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1. Introduction

In the present work we deal with the existence of stationary solutions of the follow-
ing system of nonlocal reaction-diffusion equations

∂um

∂t
= Dm

∂2um

∂x2
+bm

∂um

∂x
+

∫ ∞

−∞
Km(x−y)gm(w(y)u(y, t))dy+αmδ(x), (1.1)

where the constantsbm, αm ∈ R, 1 ≤ m ≤ N are nontrivial andw(x) involved
in system (1.1) is a cut-off function. The conditions on it will be formulated below.
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The systems of this kind are relevant to the cell population dynamics. The space
variablex here is correspondent to the cell genotype,um(x, t) denote the cell den-
sity distributions for the various groups of cells as the functions of their genotype
and time,

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .

The right side of the system of equations (1.1) describes theevolution of the cell
densities by means of the cell proliferation, mutations andcell influx or efflux. The
diffusion terms here correspond to the change of genotype byvirtue of the small
random mutations, and the nonlocal production terms describe the large mutations.
The functionsgm(w(x)u(x, t)) stand for the rates of cell birth depending onu, w

(density dependent proliferation). The kernelsKm(x − y) express the proportions
of newly born cells, which change their genotypes fromy to x. We assume that
they depend on the distance between the genotypes. The last term in the right side
of each equation of our system, which is proportional to the Dirac delta function
designates the influx/efflux of cells for different genotypes. The solvability of the
single integro-differential equation analogous to (1.1) but without the transport term
was covered in [35]. The similar equation in one dimension inthe case of the stan-

dard negative Laplace operator raised to the power0 < s <
1

4
in the diffusion term

involving the drift term was treated in [42]. But in [42] there was an assumption
that the influx/efflux termf(x) ∈ L1(R) ∩ L2(R). Therefore, in the present arti-
cle we deal with the more singular case. In neuroscience, theintegro-differential
problems are used to describe the nonlocal interaction of neurons (see [9] and the
references therein).
Let us set allDm = 1 and demonstrate the existence of solutions of the system of
equations

d2um

dx2
+ bm

dum

dx
+

∫ ∞

−∞
Km(x− y)gm(w(y)u(y))dy+ αmδ(x) = 0, (1.2)

where1 ≤ m ≤ N . We consider the situation when the linear parts of the operators
involved in system (1.2) fail to satisfy the Fredholm property. Consequently, the
conventional methods of the nonlinear analysis may not be applicable. Let us use
the solvability conditions for the non-Fredholm operatorsalong with the method of
the contraction mappings.
Consider the equation

−∆u + V (x)u− au = f, (1.3)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential functionV (x) either vanishes in the whole space or converges to0 at in-
finity. If a ≥ 0, the essential spectrum of the operatorA : E → F corresponding to
the left side of problem (1.3) contains the origin. Consequently, such operator fails
to satisfy the Fredholm property. Its image is not closed, for d > 1 the dimension
of its kernel and the codimension of its image are not finite. In the present work
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we deal with the studies of the certain properties of the operators of this kind. Note
that the elliptic problems containing the non-Fredholm operators were considered
actively in recent years. Approaches in weighted Sobolev and Hölder spaces were
developed in [4], [5], [6], [7], [8]. The Schrödinger type operators without the
Fredholm property were studied with the methods of the spectral and the scattering
theory in [17], [31], [36], [37]. Fredholm structures, topological invariants and
their applications were covered in [13]. The article [14] isdevoted to the finite and
infinite dimensional attractors for the evolution problemsof mathematical physics.
The large time behavior of the solutions of a class of fourth-order parabolic equa-
tions defined on unbounded domains using the Kolmogorovε-entropy as a measure
was considered in [15]. The attractor for a nonlinear reaction-diffusion system
in an unbounded domain in the space of three dimensions was discussed in [23].
The works [25] and [30] are dedicated to the understanding ofthe Fredholm and
properness properties of the quasilinear elliptic systemsof second order and of the
operators of this kind onRN . The exponential decay and Fredholm properties in
the second-order quasilinear elliptic systems of equations were discussed in [26].
The Laplace operator with drift from the point of view of the non-Fredholm opera-
tors was considered in [39] and the linearized Cahn-Hilliard problems in [33] and
[40]. Nonlinear non-Fredholm elliptic equations were considered in [16], [18],
[19], [20], [21], [22], [32], [38], [41], [42]. The important applications to the
theory of reaction-diffusion problems were developed in [11], [12]. The operators
without the Fredholm property arise when studying wave systems with an infinite
number of localized traveling waves as well (see [2]). The work [3] deals with the
standing lattice solitons in the discrete NLS equation withsaturation. In particular,
whena = 0 our operatorA is Fredholm in some properly chosen weighted spaces
(see [4], [5], [6], [7], [8]). However, the case ofa 6= 0 is considerably different and
the approach developed in these articles cannot be applied.The existence, stabil-
ity and bifurcations of the solutions of the nonlinear partial differential equations
involving the Dirac delta function type potentials were studied extensively in [1],
[24], [27], [28].

We setKm(x) = εmKm(x), whereεm ≥ 0 and introduce

ε := max1≤m≤Nεm. (1.4)

Suppose all the nonnegative parametersεm vanish. Then we obtain the linear Pois-
son type equations

−d2um

dx2
− bm

dum

dx
= αmδ(x), 1 ≤ m ≤ N (1.5)

with the constantsbm, αm ∈ R andbm, αm 6= 0. It can be easily verified that each
problem (1.5) has a continuous solution, which is trivial onthe negative semi-axis,
namely

u0,m(x) :=

{
αm

bm
(e−bmx − 1), x ≥ 0

0, x < 0,
(1.6)
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where1 ≤ m ≤ N , such that

u0(x) := (u0,1(x), u0,2(x), ..., u0,N(x))
T . (1.7)

Evidently, eachu0,m(x) is not contained inH1(R). It is bounded ifbm > 0 and it is
unbounded forbm < 0. We recall the similar case discussed in [35]. The solution
of the corresponding Poisson equation without the transport term used there was
proportional to the ramp function. It was not bounded and it was not contained in
H1(R). In the article [42] the authors were dealing with the Poisson type equation
with the fractional Laplacian and the drift term. Its bounded solution belonged to
H1(R). Let us suppose that the following conditions are satisfied.

Assumption 1.1. Let 1 ≤ m ≤ N, Km(x) : R → R are nontrivial, such that
Km(x), xKm(x) ∈ L1(R) and orthogonality conditions (4.2) hold. Suppose also
that the cut-off functionw(x) : R → R is such thatw(x)u0,m(x) do not vanish
identically on the real line andw(x)u0,m(x) ∈ H1(R). Moreover,w(x) ∈ H1(R)
and forbm, αm ∈ R, bm, αm 6= 0 the estimate from above

‖w(x)u0(x)‖H1(R,RN ) ≤ 1 (1.8)

is valid.

It can be easily verified thatw(x) = e−2|b||x|, x ∈ R, where|b| = max1≤m≤N |bm|
satisfies the conditions above, so that it can be used as our cut-off function. Note
that in the argument of [42] such cut-off was not needed due tothe more regular
behaviour of the solution of the corresponding Poisson typeequation. In the article
we choose the space dimensiond = 1, which is related to the solvability of the
linear Poisson type equations (1.5) considered above. Fromthe point of view of the
applications, the space dimension is not limited tod = 1, since the space variable
is correspondent to the cell genotype but not to the usual physical space. Let us use
the Sobolev space

H1(R) :=
{
φ(x) : R → R | φ(x) ∈ L2(R),

dφ

dx
∈ L2(R)

}
.

It is equipped with the norm

‖φ‖2H1(R) := ‖φ‖2L2(R) +
∥∥∥dφ
dx

∥∥∥
2

L2(R)
. (1.9)

Evidently, by means of the standard Fourier transform (2.1), this norm can be writ-
ten as

‖φ‖2H1(R) = ‖φ̂(p)‖2L2(R) + ‖pφ̂(p)‖2L2(R). (1.10)

For a vector function

u(x) = (u1(x), u2(x), ..., uN(x))
T ,

4



we will use the norm

‖u‖2H1(R,RN ) := ‖u‖2L2(R,RN ) +

N∑

m=1

∥∥∥dum

dx

∥∥∥
2

L2(R)
, (1.11)

where

‖u‖2L2(R,RN ) :=

N∑

m=1

‖um‖2L2(R).

The Sobolev inequality in one dimension (see e.g. Sect 8.5 of[29]) yields

‖φ(x)‖L∞(R) ≤
1√
2
‖φ(x)‖H1(R). (1.12)

Let us seek the resulting solution of the nonlinear system ofequations (1.2) as

u(x) = u0(x) + up(x), (1.13)

where
up(x) := (up,1(x), up,2(x), ..., up,N(x))

T

andu0(x) is defined in (1.7). Clearly, we obtain the perturbative system

−d2up,m(x)

dx2
− bm

dup,m(x)

dx
=

= εm

∫ ∞

−∞
Km(x− y)gm(w(y)[u0(y) + up(y)])dy, (1.14)

where1 ≤ m ≤ N . Let us use a closed ball in the Sobolev space

Bρ := {u(x) ∈ H1(R,RN) | ‖u‖H1(R,RN ) ≤ ρ}, 0 < ρ ≤ 1. (1.15)

We look for the solution of the system of equations (1.14) as the fixed point of the
auxiliary nonlinear system of equations

−d2um(x)

dx2
− bm

dum(x)

dx
= εm

∫ ∞

−∞
Km(x− y)gm(w(y)[u0(y)+ v(y)])dy, (1.16)

with 1 ≤ m ≤ N in ball (1.15). For a given vector functionv(y) this is a system
of equations with respect tou(x). The equations of (1.16) in their left sides contain
the operators

Lbm = − d2

dx2
− bm

d

dx
, 1 ≤ m ≤ N, (1.17)

which act onL2(R). By virtue of the standard Fourier transform, it can be easily
derived that the essential spectrum ofLbm is

λbm(p) = p2 − ibmp, p ∈ R, 1 ≤ m ≤ N. (1.18)
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Clearly, each (1.18) contains the origin, so thatLbm fails to satisfy the Fredholm
property. This operator has no bounded inverse. The similarsituation in the con-
text of the integro-differential equations occurred in articles [38] and [41] as well.
The equations studied there also required the application of the orthogonality con-
ditions. The contraction argument was used in [34] to estimate the perturbation
to the standing solitary wave of the Nonlinear Schrödinger(NLS) equation when
either the external potential or the nonlinear term in the NLS were perturbed. But
the Schrödinger operator involved in the nonlinear problem there satisfied the Fred-
holm property (see Assumption 1 of [34], also [10]). Let us introduce the closed
ball in the space ofN dimensions as

I :=
{
z ∈ RN | |z|RN ≤ 1√

2
+

1

2
‖w(x)‖H1(R)

}
, (1.19)

along with the closed ball in the space ofC1(I,RN) vector functions, namely
DM :=

{g(z) := (g1(z), g2(z), ..., gN(z)) ∈ C1(I,RN) | ‖g‖C1(I,RN ) ≤ M}, (1.20)

whereM > 0. In this context the norms

‖g‖C1(I,RN ) :=

N∑

m=1

‖gm‖C1(I), (1.21)

‖gm‖C1(I) := ‖gm‖C(I) +

N∑

n=1

∥∥∥∂gm
∂zn

∥∥∥
C(I)

, (1.22)

where‖gm‖C(I) := maxz∈I |gm(z)|. From the point of view of the biological ap-
plications, the rates of the cell birth functions are nonlinear and are trivial at the
origin.

Assumption 1.2. Let 1 ≤ m ≤ N . We suppose thatgm(z) : RN → R, such that
gm(0) = 0. Let us also assume thatg(z) ∈ DM and it does not vanish identically
in the ballI.

We recall the earlier work [42]. The functiong(z) there was assumed to be twice
continuously differentiable on the corresponding interval I. Let us use the following
positive technical quantities

Qm := max

{∥∥∥∥∥
K̂m(p)

p2 − ibmp

∥∥∥∥∥
L∞(R)

,

∥∥∥∥∥
K̂m(p)

p− ibm

∥∥∥∥∥
L∞(R)

}
, 1 ≤ m ≤ N (1.23)

with the constantsbm ∈ R, bm 6= 0, so that

Q := max1≤m≤NQm. (1.24)
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Evidently,Q is finite under the assumptions of Theorem 1.3 by virtue of theresult
of Lemma 4.1 below.

Let us introduce the operatorTg, such thatu = Tgv, whereu is a solution of the
system of equations (1.16). Our first main proposition is as follows.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then for everyρ ∈ (0, 1] system
(1.16) defines the mapTg : Bρ → Bρ, which is a strict contraction for all

0 < ε ≤ ρ

2
√
πQM(1 + 1√

2
‖w(x)‖H1(R))

. (1.25)

The unique fixed pointup(x) of this mapTg is the only solution of the system of
equations (1.14) inBρ.

Obviously, the cumulative solution of system (1.2) given byformula (1.13) will be
nontrivial on the real line sincegm(0) = 0, αm 6= 0, 1 ≤ m ≤ N as assumed.

Our second main statement is about the continuity of the resulting solution of the
system of equations (1.2) given by (1.13) with respect to thenonlinear vector func-
tion g. Let us define the following positive technical quantity

σ :=
√
2πQM‖w(x)‖H1(R). (1.26)

Theorem 1.4. Let j = 1, 2 and suppose that the conditions of Theorem 1.3 hold,
such thatup,j(x) is the unique fixed point of the mapTgj : Bρ → Bρ, which is a
strict contraction for all the values ofε, which satisfy (1.25) and the cumulative
solution of system (1.2) withg(z) = gj(z) is given by

uj(x) = u0(x) + up,j(x). (1.27)

Then for allε satisfying bound (1.25), the estimate from above

‖u1(x)− u2(x)‖H1(R,RN ) ≤

≤
2
√
πεQ(1 + 1√

2
‖w(x)‖H1(R))

1− εσ
‖g1(z)− g2(z)‖C1(I,RN ) (1.28)

is valid.

We proceed to the proof of the first main result.

2. The existence of the perturbed solution

Proof of Theorem 1.3.Let us choose arbitrarilyv(x) ∈ Bρ. The terms involved in
the integral expressions in the right side of system (1.16) are designated as

Gm(x) := gm(w(x)[u0(x) + v(x)]), 1 ≤ m ≤ N.
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We use the standard Fourier transform

φ̂(p) :=
1√
2π

∫ ∞

−∞
φ(x)e−ipxdx, p ∈ R, (2.1)

such that the upper bound

‖φ̂(p)‖L∞(R) ≤
1√
2π

‖φ(x)‖L1(R) (2.2)

holds. Let us apply (2.1) to both sides of the system of equations (1.16). This yields

ûm(p) = εm
√
2π

K̂m(p)Ĝm(p)

p2 − ibmp
, pûm(p) = εm

√
2π

K̂m(p)Ĝm(p)

p− ibm
,

where1 ≤ m ≤ N . Clearly,

|ûm(p)| ≤ ε
√
2πQ|Ĝm(p)|, |pûm(p)| ≤ ε

√
2πQ|Ĝm(p)|, 1 ≤ m ≤ N. (2.3)

HereQ is defined in (1.24). It is finite by means of Lemma 4.1 under thegiven
conditions. By virtue of (1.10) and (1.11) along with inequalities (2.3), we easily
derive the estimate from above for the norm as

‖u(x)‖2H1(R,RN ) ≤ 4πε2Q2
N∑

m=1

‖Gm(x)‖2L2(R). (2.4)

It can be trivially checked that forv(x) ∈ Bρ, we have

|w(x)[u0(x) + v(x)]|RN ≤ 1√
2
+

1

2
‖w(x)‖H1(R). (2.5)

Obviously, the left side of (2.5) can be easily bounded from above using the triangle
inequality by

|w(x)u0(x)|RN + |w(x)v(x)|RN . (2.6)

Let us recall inequalities (1.12) and (1.8) to deal with the first term in (2.6). Thus,

|w(x)u0(x)|RN ≤

√√√√
N∑

m=1

‖w(x)u0,m(x)‖2L∞(R) ≤

≤ 1√
2
‖w(x)u0(x)‖H1(R,RN ) ≤

1√
2
.

We use (1.12) to obtain the upper bound on the second term in (2.6), so that
√√√√

N∑

m=1

|w(x)vm(x)|2 ≤

√√√√
N∑

m=1

‖w(x)‖2
L∞(R)‖vm(x)‖2L∞(R) ≤
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≤ 1

2
‖w(x)‖H1(R)

√√√√
N∑

m=1

‖vm(x)‖2H1(R) =
1

2
‖w(x)‖H1(R)‖v(x)‖H1(R,RN ) ≤

≤ 1

2
‖w(x)‖H1(R).

Therefore, (2.5) holds. Similarly, forv(x) ∈ Bρ

‖w(x)[u0(x) + v(x)]‖L2(R,RN ) ≤ 1 +
1√
2
‖w(x)‖H1(R). (2.7)

Evidently, the left side of (2.7) can be trivially bounded from above by means of the
triangle inequality by

‖w(x)u0(x)‖L2(R,RN ) + ‖w(x)v(x)‖L2(R,RN ). (2.8)

For the first term in (2.8), we have by virtue of (1.8) along with (1.11) that

‖w(x)u0(x)‖L2(R,RN ) ≤ ‖w(x)u0(x)‖H1(R,RN ) ≤ 1.

For the second term in (2.8), we use (1.12), which yields

‖w(x)v(x)‖L2(R,RN ) ≤ ‖w(x)‖L∞(R)

√√√√
N∑

m=1

‖vm(x)‖2L2(R) =

= ‖w(x)‖L∞(R)‖v(x)‖L2(R,RN ) ≤
1√
2
‖w(x)‖H1(R)‖v(x)‖H1(R,RN ) ≤

≤ 1√
2
‖w(x)‖H1(R).

Thus, (2.7) is valid. By means of Assumption 1.2, we can write

Gm(x) =

∫ 1

0

∇gm(tw(x)[u0(x) + v(x)]).w(x)[u0(x) + v(x)]dt, 1 ≤ m ≤ N.

Here and further down the dot denotes the scalar product of the two vectors in our
space ofN dimensions. Clearly, by virtue of (2.5)

|Gm(x)| ≤ supz∈I |∇gm(z)|RN |w(x)[u0(x) + v(x)]|RN , 1 ≤ m ≤ N,

where the ballI is defined in (1.19). Let us use inequality (2.7). We arrive at

‖Gm(x)‖2L2(R) ≤ [supz∈I |∇gm(z)|RN ]2‖w(x)[u0(x) + v(x)]‖2L2(R,RN ) ≤

≤ [supz∈I |∇gm(z)|RN ]2
(
1 +

1√
2
‖w(x)‖H1(R)

)2

, 1 ≤ m ≤ N. (2.9)
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Estimates (2.4) and (2.9) yield

‖u(x)‖H1(R,RN ) ≤ 2
√
πεQM

(
1 +

1√
2
‖w(x)‖H1(R)

)
≤ ρ (2.10)

for all the values of our parameterε, satisfying condition (1.25), so thatu(x) ∈ Bρ

as well.
Let us suppose that for somev(x) ∈ Bρ there exist two solutionsu1,2(x) ∈ Bρ of
system of (1.16). Obviously, their differencew(x) := u1(x) − u2(x) ∈ L2(R,RN)
solves the homogeneous system of equations

−d2wm(x)

dx2
− bm

dwm(x)

dx
= 0, 1 ≤ m ≤ N.

But each operatorLbm (see (1.17)) considered onL2(R) does not have any nontrivial
zero modes. Thus,w(x) vanishes identically on the real line. Therefore, system
(1.16) defines a mapTg : Bρ → Bρ for all the values ofε satisfying inequality
(1.25).
We establish that under the given conditions such map is a strict contraction. Let us
choose arbitrarilyv1,2(x) ∈ Bρ. The argument above gives us thatu1,2 := Tgv1,2 ∈
Bρ as well forε, which satisfies (1.25). By means of (1.16), we have for1 ≤ m ≤ N

−d2u1,m(x)

dx2
− bm

du1,m(x)

dx
=

= εm

∫ ∞

−∞
Km(x− y)gm(w(y)[u0(y) + v1(y)])dy, (2.11)

−d2u2,m(x)

dx2
− bm

du2,m(x)

dx
=

= εm

∫ ∞

−∞
Km(x− y)gm(w(y)[u0(y) + v2(y)])dy. (2.12)

Let us define

G1,m(x) := gm(w(x)[u0(x) + v1(x)]), G2,m(x) := gm(w(x)[u0(x) + v2(x)]),

where1 ≤ m ≤ N . We apply the standard Fourier transform (2.1) to both sidesof
systems (2.11) and (2.12) and obtain

û1,m(p) = εm
√
2π

K̂m(p)Ĝ1,m(p)

p2 − ibmp
, û2,m(p) = εm

√
2π

K̂m(p)Ĝ2,m(p)

p2 − ibmp
,

such that

û1,m(p)− û2,m(p) = εm
√
2π

K̂m(p)[Ĝ1,m(p)− Ĝ2,m(p)]

p2 − ibmp
,
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p[û1,m(p)− û2,m(p)] = εm
√
2π

K̂m(p)[Ĝ1,m(p)− Ĝ2,m(p)]

p− ibm
, 1 ≤ m ≤ N.

Therefore, the upper bounds

|û1,m(p)− û2,m(p)| ≤ ε
√
2πQ|Ĝ1,m(p)− Ĝ2,m(p)|,

|p[û1,m(p)− û2,m(p)]| ≤ ε
√
2πQ|Ĝ1,m(p)− Ĝ2,m(p)|, 1 ≤ m ≤ N

hold. This allows us to derive the estimate from above on the norm by means of
(1.10) and (1.11), namely‖u1(x)− u2(x)‖2H1(R,RN ) =

=
N∑

m=1

{∫ ∞

−∞
|û1,m(p)− û2,m(p)|2dp+

∫ ∞

−∞
|p(û1,m(p)− û2,m(p))|2dp

}
≤

≤ 4πε2Q2
N∑

m=1

‖G1,m(x)−G2,m(x)‖2L2(R).

Hence,

‖u1(x)− u2(x)‖H1(R,RN ) ≤ 2
√
πεQ

√√√√
N∑

m=1

‖G1,m(x)−G2,m(x)‖2L2(R). (2.13)

Evidently, we can expressG1,m(x)−G2,m(x) =

=

∫ 1

0

∇gm(w(x)[u0(x) + tv1(x) + (1− t)v2(x)]).w(x)[v1(x)− v2(x)]dt,

with 1 ≤ m ≤ N . Clearly, fort ∈ [0, 1] we have

‖tv1(x) + (1− t)v2(x)‖H1(R,RN ) ≤ t‖v1(x)‖H1(R,RN ) + (1− t)‖v2(x)‖H1(R,RN ) ≤

≤ ρ.

Thus,tv1(x) + (1− t)v2(x) ∈ Bρ. According to inequality (2.5),

|w(x)[u0(x) + tv1(x) + (1− t)v2(x)]|RN ≤ 1√
2
+

1

2
‖w(x)‖H1(R).

Then we estimate

|G1,m(x)−G2,m(x)| ≤ supz∈I |∇gm(z)|RN |w(x)(v1(x)− v2(x))|RN ≤

≤ ‖gm‖C1(I)|w(x)(v1(x)− v2(x))|RN , 1 ≤ m ≤ N,
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with the ballI introduced in (1.19). Let us obtain the upper bound for the norm via
(1.12) as

‖G1,m(x)−G2,m(x)‖2L2(R) ≤
1

2
‖gm‖2C1(I)‖w(x)‖2H1(R‖v1(x)− v2(x)‖2L2(R,RN ) ≤

≤ 1

2
‖gm‖2C1(I)‖w(x)‖2H1(R)‖v1(x)− v2(x)‖2H1(R,RN ), 1 ≤ m ≤ N. (2.14)

By means of (2.13) and (2.14) along with Assumption 1.2, we arrive at

‖u1(x)− u2(x)‖H1(R,RN ) ≤

≤
√
2πεQM‖w(x)‖H1(R)‖v1(x)− v2(x)‖H1(R,RN ). (2.15)

Clearly,

ρ

2
√
πQM

(
1 + 1√

2
‖w(x)‖H1(R)

) <
1√

2πQM‖w(x)‖H1(R)

.

Therefore, by virtue of (1.25) for our parameterε we have that

0 < ε <
1√

2πQM‖w(x)‖H1(R)

,

such that the constant in the right side of bound (2.15) is less than one. Hence,
the mapTg : Bρ → Bρ defined by system (1.16) is a strict contraction for all the
values ofε, which satisfy inequality (1.25). Its unique fixed pointup(x) is the only
solution of the system of equations (1.14) in the ballBρ. Using (2.10), we obtain
that‖up(x)‖H1(R,RN ) → 0 asε → 0. The cumulativeu(x) given by formula (1.13)
is a solution of system (1.2).

Let us turn our attention to establishing the validity of thesecond main proposition
of our article.

3. The continuity of the resulting solution

Proof of Theorem 1.4.Evidently, for all the values of our parameterε satisfying
(1.25), we have

up,1 = Tg1up,1, up,2 = Tg2up,2,

so that
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

Thus,

‖up,1−up,2‖H1(R,RN ) ≤ ‖Tg1up,1−Tg1up,2‖H1(R,RN )+ ‖Tg1up,2−Tg2up,2‖H1(R,RN ).
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By virtue of bound (2.15), we obtain

‖Tg1up,1 − Tg1up,2‖H1(R,RN ) ≤ εσ‖up,1 − up,2‖H1(R,RN ),

with σ introduced in (1.26). Obviously,εσ < 1, because the mapTg1 : Bρ → Bρ is
a strict contraction under the given conditions. Hence,

(1− εσ)‖up,1 − up,2‖H1(R,RN ) ≤ ‖Tg1up,2 − Tg2up,2‖H1(R,RN ). (3.1)

Clearly, for the fixed pointTg2up,2 = up,2. Let us defineη(x) := Tg1up,2. Therefore,
for 1 ≤ m ≤ N , we have

−d2ηm(x)

dx2
− bm

dηm(x)

dx
=

= εm

∫ ∞

−∞
Km(x− y)g1,m(w(y)[u0(y) + up,2(y)])dy, (3.2)

−d2up,2,m(x)

dx2
− bm

dup,2,m(x)

dx
=

= εm

∫ ∞

−∞
Km(x− y)g2,m(w(y)[u0(y) + up,2(y)])dy. (3.3)

Let us introduce

G1,2,m(x) := g1,m(w(x)[u0(x) + up,2(x)]),

G2,2,m(x) := g2,m(w(x)[u0(x) + up,2(x)]), 1 ≤ m ≤ N.

We apply the standard Fourier transform (2.1) to both sides of the systems of equa-
tions (3.2) and (3.3). This yields

η̂m(p) = εm
√
2π

K̂m(p)Ĝ1,2,m(p)

p2 − ibmp
, ûp,2,m(p) = εm

√
2π

K̂m(p)Ĝ2,2,m(p)

p2 − ibmp
,

where1 ≤ m ≤ N , such that

η̂m(p)− ûp,2,m(p) = εm
√
2π

K̂m(p)

p2 − ibmp
[Ĝ1,2,m(p)− Ĝ2,2,m(p)],

p[η̂m(p)− ûp,2,m(p)] = εm
√
2π

K̂m(p)

p− ibm
[Ĝ1,2,m(p)− Ĝ2,2,m(p)].

Evidently, the upper bounds

|η̂m(p)− ûp,2,m(p)| ≤ ε
√
2πQ|Ĝ1,2,m(p)− Ĝ2,2,m(p)|, (3.4)

|p[η̂m(p)− ûp,2,m(p)]| ≤ ε
√
2πQ|Ĝ1,2,m(p)− Ĝ2,2,m(p)| (3.5)
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hold with1 ≤ m ≤ N . By means of (3.4), we have

‖η̂m(p)− ûp,2,m(p)‖2L2(R) =

∫ ∞

−∞
|η̂m(p)− ûp,2,m(p)|2dp ≤

≤ 2πε2Q2‖G1,2,m(x)−G2,2,m(x)‖2L2(R), 1 ≤ m ≤ N. (3.6)

Similarly, by virtue of inequality (3.5) we obtain

‖p[η̂m(p)− ûp,2,m(p)]‖2L2(R) =

∫ ∞

−∞
|p[η̂m(p)− ûp,2,m(p)]|2dp ≤

≤ 2πε2Q2‖G1,2,m(x)−G2,2,m(x)‖2L2(R), 1 ≤ m ≤ N. (3.7)

Formulas (1.9), (1.10), (1.11), (3.6) and (3.7) give us that

‖η(x)− up,2(x)‖2H1(R,RN ) =

=
N∑

m=1

{‖η̂m(p)− ûp,2,m(p)‖2L2(R) + ‖p[η̂m(p)− ûp,2,m(p)]‖2L2(R)} ≤

≤ 4πε2Q2

N∑

m=1

‖G1,2,m(x)−G2,2,m(x)‖2L2(R).

Hence,

‖η(x)− up,2(x)‖H1(R,RN ) ≤ 2
√
πεQ

√√√√
N∑

m=1

‖G1,2,m(x)−G2,2,m(x)‖2L2(R). (3.8)

Clearly, for1 ≤ m ≤ N we can writeG1,2,m(x)−G2,2,m(x) =

=

∫ 1

0

∇[g1,m − g2,m](tw(x)[u0(x) + up,2(x)]).w(x)[u0(x) + up,2(x)]dt.

Let us use inequality (2.5). Thus,

|tw(x)[u0(x) + up,2(x)]|RN ≤ 1√
2
+

1

2
‖w(x)‖H1(R), t ∈ [0, 1].

We easily estimate that|G1,2,m(x)−G2,2,m(x)| ≤

≤ supz∈I |∇[g1,m − g2,m](z)|RN |w(x)[u0(x) + up,2(x)]|RN ≤

≤ ‖g1,m − g2,m‖C1(I)|w(x)[u0(x) + up,2(x)]|RN , 1 ≤ m ≤ N,

where the ballI is introduced in (1.19). This allows us to obtain the upper bound
on the norm using (2.7) as

‖G1,2,m(x)−G2,2,m(x)‖2L2(R) ≤
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≤ ‖g1,m − g2,m‖2C1(I)‖w(x)[u0(x) + up,2(x)]‖2L2(R,RN ) ≤

≤ ‖g1,m − g2,m‖2C1(I)

(
1 +

1√
2
‖w(x)‖H1(R)

)2

, 1 ≤ m ≤ N. (3.9)

By virtue of estimates (3.8) and (3.9), we derive that‖η(x)− up,2(x)‖H1(R,RN ) ≤

≤ 2
√
πεQ

(
1 +

1√
2
‖w(x)‖H1(R)

)
‖g1(z)− g2(z)‖C1(I,RN ). (3.10)

Inequalities (3.1) and (3.10) imply that‖up,1(x)− up,2(x)‖H1(R,RN ) ≤

≤
2
√
πεQ

(
1 + 1√

2
‖w(x)‖H1(R)

)

1− εσ
‖g1(z)− g2(z)‖C1(I,RN ). (3.11)

By means of (1.27) along with upper bound (3.11), estimate (1.28) is valid.

4. Auxiliary results

Let us recall the quantitiesQm, 1 ≤ m ≤ N defined in (1.23) and obtain the
conditions under which they are finite. We denote the inner product as

(f(x), g(x))L2(R) :=

∫ ∞

−∞
f(x)ḡ(x)dx, (4.1)

with a slight abuse of notations when the functions contained in (4.1) do not belong
to L2(R), like for example the ones involved in orthogonality conditions (4.2) of
Lemma 4.1. Indeed, iff(x) ∈ L1(R) andg(x) is bounded, then the integral in the
right side of (4.1) makes sense. The proof of Lemma 4.1 was partially presented in
the second part of the first lemma of the Appendix of [20]. We provide it here for
the convenience of the readers.

Lemma 4.1.Let1 ≤ m ≤ N , the constantsbm ∈ R, bm 6= 0, the functionsKm(x) :
R → R do not vanish identically on the real line, such thatKm(x), xKm(x) ∈
L1(R). ThenQm < ∞ if and only if the orthogonality conditions

(Km(x), 1)L2(R) = 0 (4.2)

hold.

Proof. It can be verified using inequality (2.2) that
K̂m(p)

p− ibm
is bounded. Indeed, we

easily obtain
∣∣∣∣∣
K̂m(p)

p− ibm

∣∣∣∣∣ =
|K̂m(p)|√
p2 + b2m

≤ 1√
2π|bm|

‖Km(x)‖L1(R) < ∞
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via our conditions. Clearly, if the drift constantbm here is trivial, we will be dealing
with a more singular situation. Let us express

K̂m(p) = K̂m(0) +

∫ p

0

dK̂m(q)

dq
dq, 1 ≤ m ≤ N,

such that

K̂m(p)

p2 − ibmp
=

K̂m(0)

p2 − ibmp
+

∫ p

0
dK̂m(q)

dq
dq

p2 − ibmp
, 1 ≤ m ≤ N. (4.3)

From the definition of the standard Fourier transform (2.1) we easily deduce that
∣∣∣∣∣
dK̂m(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xKm(x)‖L1(R), 1 ≤ m ≤ N.

Thus,

∣∣∣∣∣

∫ p

0
dK̂m(q)

dq
dq

p2 − ibmp

∣∣∣∣∣ ≤
1√

2π|bm|
‖xKm(x)‖L1(R) < ∞, 1 ≤ m ≤ N

as assumed. By means of definition (2.1),

K̂m(0) =
1√
2π

(Km(x), 1)L2(R), 1 ≤ m ≤ N.

Hence, the first term in the right side of (4.3) equals to

(Km(x), 1)L2(R)√
2π(p2 − ibmp)

, 1 ≤ m ≤ N. (4.4)

Evidently, each quantity (4.4) is bounded if and only if orthogonality conditions
(4.2) hold.

Let us note that as distinct from the similar proposition without a drift term given
in [35], the statement of Lemma 4.1 above uses only a single orthogonality relation
(4.2) for each1 ≤ m ≤ N and the argument of the proof is simpler. The argument
of [42] does not rely on the orthogonality conditions at all.
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