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Abstract: The work deals with the easily verifiable necessary conastiof the
preservation of the nonnegativity of the solutions of aaysbf parabolic equations
in the case of the double scale anomalous diffusion whenrttotidnal Laplacian
is added to the negative Laplace operator raised to anatheidnal power in the
space of two dimensions. Such necessary conditions arenesly important for
the applied analysis society because they impose the rmegdesm of the system
of equations that must be studied mathematically.
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1. Introduction

The solutions of many systems of convection-diffusiorcties equations arising
in biology, physics or engineering describe such quastagpopulation densities,
pressure or concentrations of nutrients and chemicals.céjem natural property
to require for the solutions is the nonnegativity. Modelgtttio not guarantee the
nonnegativity are not valid or break down for small valuethefsolution. In many

situations, demonstrating that a particular model failgreserve the nonnegativity
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yields the better understanding of the model and its linotet. One of the first
steps in analyzing ecological or biological or bio-meditaldels mathematically is
to test whether solutions originating from the nonnegatmgal data remain non-
negative (as long as they exist). In other words, the moddeuconsideration
ensures that the nonnegative cone is positively invariet.us recall that if the
solutions (of a given evolution PDE) corresponding to thamegative initial data
remain nonnegative as long as they exist, we say that theraystisfies the non-
negativity property.

For the scalar problems the nonnegativity property follalivectly from the max-
imum principle (see [3] and the references therein). Howewe the systems of
equations the maximum principle fails to work. In the parde case of the mono-
tone systems the situation is similar to the case of the seglaations, the sufficient
conditions for preserving the nonnegative cone can be faurjd].

The goal of the present article is to establish a simple asttiyaezerifiable criterion,
that is, the necessary condition for the nonnegativity ditsans of the systems of
nonlinear convection-double scale anomalous diffusieaetion equations relevant
to the modelling of the life sciences. We believe that it dopfovide a modeler
with a tool, which is easy to verify, to approach the issuenefpositive invariance
of the model.

Our work is devoted to the preservation of the nonnegatieftgolutions of the
following system of reaction-diffusion equations

o AA)Y (A YT P @)
Here A, is the standard Laplacian with respect to theariable, 4, T?, 1 <[ <
m are N x N matrices with constant coefficients, which is relevant te tell
population dynamics in the Mathematical Biology. We ca#iteyn (1.1) as &V, m)
one. Note that the analogical model can be used to study sackhes of science
as the Damage Mechanics, the temperature distributionénfiddynamics. In the
present article the space variableorresponds to the cell genotype/z, ¢) stands
for the cell density distributions for various groups oflseds functions of their
genotype and time,

u(z,t) = (uy(z,1), ug(, t), ..., un(z, 1))’

The fractional Laplacians in (1.1) describe a particulaecaf the anomalous dif-
fusion actively used in the context of different applicasan plasma physics and
turbulence [1], [14], surface diffusion [10], [12], semiwtuctors [13] and so on.
The anomalous diffusion can be viewed as a random procesw gidrticle mo-
tion characterized by the probability density distribatiaf the jump length. The
moments of this density distribution are finite in the cas¢hefnormal diffusion,
but this is not the case for the anomalous diffusion. The g@$gtic behavior at
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infinity of the probability density function determines thedue of the power of the
Laplacian [11]. The fractional Laplace operators involwedur system (1.1) are
defined by means of the spectral calculus. The verificatidnarhedical processes
with anomalous diffusion, transport and interaction ofcsgein the case of the one

spatial dimension with a single Laplacian raised to the pdwe s < — in the dif-

fusion term was performed in [5] (see also [7]). The simitlds in the space the of
d dimensions¢d € N, d > 2 in the situation when the diffusion term of our system
contains the sum of the standard Laplacian acting on therfirgariables and the
fractional Laplacian with respect to the remainifig m variables were exploited in
[6]. In the article [4] the authors obtain the sufficient amt@ssary conditions for
the positivity of solutions for a large class of quasi-linparabolic systems. The
positivity of solutions of systems of semi-linear parab@quations under stochas
tic perturbations was analyzed in [2]. Front propagatiabpgms with anomalous
diffusion were studied actively in recent years (see e.$), [116]). The solvability
of the single equation containing the Laplacian with drfevant to the fluid me-
chanics was treated in [18]. The existence of solutions ®fgneralized Poisson
type equation involving the sum of two distinct fractionawgers of a Schrodinger
operator with a shallow, short-range potential was disetiss [7]. The nonlo-
cal inverse problem for the space-time fractional equatlmaracterizing the double
scale anomalous diffusion was considered in [8]. For thekaity of presentation

. . . . . . 1
we will consider the case of the two spatial dimensions With s; < s, < —. Let

us assume here that (1.1) involves the square matrices hdthritries constant in
space and time

Ay =ar;, Tey=mn, 1<kj<N, =12

and that the matrixl + A* > 0 for the sake of the global well posedness of system
(1.1). HereA* denotes the adjoint of matrix. Thus, problem (1.1) can be rewritten
in the form

% = = argl(=20)" + (=A0)%Juy + ) Zv Filu) (1.2)

j=1 =1 j=1

. 1 . . . . .
with1 < k < N and0 < s; < s < —. Note that in the two dimensional situation

discussed in the present work the range of the powers of #ttidnal Laplacians
is broader than in the one dimensional case covered in [5][@hdIn our article
the interaction of species term

F(u) = (Fy(u), Fa(u), .., Fy(u))",

which can be linear or nonlinear. Let us assume its smooghinesur theorem be-
low for the sake of the well posedness of system (1.1), ajhpwe are not focused
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on the well posedness issue in the present work. We choosp#uoe dimension
d = 2, which is related to the solvability conditions for the lard?oisson type prob-
lem (3.1) stated in Lemma 3.1 below. From the perspective@bpplications, the
space dimension is not restricteddo= 2 since the space variable corresponds to
cell genotype but not to the usual physical space. Let ustdehe inner product as

(f(2), 9(x)) 22y == f( )g(x)dx (1.3)

with a slight abuse of notations when the functions involivgd..3) do not belong to
L?(R?), like for instance the one present in orthogonality condi(3.4) of Lemma
3.1 below. Indeed, iff(z) € L'(R?) andg(z) € L>*(R?), then the integral in the
right side of (1.3) is well defined. As for the vector functstheir inner product is
defined using their components as

N
(U, V) 22 mN) 1= Z Uk, Vi) [2(R2)- (1.4)
k=1

Evidently, (1.4) induces the norm

N
||u||%2(]R2,RN) = Z ||Uk||%2(R2)-
k=1

Let us use the Sobolev spaces
H*(R?) := {u(z) : R* = R | u(z) € L*(R?), (-A)*u € LQ(RQ)}, 0<s<1

equipped with the norm

||U||§{25(R2) = ||U||i2(R2) + ||(—A)SU||i2(R2)- (1.5)

By the nonnegativity of a vector function below we mean thanmegativity of the
each of its components. Our main proposition is as follows.

Theorem 1.1.Let F' : RY — RY, so thatF ¢ C!, the initial condition for system
(1.1) isu(x,0) = up(z) > 0 anduy(r) € L*(R?,RY). We also assume that the off
diagonal elements of the matrikare nonnegative, so that

akJZO, 1§]€,ZSN, k?#l (16)

Then the necessary condition for system (1.1) to have aisolutz,t) > 0 for
all t € [0,00) is that the matricesd and I, [ = 1,2 are diagonal and for all
1<kE<N

Fk(sl,...,Sk_l,O,S]H_l,...,SN) S 0 (17)
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is valid, wheres; > 0and1 <[ < N, [ # k.

Remark 1.2. If the interaction of species term is linear, namely whgm) = Lu,
whereL is a matrix with elements ;, 1 <, 7 < N constantin space and time, our
necessary condition above yields the condition that theimatmust be essentially
nonpositive, so that; ; < 0forv # 5, 1 <4,7 < N.

Remark 1.3. The proof of our theorem yields that, the necessary conditoo
preserving the nonnegative cone is carried over from the QD& spatially homo-
geneous case, as described by the ordinary differentishéopi’ (1) = —F(u)) to
the case of the double scale anomalous diffusion and thesctiwe drift term.

Remark 1.4.In the forthcoming papers we intend to treat the followirtgaiions:
a) the necessary and sufficient conditions of the preseitieyrt

b) the nonautonomous version of the present work,

c) the density-dependent diffusion matrix,

d) the effect of the delay term in the cases a), b) and c).

We turn our attention to the proof of our main result.

2. The preservation of the nonnegativity of the solu-
tion of the system of parabolic equations

Proof of Theorem 1.1We note that the maximum principle actively exploited fa th
studies of the solutions of single parabolic equations do¢spply to the systems
of such equations. Let us consider a time independent, eqntagrable vector

functionv(x) and estimate

0 _ 1) —
(_u ,v) = (IImHm u@,?) uO(x),v(x)) .

ot t
t=0 L2(R2RN) L2(R2 RN)

By virtue of the continuity of the inner product, the rightisiof the equality above
is equal to

(u(z, 1), v(@)) L2R2 V) i (uo(w), v(T)) L2(r2 &)
— My o+ .

: . (2.1)

Iimt*)O-F

We choose the initial condition for our system(xz) > 0 and the constant in time
vector functionv(z) > 0 to be orthogonal to each other I3 (R?, R™). This can be
achieved, for example for

up(x) = (U1 (), ..., Up—1(x), 0, Ugg1(2), ..., Un(2)), v;(x) =0(x)0;k. (2.2)
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Herel < j < N, ¢, stands for the Kronecker symbol and< £ < N is fixed.
Thus, the second term in (2.1) vanishes and (2.1) is equal to

Zj'vzl Sz wj (@, t)v(2)dw

>0
; =

|imt*>(]+

because of the nonnegativity of all the components;, t) andv,(z) contained in
the formula above. Hence, we derive

Z /R du;

By means of (2.2), only thé th component of the vector functiar{x) does not
vanish identically. This gives us

x)dx > 0.

/ Ous 0(x)dx > 0.
e O
t=0
By virtue of (1.2), we obtain
N 2 N aa
/‘[_ D (AT + (A (x) + > > %waf_
B2 =1 gk I=1 j=1, j#k :

B (), ooy g1 (2), 0, gyt (), oo aN(x))}@(x)dx >0,

Because the nonnegative, square integrable functioncan be chosen arbitrarily,
we have

N 2 N 8?1
Z Ak,j + (=A)%]u;(z) + Z Z ’V/lwa—x]_
i=1, j#k I=1 j=1, j#k :

—Fi(ty(x), ..., Up—1(2), 0, g1 (), ..., an () >0 a.e. (2.3)

For the purpose of the scaling, we replace alliher) by u;

—> in the inequality
g
above, where > 0 is a small parameter. This gives us
N N 2 N ]lg ‘ 821 (y)
o 5] J
Z 5281 Z 5282 u] (y) + Z Z ? 6yl
j=1, j#k j=1, j#k =1 j=1, j#k
—Fe(u1(y), -y Up—1(y), 0, Ugs1(y), ..., un(y)) >0 a.e. (2.4)

, 1 , : . . .
with 0 < s; < s3 < =. Note that the terms in the left side of inequality (2.4) eomt
the three scales with respect to our small, positive pammaetas distinct from
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the case of the single fractional Laplacian in the diffusierm discussed in [5].
Obviously, the third term in the left side of (2.4) is the leagflone as: tends to
zero. Let us choose l

i (y) = Qjuly)e” 9" i
in a neighborhood of the origin, smooth and decaying to zetioeinfinities. Here
Q;,(y) is positive and independent gf. Then the left side of (2.4) can be made
as negative as possible which will violate inequality (2 @)early, the last term in
the left side of (2.4) will remain bounded. Hence, for the measI' involved in
system (1.1), the off diagonal terms should vanish, so that

Y;=0, 1<kj<N, k+#j [=12

Thus, from (2.4) we derive

N N
ak;a j S1 ak?, ] So ~
= D0 22CA) ) - Y G287~
Jj=1, j#k =1, j#k
_Fk<ﬂ’1(y)7 "'7ak*1(y)707ak+1(y)7 77]N(y)) >0 ae. (25)

Clearly, the second term in the left side of (2.5) is the Iegdbne ag — 0. We
suppose that some of thg ; contained in the sums in the left side of (2.5) are
strictly positive. Let us choose here all the(y), 1 < 7 < N, j # k to be
identical. Consider the equation

(A (a) = By(a), 0 < <o (26)

We assume that the right side of (2.6) belong<’fo(R?). Evidently, v;(z) €
L'(R?) N L*(R?) as well. By virtue of the part 1) of Lemma 3.1 below, (2.6) has a
unique solutioni;(z) € H?*2(R?). Suppose the right side of (2.6) is nonnegative
in the wholeR?. Let us use the explicit formula from Section 5.9 of [9], satth

i) = —c [ o= o500y,

wherec,, > 0 is a constant. Thef,(z) is negative oR?, which is a contradiction
to our original assumption. Hence;,(x) has the points of negativity on the plane.
Let us recall that the negativity of the off diagonal elensesftthe matrixA is ruled
out due to assumption (1.6). By making the parametufficiently small, we can
violate the inequality in (2.5). Therefore,

a’k,jzoa 1§k7]§N7 k%]
Thus, by virtue of (2.5) we arrive at
Fr(ty(x), ..., ug—1(x), 0, dgy1(x), ..., an(z)) <0 ae.

with @;(x) > 0 andu;(x) € L*(R?*) for1 < j < N, j # k. u



3. Auxiliary results

Let us formulate the solvability conditions for the linean$son type equation with
a square integrable right side

(—=A)Yu=f(xr), z€R’ 0<s<l. (3.1)
We have the following technical statement. It can be trlyiabtained by applying

the standard Fourier transform

o) = — [ dw)emdr, peR? (3.2)

27 R2

to both sides of problem (3.1) (see Theorem 1.1 of [19], alk0])[ Let us use the
obvious upper bound

150 2 iry < 5160 vy 33)
We will present the proof below for the convenience of theleza.
Lemma 3.1.Let f(x) : R? - R, f(x) € L*(R?) ands € (0, 1).
DIfFo<s< % and in additionf(x) € L'(R?), then equation (3.1) has a unique
solutionu(z) € H*(R?).
2) If % < s < 1 and additionally|z|f(z) € L'(R?), then problem (3.1) admits a
unique solutionu(z) € H?*(R?) if and only if the orthogonality relation

(f (@), 1)12r2) = 0 (3.4)

Is valid.

Proof. Clearly, by means of norm definition (1.5) along with the sguategrability
of the right side of (3.1), it would be sufficient to demontgr¢ghe solvability of
problem (3.1) inL?(R?). Evidently, the solution:(z) € L?*(R*) will belong to
H?*(R?), 0 < s < 1as well.

Let us establish the uniqueness of solutions for equatid).(Buppose:; »(z) €

H?3(R?) both satisfy (3.1). Then their differenegx) := u(z) —us(z) € H*(R?)

solves the homogeneous equation

(—A)*w = 0.

Since the operatqr—A)* : H?*(R?) — L?*(R?) does not have any nontrivial zero
modesw(z) vanishes identically ifR?,



Let us apply the standard Fourier transform (3.2) to botesiof equation (3.1).
This gives us

~ fp J?p

u(p) = (—zzx{peu@ | Ipl<1y T (—QEX{pem@ | pl>1} (3.5)

p| p|

wherey 4 stands for the characteristic function of a de€ R?. Obviously, for all
0 < s < 1the second term in the right side of (3.5) belong€.tgR?) by virtue of
the estimate

~

|f(p)P?
R2 ‘p|4s

as assumed. To show the square integrability of the first terthe right side of

X{peR? | p|>1}dP < Hf”%m@z) <0

1 . . . .
(3.5) for0 < s < o we use inequality (3.3), which gives us

~

|f(p)?

g2 |p|**

1 (@) 171 ey
4m(1 — 2s)

X{per? | pl<13dp <

via the one of our assumptions. This completes the proof effitst part of our
lemma. To study the solvability of equation (3.1) f;org s < 1, we express

—~ ~ Pl 9F
Fio = Foy+ [ 2Ly

whered stands for the angle variable. This allows us to write the fesm in the
right side of (3.5) as

N Ip| 9F(q,0)
f(0) 0 3—qu 3.6
|p|2s X{peR? | lpl<1} + FE X{peR? | p|<1}- (3.6)
Definition (3.2) yields
ofp)| _ 1
< -~ 1 2
Sl | < 3l @,
so that
Ip| af(q,e)d
0 "og M 1 o
|p‘2qs X{peR? | p|<1}| = %HWV@)HLI(R?)@P ? X{peRr? | |p|<1} € L*(R?).

The first term in (3.6)$X{pe[@2 pl<y € L2(R?) if and only if f(0) = 0. This
P~ B

gives us orthogonality condition (3.4) in the second casauolemma. [ |
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Evidently, the left side of relation (3.4) is well defined @ndhe stated assumptions
via Lemma 4.1 of [19]. Note that for the lower values of the powf the frac-

tional Laplacian) < s < 3 under the given conditions no orthogonality relations

are required to solve the linear Poisson type problem (8.1)% (R?).
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