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Abstract: The work deals with the easily verifiable necessary conditions of the
preservation of the nonnegativity of the solutions of a system of parabolic equations
in the case of the double scale anomalous diffusion when the fractional Laplacian
is added to the negative Laplace operator raised to another fractional power in the
space of two dimensions. Such necessary conditions are extremely important for
the applied analysis society because they impose the necessary form of the system
of equations that must be studied mathematically.
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1. Introduction

The solutions of many systems of convection-diffusion-reaction equations arising
in biology, physics or engineering describe such quantities as population densities,
pressure or concentrations of nutrients and chemicals. Hence, a natural property
to require for the solutions is the nonnegativity. Models that do not guarantee the
nonnegativity are not valid or break down for small values ofthe solution. In many
situations, demonstrating that a particular model fails topreserve the nonnegativity
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yields the better understanding of the model and its limitations. One of the first
steps in analyzing ecological or biological or bio-medicalmodels mathematically is
to test whether solutions originating from the nonnegativeinitial data remain non-
negative (as long as they exist). In other words, the model under consideration
ensures that the nonnegative cone is positively invariant.Let us recall that if the
solutions (of a given evolution PDE) corresponding to the nonnegative initial data
remain nonnegative as long as they exist, we say that the system satisfies the non-
negativity property.
For the scalar problems the nonnegativity property followsdirectly from the max-
imum principle (see [3] and the references therein). However, for the systems of
equations the maximum principle fails to work. In the particular case of the mono-
tone systems the situation is similar to the case of the scalar equations, the sufficient
conditions for preserving the nonnegative cone can be foundin [3].
The goal of the present article is to establish a simple and easily verifiable criterion,
that is, the necessary condition for the nonnegativity of solutions of the systems of
nonlinear convection-double scale anomalous diffusion- reaction equations relevant
to the modelling of the life sciences. We believe that it could provide a modeler
with a tool, which is easy to verify, to approach the issue of the positive invariance
of the model.
Our work is devoted to the preservation of the nonnegativityof solutions of the
following system of reaction-diffusion equations

∂u

∂t
= −A[(−∆x)

s1 + (−∆x)
s2]u+

m∑

l=1

Γl ∂u

∂xl

− F (u). (1.1)

Here∆x is the standard Laplacian with respect to thex variable,A, Γl, 1 ≤ l ≤
m areN × N matrices with constant coefficients, which is relevant to the cell
population dynamics in the Mathematical Biology. We call system (1.1) as a(N,m)
one. Note that the analogical model can be used to study such branches of science
as the Damage Mechanics, the temperature distribution in Thermodynamics. In the
present article the space variablex corresponds to the cell genotype,uk(x, t) stands
for the cell density distributions for various groups of cells as functions of their
genotype and time,

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .

The fractional Laplacians in (1.1) describe a particular case of the anomalous dif-
fusion actively used in the context of different applications in plasma physics and
turbulence [1], [14], surface diffusion [10], [12], semiconductors [13] and so on.
The anomalous diffusion can be viewed as a random process of the particle mo-
tion characterized by the probability density distribution of the jump length. The
moments of this density distribution are finite in the case ofthe normal diffusion,
but this is not the case for the anomalous diffusion. The asymptotic behavior at
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infinity of the probability density function determines thevalue of the power of the
Laplacian [11]. The fractional Laplace operators involvedin our system (1.1) are
defined by means of the spectral calculus. The verification ofbiomedical processes
with anomalous diffusion, transport and interaction of species in the case of the one

spatial dimension with a single Laplacian raised to the power 0 < s <
1

4
in the dif-

fusion term was performed in [5] (see also [7]). The similar ideas in the space the of
d dimensions,d ∈ N, d ≥ 2 in the situation when the diffusion term of our system
contains the sum of the standard Laplacian acting on the firstm variables and the
fractional Laplacian with respect to the remainingd−m variables were exploited in
[6]. In the article [4] the authors obtain the sufficient and necessary conditions for
the positivity of solutions for a large class of quasi-linear parabolic systems. The
positivity of solutions of systems of semi-linear parabolic equations under stochas-
tic perturbations was analyzed in [2]. Front propagation problems with anomalous
diffusion were studied actively in recent years (see e.g. [15], [16]). The solvability
of the single equation containing the Laplacian with drift relevant to the fluid me-
chanics was treated in [18]. The existence of solutions of the generalized Poisson
type equation involving the sum of two distinct fractional powers of a Schrödinger
operator with a shallow, short-range potential was discussed in [7]. The nonlo-
cal inverse problem for the space-time fractional equationcharacterizing the double
scale anomalous diffusion was considered in [8]. For the simplicity of presentation

we will consider the case of the two spatial dimensions with0 < s1 < s2 <
1

2
. Let

us assume here that (1.1) involves the square matrices with the entries constant in
space and time

(A)k,j := ak,j, (Γl)k,j := γl
k,j, 1 ≤ k, j ≤ N, l = 1, 2

and that the matrixA+A∗ > 0 for the sake of the global well posedness of system
(1.1). HereA∗ denotes the adjoint of matrixA. Thus, problem (1.1) can be rewritten
in the form

∂uk

∂t
= −

N∑

j=1

ak,j[(−∆x)
s1 + (−∆x)

s2]uj +
2∑

l=1

N∑

j=1

γl
k,j

∂uj

∂xl

− Fk(u) (1.2)

with 1 ≤ k ≤ N and0 < s1 < s2 <
1

2
. Note that in the two dimensional situation

discussed in the present work the range of the powers of the fractional Laplacians
is broader than in the one dimensional case covered in [5] and[7]. In our article
the interaction of species term

F (u) = (F1(u), F2(u), ..., FN(u))
T ,

which can be linear or nonlinear. Let us assume its smoothness in our theorem be-
low for the sake of the well posedness of system (1.1), although, we are not focused
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on the well posedness issue in the present work. We choose thespace dimension
d = 2, which is related to the solvability conditions for the linear Poisson type prob-
lem (3.1) stated in Lemma 3.1 below. From the perspective of the applications, the
space dimension is not restricted tod = 2 since the space variable corresponds to
cell genotype but not to the usual physical space. Let us denote the inner product as

(f(x), g(x))L2(R2) :=

∫

R2

f(x)ḡ(x)dx, (1.3)

with a slight abuse of notations when the functions involvedin (1.3) do not belong to
L2(R2), like for instance the one present in orthogonality condition (3.4) of Lemma
3.1 below. Indeed, iff(x) ∈ L1(R2) andg(x) ∈ L∞(R2), then the integral in the
right side of (1.3) is well defined. As for the vector functions, their inner product is
defined using their components as

(u, v)L2(R2,RN ) :=
N∑

k=1

(uk, vk)L2(R2). (1.4)

Evidently, (1.4) induces the norm

‖u‖2L2(R2,RN ) =

N∑

k=1

‖uk‖
2
L2(R2).

Let us use the Sobolev spaces

H2s(R2) := {u(x) : R2 → R | u(x) ∈ L2(R2), (−∆)su ∈ L2(R2)

}
, 0 < s ≤ 1

equipped with the norm

‖u‖2H2s(R2) := ‖u‖2L2(R2) + ‖(−∆)su‖2L2(R2). (1.5)

By the nonnegativity of a vector function below we mean the nonnegativity of the
each of its components. Our main proposition is as follows.

Theorem 1.1.LetF : RN → RN , so thatF ∈ C1, the initial condition for system
(1.1) isu(x, 0) = u0(x) ≥ 0 andu0(x) ∈ L2(R2,RN). We also assume that the off
diagonal elements of the matrixA are nonnegative, so that

ak,l ≥ 0, 1 ≤ k, l ≤ N, k 6= l. (1.6)

Then the necessary condition for system (1.1) to have a solution u(x, t) ≥ 0 for
all t ∈ [0,∞) is that the matricesA and Γl, l = 1, 2 are diagonal and for all
1 ≤ k ≤ N

Fk(s1, ..., sk−1, 0, sk+1, ..., sN) ≤ 0 (1.7)

4



is valid, wheresl ≥ 0 and1 ≤ l ≤ N, l 6= k.

Remark 1.2. If the interaction of species term is linear, namely whenF (u) = Lu,
whereL is a matrix with elementsbi,j , 1 ≤ i, j ≤ N constant in space and time, our
necessary condition above yields the condition that the matrix L must be essentially
nonpositive, so thatbi,j ≤ 0 for i 6= j, 1 ≤ i, j ≤ N .

Remark 1.3. The proof of our theorem yields that, the necessary condition for
preserving the nonnegative cone is carried over from the ODE(the spatially homo-
geneous case, as described by the ordinary differential equationu′(t) = −F (u)) to
the case of the double scale anomalous diffusion and the convective drift term.

Remark 1.4. In the forthcoming papers we intend to treat the following situations:
a) the necessary and sufficient conditions of the present article,
b) the nonautonomous version of the present work,
c) the density-dependent diffusion matrix,
d) the effect of the delay term in the cases a), b) and c).

We turn our attention to the proof of our main result.

2. The preservation of the nonnegativity of the solu-
tion of the system of parabolic equations

Proof of Theorem 1.1.We note that the maximum principle actively exploited for the
studies of the solutions of single parabolic equations doesnot apply to the systems
of such equations. Let us consider a time independent, square integrable vector
functionv(x) and estimate

(
∂u

∂t

∣∣∣∣∣
t=0

, v

)

L2(R2,RN )

=

(
limt→0+

u(x, t)− u0(x)

t
, v(x)

)

L2(R2,RN )

.

By virtue of the continuity of the inner product, the right side of the equality above
is equal to

limt→0+
(u(x, t), v(x))L2(R2,RN )

t
− limt→0+

(u0(x), v(x))L2(R2,RN )

t
. (2.1)

We choose the initial condition for our systemu0(x) ≥ 0 and the constant in time
vector functionv(x) ≥ 0 to be orthogonal to each other inL2(R2,RN). This can be
achieved, for example for

u0(x) = (ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)), vj(x) = ṽ(x)δj,k. (2.2)
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Here1 ≤ j ≤ N, δj,k stands for the Kronecker symbol and1 ≤ k ≤ N is fixed.
Thus, the second term in (2.1) vanishes and (2.1) is equal to

limt→0+

∑N
j=1

∫
R2 uj(x, t)vj(x)dx

t
≥ 0

because of the nonnegativity of all the componentsuj(x, t) andvj(x) contained in
the formula above. Hence, we derive

N∑

j=1

∫

R2

∂uj

∂t

∣∣∣∣∣
t=0

vj(x)dx ≥ 0.

By means of (2.2), only thek th component of the vector functionv(x) does not
vanish identically. This gives us

∫

R2

∂uk

∂t

∣∣∣∣∣
t=0

ṽ(x)dx ≥ 0.

By virtue of (1.2), we obtain

∫

R2

[
−

N∑

j=1, j 6=k

ak,j[(−∆x)
s1 + (−∆x)

s2]ũj(x) +
2∑

l=1

N∑

j=1, j 6=k

γl
k,j

∂ũj

∂xl

−

−Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x))
]
ṽ(x)dx ≥ 0.

Because the nonnegative, square integrable functionṽ(x) can be chosen arbitrarily,
we have

−

N∑

j=1, j 6=k

ak,j[(−∆x)
s1 + (−∆x)

s2]ũj(x) +

2∑

l=1

N∑

j=1, j 6=k

γl
k,j

∂ũj

∂xl

−

−Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≥ 0 a.e. (2.3)

For the purpose of the scaling, we replace all theũj(x) by ũj

(
x

ε

)
in the inequality

above, whereε > 0 is a small parameter. This gives us

−
N∑

j=1, j 6=k

ak,j

ε2s1
(−∆y)

s1ũj(y)−
N∑

j=1, j 6=k

ak,j

ε2s2
(−∆y)

s2 ũj(y)+
2∑

l=1

N∑

j=1, j 6=k

γl
k,j

ε

∂ũj(y)

∂yl

−Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (2.4)

with 0 < s1 < s2 <
1

2
. Note that the terms in the left side of inequality (2.4) contain

the three scales with respect to our small, positive parameter ε, as distinct from
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the case of the single fractional Laplacian in the diffusionterm discussed in [5].
Obviously, the third term in the left side of (2.4) is the leading one asε tends to
zero. Let us choose

ũj(y) = Qj,l(y)e
−ylsignγ

l
k,j

in a neighborhood of the origin, smooth and decaying to zero at the infinities. Here
Qj,l(y) is positive and independent ofyl. Then the left side of (2.4) can be made
as negative as possible which will violate inequality (2.4). Clearly, the last term in
the left side of (2.4) will remain bounded. Hence, for the matricesΓl involved in
system (1.1), the off diagonal terms should vanish, so that

γl
k,j = 0, 1 ≤ k, j ≤ N, k 6= j, l = 1, 2.

Thus, from (2.4) we derive

−

N∑

j=1, j 6=k

ak,j

ε2s1
(−∆y)

s1 ũj(y)−

N∑

j=1, j 6=k

ak,j

ε2s2
(−∆y)

s2 ũj(y)−

−Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (2.5)

Clearly, the second term in the left side of (2.5) is the leading one asε → 0. We
suppose that some of theak,j contained in the sums in the left side of (2.5) are
strictly positive. Let us choose here all theũj(y), 1 ≤ j ≤ N, j 6= k to be
identical. Consider the equation

−(−∆x)
s2ũj(x) = ṽj(x), 0 < s2 <

1

2
. (2.6)

We assume that the right side of (2.6) belongs toC∞
c (R2). Evidently, ṽj(x) ∈

L1(R2) ∩ L2(R2) as well. By virtue of the part 1) of Lemma 3.1 below, (2.6) has a
unique solutioñuj(x) ∈ H2s2(R2). Suppose the right side of (2.6) is nonnegative
in the wholeR2. Let us use the explicit formula from Section 5.9 of [9], so that

ũj(x) = −cs2

∫

R2

|x− y|2s2−2ṽj(y)dy,

wherecs2 > 0 is a constant. Theñuj(x) is negative onR2, which is a contradiction
to our original assumption. Hence,ṽj(x) has the points of negativity on the plane.
Let us recall that the negativity of the off diagonal elements of the matrixA is ruled
out due to assumption (1.6). By making the parameterε sufficiently small, we can
violate the inequality in (2.5). Therefore,

ak,j = 0, 1 ≤ k, j ≤ N, k 6= j.

Thus, by virtue of (2.5) we arrive at

Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≤ 0 a.e.

with ũj(x) ≥ 0 andũj(x) ∈ L2(R2) for 1 ≤ j ≤ N, j 6= k.
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3. Auxiliary results

Let us formulate the solvability conditions for the linear Poisson type equation with
a square integrable right side

(−∆)su = f(x), x ∈ R
2, 0 < s < 1. (3.1)

We have the following technical statement. It can be trivially obtained by applying
the standard Fourier transform

φ̂(p) :=
1

2π

∫

R2

φ(x)e−ipxdx, p ∈ R
2 (3.2)

to both sides of problem (3.1) (see Theorem 1.1 of [19], also [17]). Let us use the
obvious upper bound

‖φ̂(p)‖L∞(R2) ≤
1

2π
‖φ(x)‖L1(R2). (3.3)

We will present the proof below for the convenience of the readers.

Lemma 3.1.Let f(x) : R2 → R, f(x) ∈ L2(R2) ands ∈ (0, 1).

1) If 0 < s <
1

2
and in additionf(x) ∈ L1(R2), then equation (3.1) has a unique

solutionu(x) ∈ H2s(R2).

2) If
1

2
≤ s < 1 and additionally|x|f(x) ∈ L1(R2), then problem (3.1) admits a

unique solutionu(x) ∈ H2s(R2) if and only if the orthogonality relation

(f(x), 1)L2(R2) = 0 (3.4)

is valid.

Proof.Clearly, by means of norm definition (1.5) along with the square integrability
of the right side of (3.1), it would be sufficient to demonstrate the solvability of
problem (3.1) inL2(R2). Evidently, the solutionu(x) ∈ L2(R2) will belong to
H2s(R2), 0 < s < 1 as well.
Let us establish the uniqueness of solutions for equation (3.1). Supposeu1,2(x) ∈
H2s(R2) both satisfy (3.1). Then their differencew(x) := u1(x)−u2(x) ∈ H2s(R2)
solves the homogeneous equation

(−∆)sw = 0.

Since the operator(−∆)s : H2s(R2) → L2(R2) does not have any nontrivial zero
modes,w(x) vanishes identically inR2.
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Let us apply the standard Fourier transform (3.2) to both sides of equation (3.1).
This gives us

û(p) =
f̂(p)

|p|2s
χ{p∈R2 | |p|≤1} +

f̂(p)

|p|2s
χ{p∈R2 | |p|>1}, (3.5)

whereχA stands for the characteristic function of a setA ⊆ R2. Obviously, for all
0 < s < 1 the second term in the right side of (3.5) belongs toL2(R2) by virtue of
the estimate ∫

R2

|f̂(p)|2

|p|4s
χ{p∈R2 | |p|>1}dp ≤ ‖f‖2L2(R2) < ∞

as assumed. To show the square integrability of the first termin the right side of

(3.5) for0 < s <
1

2
, we use inequality (3.3), which gives us

∫

R2

|f̂(p)|2

|p|4s
χ{p∈R2 | |p|≤1}dp ≤

‖f(x)‖2
L1(R2)

4π(1− 2s)
< ∞

via the one of our assumptions. This completes the proof of the first part of our

lemma. To study the solvability of equation (3.1) for
1

2
≤ s < 1, we express

f̂(p) = f̂(0) +

∫ |p|

0

∂f̂(q, θ)

∂q
dq,

whereθ stands for the angle variable. This allows us to write the first term in the
right side of (3.5) as

f̂(0)

|p|2s
χ{p∈R2 | |p|≤1} +

∫ |p|

0
∂f̂(q,θ)

∂q
dq

|p|2s
χ{p∈R2 | |p|≤1}. (3.6)

Definition (3.2) yields
∣∣∣∣∣
∂f̂ (p)

∂|p|

∣∣∣∣∣ ≤
1

2π
‖|x|f(x)‖L1(R2),

so that
∣∣∣∣∣

∫ |p|

0
∂f̂(q,θ)

∂q
dq

|p|2s
χ{p∈R2 | |p|≤1}

∣∣∣∣∣ ≤
1

2π
‖|x|f(x)‖L1(R2)|p|

1−2sχ{p∈R2 | |p|≤1} ∈ L2(R2).

The first term in (3.6)
f̂(0)

|p|2s
χ{p∈R2 | |p|≤1} ∈ L2(R2) if and only if f̂(0) = 0. This

gives us orthogonality condition (3.4) in the second case ofour lemma.
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Evidently, the left side of relation (3.4) is well defined under the stated assumptions
via Lemma 4.1 of [19]. Note that for the lower values of the power of the frac-

tional Laplacian0 < s <
1

2
under the given conditions no orthogonality relations

are required to solve the linear Poisson type problem (3.1) inH2s(R2).
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