*(R?).

Clearly, we can write

< < M af(s,o
f(k) = f(e*, o) +/a %d& (3.6)

This enables us to express the first term in the right side.dj &

a |k‘ 8f SU)d
e,0 et s
fleto) a0
(=) ()

Let us recall Lemma 2.4 of [36]. Hence, under the given coowt we have
V.f(q) € L*(R?*). We estimate the second term in sum (3.7) in the absolute
f\kl af(sa

value as
|<.\k-'> oy Ik = a|n< )’XB“—
n\—

< C|IVof (@)l @s)xp; € LA(R?).

Therefore, it remains to analyze the term

f(e",0)

(3.7)

< NVaf (@)llz=ze)

XBs- (3.8)

It can trivially checked that (3.8) is square integrablend @nly iff(e“, o) vanishes.
This is equivalent to orthogonality relations (1.22). [ |
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We turn our attention to the demonstration of the validitythed result of our final
main proposition, which deals with the solvability in thexse of sequences.

Proof of Theorem 1.5Clearly, each equation (1.13) has a unique solutigir) €
L*(R?), n € N by means of the result of Theorem 1.4 above. It can be easily
verified that the limiting orthogonality relations

(f(.fC), @k('r))LQ(RS) - 07 ke Sga (39)
hold. Let us recall the result of Lemma 4.1 of [42]. Under tineeg conditions,
we havef, (z) € L'(R?),n € N, so thatf,(z) — f(z)in L'(R3) asn — oo. By
virtue of (1.23) along with upper bound (1.21)

|(f (), or@)) 2@s)| = [(f(2) = fu(), or(2)) 23| <
1
< 3
(2m)2 1-—
with £ € S3,.. Therefore, limiting equation (1.12) possesses a uniqligtisn

u(x) € L*(R3) via the result of Theorem 1.4. Let us apply the generalizadiEo
transform (1.20) to both sides of problem (1.13). This gwes

A

tn (k) m(%)’
k k
Tom(®) T m(m)

Obviously, the second term in the right side of (3.10) carribetly written as
falk) = F(K) falk) = F (k)

C +— c— .
() ()

Evidently, the first term in (3.11) can be easily estimatedfiabove in the absolute

n €N,

so that
(3.10)

(3.11)

| fu(k) = F(K)]
value byw. Hence,
Fulk) = f(k) .
‘ WXB‘? L2®) = m”fn(x) — f(@)|r2@s) = 0, n— o0

as assumed. Analogously, the second term in (3.11) can belbddrom above in

|fn(F) = f(F)]

y “In( =) , SO that

the absolute value b

fa(k) = f(k)
In

f 1

S -
. —In(1 —9)

| fu(®) = f(@)|L2@ms) — 0, n— o0
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via the one of our assumptions. By virtue of the orthogopaétations (3.9) and
(1.23), we have

fle®,0) =0, fu(e",0)=0, neEN,
such that

~ k] af(s,a) ~ [k 8fn(s,a)
f(k’) = /ea Tds, fn(k) = /e; Tds, n € N.

This enables us to express the first term in the right side.@Dj3as
f\k| |:8fn(sa af 8,0 :|d8

|n(ﬂ) XBg

which can be trivially estimated from above in the absolalei® by

k] —

|<\|>

IVl Fn(@) = F(@)]lloees) Xas < ClIV[fa(@) = F(@)]l| o) x5 -

Thus,

falk) — [(k)
(&)

Let us recall the result of Lemma 3.4 of [34]. Under the givenditions, we have

< OVolful@) = F(@| sy /| Bsl-

L2(R9)

V[ fn(q) — f(Q)]HLOO(R?’) — 0, n—oo.

Therefore,

Uy (1) = u(x) in L*R*, n— o
which completes the proof of our theorem. [ |
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