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1. Introduction

In the present work we deal with the existence of stationalyt®ns of the follow-
ing system of nonlocal reaction-diffusion equations

8um 82um 8um >
5 = me+bm%+/_w Ko (x—y)gm(w(y)u(y, t))dy+a,d(z), (1.1)

where the constants,, «,, € R, 1 < m < N are nontrivial andv(z) involved
in system (1.1) is a cut-off function. The conditions on itlwe formulated below.
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The systems of this kind are relevant to the cell populatipmadghics. The space
variablez here is correspondent to the cell genotypg(x,t) denote the cell den-
sity distributions for the various groups of cells as thections of their genotype
and time,

u(z,t) = (uy(x,t), ug(z,t), ..., un(z, 1))’

The right side of the system of equations (1.1) describegvbéution of the cell
densities by means of the cell proliferation, mutations egltinflux or efflux. The
diffusion terms here correspond to the change of genotyparhye of the small
random mutations, and the nonlocal production terms dastiie large mutations.
The functionsg,, (w(x)u(z,t)) stand for the rates of cell birth depending @nv
(density dependent proliferation). The kerné&ls (z — y) express the proportions
of newly born cells, which change their genotypes frgrto . We assume that
they depend on the distance between the genotypes. Thedasirt the right side
of each equation of our system, which is proportional to th@ddelta function
designates the influx/efflux of cells for different genotyp&he solvability of the
single integro-differential equation analogous to (1 t)without the transport term
was covered in [35]. The similar equation in one dimensiatméencase of the stan-

: : 1. e
dard negative Laplace operator raised to the pawers < 2 in the diffusion term

involving the drift term was treated in [42]. But in [42] tleewas an assumption
that the influx/efflux termf(z) € L'(R) N L*(R). Therefore, in the present arti-
cle we deal with the more singular case. In neuroscienceintkgro-differential
problems are used to describe the nonlocal interaction wfoms (see [9] and the
references therein).

Let us set allD,,, = 1 and demonstrate the existence of solutions of the system of
equations

d?*u,,

b [ Kla = pan(wluln)dy + andle) 0, (12)

wherel < m < N. We consider the situation when the linear parts of the dpesa
involved in system (1.2) fail to satisfy the Fredholm prdgerConsequently, the
conventional methods of the nonlinear analysis may not Ipicgble. Let us use
the solvability conditions for the non-Fredholm operatalieng with the method of
the contraction mappings.
Consider the equation

—Au+V(x)u —au = f, (1.3)

whereu € £ = H*(R?) andf € F = L*(R?Y), d € N, a is a constant and the scalar
potential functionl/(z) either vanishes in the whole space or convergesdbin-
finity. If a > 0, the essential spectrum of the operafor £ — F' corresponding to
the left side of problem (1.3) contains the origin. Consexdjyesuch operator fails
to satisfy the Fredholm property. Its image is not closedfo- 1 the dimension
of its kernel and the codimension of its image are not finitethle present work
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we deal with the studies of the certain properties of the atpes of this kind. Note
that the elliptic problems containing the non-Fredholmrap®s were considered
actively in recent years. Approaches in weighted SobolevHdlder spaces were
developed in [4], [5], [6], [7], [8]. The Schrodinger typperators without the
Fredholm property were studied with the methods of the spleihd the scattering
theory in [17], [31], [36], [37]. Fredholm structures, tdpgical invariants and
their applications were covered in [13]. The article [14devoted to the finite and
infinite dimensional attractors for the evolution problenfisnathematical physics.
The large time behavior of the solutions of a class of fowrtther parabolic equa-
tions defined on unbounded domains using the Kolmogetentropy as a measure
was considered in [15]. The attractor for a nonlinear reactiffusion system
in an unbounded domain in the space of three dimensions wasss$ied in [23].
The works [25] and [30] are dedicated to the understandirthefredholm and
properness properties of the quasilinear elliptic systehsecond order and of the
operators of this kind ofR"¥. The exponential decay and Fredholm properties in
the second-order quasilinear elliptic systems of equatiare discussed in [26].
The Laplace operator with drift from the point of view of themFredholm opera-
tors was considered in [39] and the linearized Cahn-Hdljaroblems in [33] and
[40]. Nonlinear non-Fredholm elliptic equations were ddased in [16], [18],
[19], [20], [21], [22], [32], [38], [41], [42]. The importamapplications to the
theory of reaction-diffusion problems were developed id][112]. The operators
without the Fredholm property arise when studying waveesystwith an infinite
number of localized traveling waves as well (see [2]). Thekw[8] deals with the
standing lattice solitons in the discrete NLS equation wdturation. In particular,
whena = 0 our operatorA is Fredholm in some properly chosen weighted spaces
(see [4], [5], [6], [7], [8]). However, the case af#£ 0 is considerably different and
the approach developed in these articles cannot be appiiteel existence, stabil-
ity and bifurcations of the solutions of the nonlinear prdifferential equations
involving the Dirac delta function type potentials weredséd extensively in [1],
[24], [27], [28].

We setK,, (z) = £,Kn(x), wheres,,, > 0 and introduce
€ = MaX <m<NEm- (14)

Suppose all the nonnegative parametgryvanish. Then we obtain the linear Pois-
son type equations

d?u,, d,,
— 2 b, i amd(z), 1<m<N (1.5)
with the constants,,,, «,, € R andb,,, «,, # 0. It can be easily verified that each
problem (1.5) has a continuous solution, which is trivialtbe negative semi-axis,

namely
am (p=bm® _ 1) 2 >0
oy () = {5m< e (1.6)




wherel < m < N, such that

uo(w) 1= (ug 1 (), uo (), ..., ug n ()" (1.7)

Evidently, eachu ,,,(z) is not contained iff! (R). It is bounded ifs,, > 0 and itis
unbounded fob,, < 0. We recall the similar case discussed in [35]. The solution
of the corresponding Poisson equation without the trarnidpom used there was
proportional to the ramp function. It was not bounded andas$wot contained in
H'(R). In the article [42] the authors were dealing with the Paistype equation
with the fractional Laplacian and the drift term. Its boudd®lution belonged to
H'(R). Let us suppose that the following conditions are satisfied.

Assumption 1.1. Let1 < m < N, K,,(z) : R — R are nontrivial, such that
K (z), zK,,(z) € L'(R) and orthogonality conditions (4.2) hold. Suppose also
that the cut-off functionv(xz) : R — R is such thatw(z)ug,,(z) do not vanish
identically on the real line and(x)ug,,(z) € H'(R). Moreoverw(z) € H'(R)
and forb,,, a,, € R, b,,, a,, # 0 the estimate from above

[[w(z)uo () || vy < 1 (1.8)
is valid.

It can be easily verified that(z) = e 27l 2 € R, where|b| = max <,<x/|bm|
satisfies the conditions above, so that it can be used as toffdunction. Note
that in the argument of [42] such cut-off was not needed dubdéanore regular
behaviour of the solution of the corresponding Poisson ggqeation. In the article
we choose the space dimensién= 1, which is related to the solvability of the
linear Poisson type equations (1.5) considered above. Erempoint of view of the
applications, the space dimension is not limited/ite- 1, since the space variable
is correspondent to the cell genotype but not to the usuaipalspace. Let us use
the Sobolev space

d¢

H'(R) = {¢(x) : R = R| ¢(a) € L'(R), — € L'(R)}.

It is equipped with the norm

d 2
[ T s L 1.9)

L2(R)

Evidently, by means of the standard Fourier transform (23 norm can be writ-
ten as

0I5 @y = 6P 172y + 16@) 172 Ry (1.10)
For a vector function

u(z) = (ui(x), ug(x), ..., un(x))7,
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we will use the norm

du,, |2
ol vy 2= ey + Z [l . (1.12)
where
N
lullfe@zny = D llumlFo)-
m=1
The Sobolev inequality in one dimension (see e.g. Sect 8[29}) yields
[6()[] Lo () (@) - (1.12)

Ik
\[
Let us seek the resulting solution of the nonlinear systeegaations (1.2) as

u(z) = uo(z) + up(x), (1.13)

where
up(w) = (up1 (), up (), ---vup,N(x))T

anduy(z) is defined in (1.7). Clearly, we obtain the perturbative syst

d*tp () dupm(z)
O da?2 b de
=em /OO K@ = y)gm(w(y)[uo(y) + up(y)])dy, (1.14)

wherel < m < N. Let us use a closed ball in the Sobolev space
B, = {u(z) € H'(R,R") | [Jul| gz < p}, 0<p<1 (1.15)

We look for the solution of the system of equations (1.14hasfixed point of the
auxiliary nonlinear system of equations

d*t,, () Aty () >
——a T =em /OO Ko (2 = y)gm(w(y)[uo(y) +v(y)])dy, (1.16)
with 1 < m < N in ball (1.15). For a given vector functiar(y) this is a system

of equations with respect ta(x). The equations of (1.16) in their left sides contain

the operators
Ly :—d—Q—bi 1<m<N (1.17)
" de?  dx’ - T '
which act onL?(R). By virtue of the standard Fourier transform, it can be gasil
derived that the essential spectrum/gf is

Mo () = p* —ibmp, pER, 1<m <N, (1.18)
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Clearly, each (1.18) contains the origin, so tlgt fails to satisfy the Fredholm
property. This operator has no bounded inverse. The similaation in the con-

text of the integro-differential equations occurred incets [38] and [41] as well.

The equations studied there also required the applicafitimoorthogonality con-

ditions. The contraction argument was used in [34] to egBntlae perturbation

to the standing solitary wave of the Nonlinear Schrodin®#rS) equation when

either the external potential or the nonlinear term in theSNtere perturbed. But
the Schrodinger operator involved in the nonlinear probikeere satisfied the Fred-
holm property (see Assumption 1 of [34], also [10]). Let usaduce the closed
ball in the space oV dimensions as

1 1
1:={zeR" <— 4= o | 1.19
2 € RV alay < =5+ g lw@)lme | (1.19)
along with the closed ball in the space 6f (I, RY) vector functions, namely

DM =

{9(2) == (91(2), g2(2), ..., gn(2)) € Cl(LRN) ‘ ”gHCl(I,RN) < M}, (1.20)

whereM > 0. In this context the norms

N
lgllcrarry = Z lgmllor(), (1.21)
m=1
N dg
m|lC1 = m e s 1.22
lomleri == lamllea + 3 |52, (1.22)
where|| g, ||cy = max.er|gm(2)]. From the point of view of the biological ap-

plications, the rates of the cell birth functions are nosdinand are trivial at the
origin.

Assumption 1.2.Let1 < m < N. We suppose that,(z) : RY — R, such that
gm(0) = 0. Let us also assume thatz) € D,, and it does not vanish identically
in the ball /.

We recall the earlier work [42]. The functigy{z) there was assumed to be twice
continuously differentiable on the corresponding intéfvd_et us use the following
positive technical quantities

Ko (p)

Ko (p)
p2 - mep

)

Lo (R)

Qm = max{

},1§m§N (1.23)
L (R)

with the constants,, € R, b,, # 0, so that
Q = MaX << Q. (1.24)
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Evidently, @ is finite under the assumptions of Theorem 1.3 by virtue ofrdselt
of Lemma 4.1 below.

Let us introduce the operatdi,, such that. = 7,v, whereu is a solution of the
system of equations (1.16). Our first main proposition isoésws.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then for every (0, 1] system
(1.16) defines the maf, : B, — B,, which is a strict contraction for all

)
; . 1.25
<e< 2/TQM (1 + %Hw(x)”Hl(R)) ( )

The unique fixed poini,(x) of this mapZ, is the only solution of the system of
equations (1.14) i3,,.

Obviously, the cumulative solution of system (1.2) givenftaymula (1.13) will be
nontrivial on the real line sincg,,(0) = 0, «,, # 0, 1 <m < N as assumed.

Our second main statement is about the continuity of thetregisolution of the
system of equations (1.2) given by (1.13) with respect tonthrdinear vector func-
tion g. Let us define the following positive technical quantity

o= V2rQM||w ()| (g)- (1.26)

Theorem 1.4.Letj = 1,2 and suppose that the conditions of Theorem 1.3 hold,
such thatu,, ;(x) is the unique fixed point of the mdp, : B, — B,, which is a
strict contraction for all the values of, which satisfy (1.25) and the cumulative
solution of system (1.2) witf(z) = g;(z) is given by

uj(x) = uo(x) + up (). (1.27)
Then for alle satisfying bound (1.25), the estimate from above
|ur(7) — ua () || g rrrvy <

_ 2vmeQ(1 + 5 llw(@)| i w)
- 1—¢0o

191(2) — g2(2) |l 1,y (1.28)

is valid.
We proceed to the proof of the first main result.
2. The existence of the perturbed solution

Proof of Theorem 1.3Let us choose arbitrarily(z) € B,. The terms involved in
the integral expressions in the right side of system (1.ié}Hasignated as

G () := gm(w(2)[uo(z) +v(x)]), 1 <m <N,
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We use the standard Fourier transform

o) = o= [ o per 2.1)
such that the upper bound
16(p) | 2=z) < \/—H¢>< M@ (2.2)

holds. Let us apply (2.1) to both sides of the system of equat{1.16). This yields

_ Ko (p) G _ Ko (p)Gom
Um(p) = emV QWM, Pl (D) = emV 27TM7
p? — ibyp p — iby,

wherel < m < N. Clearly,

tm(p)| < evV2rQ|Go(p)l.  |pim(p)| < eV27Q|Gr(p)|, 1<m < N. (2.3)

Here( is defined in (1.24). It is finite by means of Lemma 4.1 underdiven
conditions. By virtue of (1.10) and (1.11) along with inefjies (2.3), we easily
derive the estimate from above for the norm as

Ju(x )”Hl ®RRN) = Are®Q? Z [ ”L2(R) (2.4)

m=1
It can be trivially checked that far(x) € B,, we have

0(a)uo(@) + 0@l < =+ 0@, (25)

Obviously, the left side of (2.5) can be easily bounded fréwova using the triangle
inequality by

|w(@)uo(z) ey + |w(z)v(2)|Ry. (2.6)
Let us recall inequalities (1.12) and (1.8) to deal with thgt tierm in (2.6). Thus,

|w(z)ug(z)|py < \l Z ||w(z)uwo,m(z HLOO(R <

<—12|| (@)uo(z) || & <—12
w(T)uo () || g1 (r RN .
=a 0 (R,R )_\/—

We use (1.12) to obtain the upper bound on the second term@ & that

\l Z |w(z)om(z)[* < J Z [Jw(z H2 va(:(:)HQOO(R) <
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wl»—‘

momJva W@ = ||w<a:>||H1<R>||v<x>||H1(R,RN>s

< S llw(@)|lm @)

Therefore, (2.5) holds. Similarly, far(z) € B,

[w(@)[uo(2) + ()| L2@ry) <1+ THw( )@y 2.7)

Evidently, the left side of (2.7) can be trivially boundedrir above by means of the
triangle inequality by

|w(x)uo ()| L2mryy + [[w(2)v(2)|| 2R RYY)- (2.8)
For the first term in (2.8), we have by virtue of (1.8) alonghn(t.11) that
(@) (@) 2y < leo(@)u(@) | gy < 1.

For the second term in (2.8), we use (1.12), which yields

lw(z)o(@)|[2@eyy < lw(@)] L@ Jva o) 2w =

= [lw(@)]| L@ [v(@) | 2@y < fllw( M@ llo(@)[m@ry) <

< EHUJ@)HH%R)-
Thus, (2.7) is valid. By means of Assumption 1.2, we can write
1
Gu(x) = / V g (tw(x) [ug(x) + v(2)]).w(x)[ug(x) + v(z)]dt, 1< m < N.
0

Here and further down the dot denotes the scalar producteaditb vectors in our
space ofV dimensions. Clearly, by virtue of (2.5)

|G ()] < SURC;[Vgm (2) [y |w(z)[uo(x) + v(2)][py, 1 <m <N,

where the ball is defined in (1.19). Let us use inequality (2.7). We arrive at

G @)y < 1SURs Vg () a2 (@) ) + 0()] [y <
< [sUne Vo (e (14 S lu@ling) - 1<m<N. @9
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Estimates (2.4) and (2.9) yield

|mmwmmmws2¢&QM(1+74w<mm@QSp (2.10)
for all the values of our parametey satisfying condition (1.25), so thatz) € B,
as well.
Let us suppose that for soméx) € B, there exist two solutions, »(z) € B, of
system of (1.16). Obviously, their differenedz) := u(z) — us(z) € L*(R,RY)
solves the homogeneous system of equations
_dem(az) dw,, ()

d2 " dax
But each operatak,,, (see (1.17)) considered dri(R) does not have any nontrivial
zero modes. Thusy(z) vanishes identically on the real line. Therefore, system
(1.16) defines a map, : B, — B, for all the values ot satisfying inequality
(1.25).
We establish that under the given conditions such map isch stmtraction. Let us
choose arbitrarily, »(x) € B,. The argument above gives us that := T,v, » €
B, as well fore, which satisfies (1.25). By means of (1.16), we havé ferm < N

=0, 1<m<N.

d*uy () duy ()
B
—%J"Ka~ )gm (w()[u0(y) + 01 (1)), (2.11)
d*ug, (1) dug ()
B e
- €m/ K (x — y)gm(w(y)[uo(y) + v2(y)])dy. (2.12)

Let us define

Grm(®) = gm(w(@)[uo(x) +v1(2)]),  Gam(x) = gm(w(2)[uo(x) + va(x)]),

wherel < m < N. We apply the standard Fourier transform (2.1) to both sides
systems (2.11) and (2.12) and obtain

. Corlp)Crinlr) o )G
() = V3 mNGnD) ) e n@)Ganlp),
P _mep p _mep
such that
T (p) — K (0)[Grm(p) = G
U1,m(p)—u27m(p):gm\/% (P)[Grm(p) 2, (p)]’

p2 - mep
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. \@@@@W%@Wﬂ

plurm(p) — tam(p)] =€ o <m<

)

Therefore, the upper bounds
[T (p) — o (P)] < eV27QIGrm () — Gom ()],

plaim(p) — Tom ()] < eV27Q|Grm(p) — Gom(p)|, 1<m <N

hold. This allows us to derive the estimate from above on tirenrby means of
(1.10) and (1.11), namelju, (z) — ua(z) |3 REN) =

o0 o0

@) = T )P+ [ o) ~ 1) P} <

—0o0 —00

N
< 4me?()? Z |G () — GQ,m("L‘)H%Q(R)
m=1

Hence,

N
MM—WWMMWM<%%QJZ:@M@—%mmimy(K@
m=1
Evidently, we can express, ,,,(z) — Gam(z) =

= /0 1 Vgm(w(@)[uo(x) + tor (z) + (1 = tyva(2)])w(@)[v1 (x) — va(2)]dt,
with 1 < m < N. Clearly, fort € [0, 1] we have
[tvr(2) + (1 = t)va () | @myy < Hlow (@)l @y + (1 = Ol[v2(2) ]| ey <
< p-
Thus,tv,(z) + (1 — t)ve(z) € B,. According to inequality (2.5),

() o) + 01 (@) + (1 = (@)l < <+ 5 (@) s

V2

Then we estimate

|Grm(2) = Gom(2)| < SURc |V gm(2)[rr|w(z)(v1(z) — va())[py <

< lgmllerlw(@)(vr(z) = va(z))[py, 1 <m <N,
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with the ball/ introduced in (1.19). Let us obtain the upper bound for themaa
(1.12) as

1
1G1 (@) = Gom (@) 22 < G Ngmllennllw(@) @l (@) = va(@) 2@ py <

1
< Slgmllesnllw@) e v (@) = va(@) lpEey), 1<m <N (2.14)
By means of (2.13) and (2.14) along with Assumption 1.2, weaat
[ur (2) = ua ()] 1 ) <
< V2meQM||w(@)|| mw)l[vi (@) — v2(@) || 1 m RY)- (2.15)
Clearly,

p 1
< .
2ﬁQM(1 + %”UJ(x)”Hl(R)) V2rQM |[w(@)| mw)

Therefore, by virtue of (1.25) for our parametewe have that

1
<e< ,
V2rQM||w ()| m ()

such that the constant in the right side of bound (2.15) is tkan one. Hence,
the mapT7, : B, — B, defined by system (1.16) is a strict contraction for all the
values ofz, which satisfy inequality (1.25). Its unique fixed poinf(z) is the only
solution of the system of equations (1.14) in the @)l Using (2.10), we obtain
that||u,(2)| g1 (g ryy — 0 @se — 0. The cumulative:(x) given by formula (1.13)

is a solution of system (1.2). [ |

0

Let us turn our attention to establishing the validity of #eEond main proposition
of our article.

3. The continuity of the resulting solution

Proof of Theorem 1.4Evidently, for all the values of our parametesatisfying
(1.25), we have

up1 = Toupr,  Upo = Tg,upo,

so that
Up1 — Upo = Tgup1 — Ty upo + Toupo — Ty,upo.

Thus,

tp,1 — tp 2| @ ryy < Ty ups — Toytpoll ey + [Ty tp2 — Toptip ol 11 (r rNy.-
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By virtue of bound (2.15), we obtain
| Tgiup1 — Ty upallm (R,RN) < eollup —“p2||H1(RRN)a

with ¢ introduced in (1.26). Obviouslyy < 1, because the mdfy, : B, — B, is
a strict contraction under the given conditions. Hence,

(1— 50)”“}),1 - up,2”H1(R,RN) < ”Tglup,2 - ngupﬂHHl(R,RN)- (3.1)

Clearly, for the fixed poinf,u, » = u, .. Letus define)(x) := T, u,». Therefore,
forl1 <m < N, we have

_d277M(x) b dnp(x) _

dx? ™ da
= " Kon(@ — 9)gum(w(y) o) + wpa(y)])dy, (3.2)
d? Up2.m(T) dtiy 2.m () B
TTdr T ar
— tm / Ko (2 — 1) o.m (w3 [t0(3) + tp2()]) . (3.3)

Let us introduce
Grom(®) := gim(w(@)[uo(w) + upa(z)]),

Gaom(7) = gom(w(z)[ug(z) + upa(x)]), 1<m<N.

We apply the standard Fourier transform (2.1) to both sidéseosystems of equa-
tions (3.2) and (3.3). This yields

\/%Km(p)Gl,Q,m(p) — \/%Km(p)GZ,Q,m(p)’

P> —ibup tp2m{P) = Em p? — ibyp

wherel < m < N, such that

ﬁ;b(p) =&m

— — 167\71 —_ —_—
(D) = Tpom(p) = emV/2m ],2_755)]9 [Grom(p) — G22.m(p));

Kn(p) ——,

Pliim(p) = tpam(p)] = emV2r [G12.m(P) — Ga2.m ()]

Evidently, the upper bounds

m

(@) — Gan®)| < eVZr0|Cram(®) — Gaam®)|, (3.4)
PITm(0) — Gam(@)]] < eV27Q|Cram(®) — Gaom(®)] (3.5)
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hold with1 < m < N. By means of (3.4), we have

n@@—@%m%®=/|@@—@5mmms

<27 Q||Ghram (@) — Gopm (@) T2y, 1 <m < N. (3.6)
Similarly, by virtue of inequality (3.5) we obtain
I910) = T o = [ ol (e) — )] Py <
<21 Q|| Ghram(2) — Gopm (@) T2y, 1 <m < N. (3.7)

Formulas (1.9), (1.10), (1.11), (3.6) and (3.7) give us that

In(x) = upa(@) | @y =

N
Z 17 (P) — 2. (P) |72 ) + 1P (D) — Up2im (D) |72y} <

< 4me?)? Z |G12m(7) — Goom( )H%Q(R)'

m=1

Hence,

17(2) = up 2 (@) ]| 1 vy < 2f€¢2\l Z 1G12m (%) = Gopm()[[2r)- (3-8)
Clearly, forl < m < N we can writeG, 5, () — Gaom(x) =

= /0 Vigim = gom] (tw () [uo(2) + upa(2)])-w (@) uo(2) + upo(2)]dt.
Let us use inequality (2.5). Thus,
1 1
[to(@)luo(@) + w2 @)lley < Z5 + Slw@)lme, ¢ €01
We easily estimate th7, 5 ,,(2) — Goom(x)| <

< SUR/|VI[gLm — gom)(2)|rn |w(2) [uo(z) + up2(@)]|ry <

< lgrm = g2mllormlw(@)[uo(x) + up2(2)][py, 1 <m <N,

where the balll is introduced in (1.19). This allows us to obtain the uppaurizb
on the norm using (2.7) as

|G 2.m (%) = Gaom (@) 7o) <
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< g = gm0 10 (2) + 2 () 320,00 <
2
< v — gl (14 SI0@ i) . 1<m<N. @9

By virtue of estimates (3.8) and (3.9), we derive thetr) — u,2(7)|| g1 ry) <

<2ymeQ(1+ 7||w< Dllm ) 191(2) = 22 lerr . (3.10)

Inequalities (3.1) and (3.10) imply thi, () — up2(2) || @ ry) <

_ 2\/7%@(1 + %Hw(fc)HHl(R))

1—¢co

191(2) — g2(2) |l 1,y (3.11)
By means of (1.27) along with upper bound (3.11), estimat@8(lis valid. [ |

4. Auxiliary results

Let us recall the quantitie®,,, 1 < m < N defined in (1.23) and obtain the
conditions under which they are finite. We denote the innedpct as

(f(2). 9(2)) 2y = / " f@)g(e)de, (4.)

with a slight abuse of notations when the functions conthing€4.1) do not belong
to L*(R), like for example the ones involved in orthogonality corudis (4.2) of
Lemma 4.1. Indeed, if (z) € L'(R) andg(z) is bounded, then the integral in the
right side of (4.1) makes sense. The proof of Lemma 4.1 wagfgpresented in
the second part of the first lemma of the Appendix of [20]. Wavpite it here for
the convenience of the readers.

Lemma4.1l.Letl < m < N, the constants,, € R, b,, # 0, the functiondC,,(z) :
R — R do not vanish identically on the real line, such that,(z), =k, (z) €
L'(R). Then@,, < ~ if and only if the orthogonality conditions

(ICm(ZL’), 1)L2(R) =0 (42)
hold.

Proof. It can be verified using inequality (2.2) th§¢§) is bounded. Indeed, we
P — 10,

easily obtain

Kno) | 1K0()] 1
y = ICm 1 <
Db | A Varp Bl < o0
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via our conditions. Clearly, if the drift constab), here is trivial, we will be dealing
with a more singular situation. Let us express

_ _ P i
Kon(p) = Kom(0) + / d’i;;@dq, L <m<N,
0

such that
—~ —~ P dKm(q)
Km(p) _ ICm(O) 0 dq : dq
p? —ibyp P —ibnp P> —ibyp

1<m<N. (4.3)

From the definition of the standard Fourier transform (2.&)easily deduce that

dlcgzg(p) = \/%Hxlcm(l’)”Ll(R), 1<m<N.
Thus,
P Anla) g 1
| < T K@l <o 1Sms N

as assumed. By means of definition (2.1),

_ 1

Hence, the first term in the right side of (4.3) equals to
(K (), 1) 2(w)
Vv 27T(p2 - mep)’

Evidently, each quantity (4.4) is bounded if and only if aglonality conditions
(4.2) hold. [ |

1<m<N. (4.4)

Let us note that as distinct from the similar propositionhwiit a drift term given

in [35], the statement of Lemma 4.1 above uses only a singf@gonality relation
(4.2) for eachl < m < N and the argument of the proof is simpler. The argument
of [42] does not rely on the orthogonality conditions at all.
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