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METHOD OF MONOTONE SOLUTIONS
FOR REACTION-DIFFUSION EQUATIONS

V. Volpert and V. Vougalter UDC 517.98

Abstract. Existence of solutions of reaction-diffusion systems of equations in unbounded domains
is studied by the Leray–Schauder (LS) method based on the topological degree for elliptic operators
in unbounded domains and on a priori estimates of solutions in weighted spaces. We identify some
reaction-diffusion systems for which there exist two subclasses of solutions separated in the function
space, monotone and nonmonotone solutions. A priori estimates and existence of solutions are obtained
for monotone solutions allowing to prove their existence by the LS method. Various applications of
this method are given.
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1. Introduction

In this work we present a method to study the existence of solutions of reaction-diffusion equations
in unbounded domains. Consider the system of equations

∂u

∂t
= D

∂2u

∂x2
+ F (u), (1.1)

where u = (u1, ..., un), F = (F1, ..., Fn), D is a diagonal matrix with positive diagonal elements di. A
travelling wave solution of this system is a solution u(x, t) = w(x−ct), which satisfies the second-order
equation

Dw′′ + cw′ + F (w) = 0, (1.2)

where c is an unknown constant, the wave speed, and x ∈ R. We will look for solutions with some
limits at infinity,

w(±∞) = w±, (1.3)

where F (w±) = 0. If c = 0, then we have a stationary solution of Eq. (1.1) sometimes also called a
standing wave. If, in addition, w+ = w−, then such solution is called a stationary pulse assuming that
it is not identically constant.

In studying the existence of solutions of problem (1.2), (1.3) we will use a modification of the Leray–
Schauder (LS) method. In its classical formulation [34], the LS method uses the topological degree for
elliptic problems in bounded domains and a priori estimates of solutions. If we consider unbounded
domains, then the degree construction and a priori estimates of solutions become different. We use
the degree for Fredholm and proper operators with the zero index considered in some special weighted
spaces. A priori estimates of solutions in these spaces are essentially different compared to the classical
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estimates, and in general they do not hold. We will identify some classes of elliptic problems for which
there are two types of solutions. A priori estimates are obtained only for one of these types. In order
to apply the LS method for these solutions, we show that they are separated from the other type of
solutions. Thus, this construction implies several steps presented below.

Fredholm property for linear elliptic problems. Classical results on linear elliptic problems in bounded
domains with a sufficiently smooth boundary affirm that they satisfy the Fredholm property if and only
if the ellipticity condition, proper ellipticity, and the Lopatinsky condition are satisfied [1, 2, 50, 51].
In the case of unbounded domains, one more condition on the invertibility of limiting operators should
be imposed [41–43, 57, 61]. It ensures that the essential spectrum does not cross the origin. In some
cases, the index of the operator can be calculated [17, 61]. The degree construction implies that the
essential spectrum lies in the left half-plane of the complex plane [55]. In this case the index of the
operator equals zero.

Solvability conditions can be obtained for some linear elliptic operators in unbounded domains
without Fredholm property [66, 67]. However, they can be applied to study only some special types
of nonlinear operators [68], and the degree theory does not exist in this case.

Some applications of the method of monotone solutions presented in this work concern nonlocal
and delay reaction-diffusion equations. Their investigation is based on the Fredholm property of the
corresponding elliptic problems [3, 4]. Solvability conditions for various elliptic functional differential
equations are studied in [38, 39, 44–46, 48].

Properness of elliptic problems in unbounded domains. Let us recall that the operator is called proper
on closed bounded sets if the intersection of the inverse image of any compact set with any bounded
closed set is compact. An important property of proper operators is that the set of solutions of the
operator equation (an inverse image of the set {0}) is compact. Compactness of the set of solutions
plays an important role in the degree construction.

It appears that elliptic problems in unbounded domains do not satisfy, in general, this property.
We illustrate this situation with the following example. Consider the equation w′′ + F (w) = 0 on the
whole axis, where F (w) = −w+w2. It can be easily verified that it has a positive solution w(x) with
zero limits at infinity. Since the solution is invariant with respect to translation in space, the shifted
functions w(x+ h) are also solutions of this equation for any h ∈ R. Therefore, the set of solutions is
not compact in conventional Hölder or Sobolev spaces, and the corresponding operator is not proper.

If the invariance of solutions (at infinity) is excluded, then the operators become proper [40]. How-
ever, for many elliptic problems, including those considered in this work, invariance with respect to
translation is their intrinsic property, and it cannot be excluded. It appears that elliptic operators
in unbounded domains become proper in appropriate weighted spaces [55, 61]. Consider the previous
example and the weighted Hölder space C2+α

μ (R), where the weight function μ(x) = 1 + x2 grows
at infinity, and the norm is given by the equality ‖w(· + h)‖C2+α

μ (R) = ‖w(· + h)μ‖C2+α(R). Then in

any bounded closed set D of the weighted space, there is only a finite interval of values h for which
solutions w(x+h) belong to this set (since the norm tends to infinity as |h| grows). Therefore, the set
of solutions becomes compact in D. This example illustrates why the introduction of weighted spaces
makes the operators proper. As a consequence, topological degree can be constructed in the weighted
spaces.

Topological degree for elliptic problems in unbounded domains. The Leray–Schauder degree [34] is
applicable for elliptic problems in bounded domains. Since the inverse of the Laplace operator is
compact, in this case elliptic operators are reduced to the identity operator plus a compact operator.
This construction cannot be used for elliptic operators in unbounded domains since the inverse of the
Laplace operator is not compact anymore.

Degree construction for Fredholm and proper operators with the zero index is appropriate for
elliptic problems in unbounded domains. The first degree construction for Fredholm and proper
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operators is due to Caccioppoli (see the bibliography in [37]) who defined the degree modulo 2. The
important development of this theory was due to the work by Smale [47] who generalized Sard’s lemma
for Fredholm operators and defined the degree as the number of solutions of the operator equation
f(x) = y modulo 2. For almost all y these solutions are regular and their number is finite. Based on
the results by Smale, in [20, 21], Elworthy and Tromba defined the oriented degree for Fredholm and
proper operators of the zero index with homotopy invariant modulo 2.

Degree construction for Fredholm and proper mappings in [10, 11, 16, 26–30] is based on the notions
of orientation. Another approach to define the orientation is suggested in [18, 23, 33]. Assuming that
the operator L + λI satisfies the Fredholm property for all real λ ≥ 0 and that it has only a finite
number ν of positive eigenvalues (together with their multiplicities), we can define the orientation as
(−1)ν . This construction is well adapted for elliptic boundary value problems because it is naturally
related to the spectrum of the linearized operator. Similar to other degree constructions, this one
requires a precise specification of operators and function spaces [55, 65].

Thus, the topological degree is constructed for general elliptic problems in unbounded domains in
weighted spaces [55, 61]. The application of the LS method requires a priori estimates of solutions in
these spaces.

Method of monotone solutions. A priori estimates of solutions in weighted spaces are quite different in
comparison with conventional spaces without weight. The latter are provided by certain regularity of
solutions in the case of Hölder spaces and by their decay rate at infinity in the case of Sobolev spaces.
The family of solutions w(x+h) in the example considered above is uniformly bounded in such spaces
but not in weighted spaces. Hence, the introduction of weighted spaces allows the construction of
topological degree, but it imposes some additional requirements in order to obtain a priori estimates
of solutions.

Let us illustrate the situation with the estimates of solutions in weighted spaces with the following
example. Consider the problem (1.2), (1.3) and the corresponding first-order system of equations

w′ = p, Dp′ = −cp− Fτ (w), (1.4)

which depends on parameter τ. We look for a trajectory γ connecting the stationary points (w−, 0)
and (w+, 0). If these points are hyperbolic, then in some their small neighborhoods V± the trajectory
approaches these stationary points exponentially. Hence, the solution w(x) admits a priori estimates
in weighted spaces with a polynomial weight μ(x). In order to estimate the solution on the whole axis
uniformly in τ, we need to estimate the length of the interval Lτ where the trajectory is located outside
of the neighborhoods V+ and V−. It is possible that Lτ → ∞ as τ → τ0 for some τ0 resulting in the
loss of a priori estimates. In general, Lτ is not necessarily bounded, so that a trajectory connecting
two stationary points may not exist.

It appears that there are some classes of problems for which it is possible to obtain uniform estimates
of Lτ . These estimates can be obtained only for some types of solutions and not for all solutions. This
means that there are two types of solutions, type 1 and type 2, such that if a solution belongs to a
certain type, then it cannot change during a continuous deformation. A priori estimates of the type 1
solutions (but not of the type 2 ones) allow us to apply the LS method and to prove the existence of
solutions.

The two types of solutions are monotone and nonmonotone solutions (as functions of x). There
are some classes of problems for which they are separated in the sense specified above, and monotone
solutions admit a priori estimates. In a more general setting, the type 1 solutions are not necessarily
monotone but they possess some monotonicity properties (e.g., a single maximum).

The fact that solutions can preserve their monotonicity in the process of continuous deformation
was first noticed in [32]. This method was more systematically developed in [52, 58]. Some recent
applications determine its further development. In this work we present the method and the existence
results obtained with it.
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2. Operators and Spaces

For the functional setting, let us introduce the Hölder space Ck+α(R) consisting of vector-functions
of class Ck, which are continuous and bounded on the axis R together with their derivatives of order k,
and such that the derivatives of order k satisfy the Hölder condition with the exponent α ∈ (0, 1). The
norm in this space is the usual Hölder norm. Set E1 = C2+α(R), E2 = Cα(R). Next, we introduce

the weighted spaces E1
μ and E2

μ with μ(x) =
√
1 + x2. These spaces are equipped with the norms:

‖w‖Ei
μ
= ‖wμ‖Ei , i = 1, 2.

Following [52, 58] we introduce the operators which will allow us to study travelling waves, i.e.,
solutions of problem (1.2), (1.3). Consider an infinitely differentiable vector-function η(x) such that

η(x) =

{
w−, x ≤ −1,
w+, x ≥ 1,

where w± = (v±, c±). Set w = u+ η and consider the operator

A(u) = D(u+ η)′′ + c(u+ η)′ + F (u+ η) (2.1)

acting from E1
μ into E2

μ.

Functionalization of the parameter. Solution w(x) of Eq. (1.2) is invariant with respect to translation
in space. Along with any solution w(x), the functions w(x + h) also satisfy this equation for any
real h. This property of solutions of autonomous problems on the whole axis implies the existence of
a zero eigenvalue of the linearized operator A′. Consequently, we cannot find the index of the solution
(the index is understood here as the value of the degree with respect to a small ball containing the
solution). Moreover, this family of solutions is not bounded in the weighted norm. Therefore, we
cannot apply the Leray–Schauder method to study the existence of solutions.

In order to overcome these difficulties, we introduce functionalization of the parameter c [58,
Chap. 2]. This means that instead of the unknown constant c we introduce some given functional c(w)
such that c(w(· + h)) is a monotone function of h with the values from −∞ to ∞. Hence, equation
c(w(· + h)) = c has a unique solution h for any wave speed c. Therefore, we obtain an equivalent
problem without invariance of solutions with respect to translation in space. The linearized operator
A′ does not have zero eigenvalue.

Homotopy. We consider the operator Aτ (u),

Aτ (u) = D(u+ η)′′ + c(u+ η)′ + Fτ (u+ η) (2.2)

acting from E1
μ into E2

μ and depending on parameter τ ∈ [0, 1]. We suppose that for τ = 0 we have
the original operator (2.1) and for τ = 1 some model operator for which the degree is different from 0.
The function Fτ (w) is bounded and continuous together with its second derivatives with respect to
the variables w and τ.

According to the Leray–Schauder (LS) method, we need to obtain a priori estimates of solutions
of the equation Aτ (u) = 0 independent of τ. We will use a modification of the LS method for some
subclasses of solutions.

Topological degree. The operator linearized about any function in E1
μ satisfies the Fredholm property

and has the zero index. The nonlinear operator is proper on closed bounded sets. This means that
the inverse image of a compact set is compact in any closed bounded set in E1

μ. The topological degree
can be defined for this operator. All these properties can be found in [53, 55, 58, 61, 65].
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3. Leray–Schauder Method on Subclasses of Solutions

We consider the operator equation
Aτ (u) = 0, (3.1)

where the operator Aτ (u) : E
1
μ → E2

μ is defined in Sec. 2. The homotopy is constructed in such a way
that A0(u) corresponds to the original problem (1.2), (1.3), and A1(u) to the model problem. In order
to apply the Leray–Schauder method, we need to verify two conditions: a priori estimates of solutions
of Eq. (3.1) hold in the space E1

μ, and the value of the topological degree for the model operator is
different from 0.

Suppose that the set of solutions K of Eq. (3.1) in the space E1
μ can be represented as the union of

two subsets K1 and K2 such that the following two conditions are satisfied:

(i) for any u ∈ K1 and v ∈ K2, the following estimate holds:

‖u− v‖E1
μ
≥ r (3.2)

with some positive constant r independent of u and v. We call this property separation of
solutions.

(ii) for any u ∈ K1

‖u‖E1
μ
≤ R (3.3)

with some positive constant R independent of u. This is an a priori estimate of solutions from
the first subset.

Thus, we have a priori estimates of solutions which belong to the class K1. but not of all possible
solutions. Therefore, we need to modify the Leray–Schauder method in the following way. Denote
by B a ball in the space E1

μ that contains all solutions from the class K1. Since the operator Aτ (u)
is proper [61], i.e., the inverse image of the compact set is compact in any bounded closed set, then
the set of solutions in B is compact. For each solution u ∈ K1, consider a ball br(u) of radius r and
center u. Set

Ωr =
⋃
u∈K

br(u).

Let us choose r small enough such that Ωr contains all solutions from K1 and does not contain other
solutions. Consider the topological degree γ(Aτ ,Ωr). It is well defined since Aτ (u) 
= 0 for u ∈ ∂Ωr.
We assume that the degree is different from 0 for the model problem, γ(A1,Ωr) 
= 0. Therefore,
γ(A0,Ωr) 
= 0, and the equation A0(u) = 0 has a solution in Ωr.

This approach is applicable if the conditions (i) and (ii) hold. We will present some classes of
problems for which these properties are satisfied. Namely, we will illustrate this approach with locally
monotone systems [55, 58, 62] and then we will show other examples.

3.1. Separation of solutions. The two subclasses of solutions separated in the function space
are monotone and nonmonotone solutions. We will identify some classes of equations for which the
properties (i) and (ii) hold.

Definition 3.1. System (1.2) is called locally monotone if for any i and w, equality Fi(w) = 0 implies
the inequality

∂Fi

∂wj
> 0, j = 1, ..., n, j 
= i. (3.4)

If this inequality holds for all w, then this system is called monotone.

Suppose that (i) is not valid. Then there are two sequences, ui ∈ K1 (monotone solutions) and vi ∈ K2

(nonmonotone solutions) such that ‖ui − vi‖E1
μ
→ 0 as i → ∞. We will show that this assumption

leads to a contradiction.
If condition (ii) is satisfied, then the sequence ui is bounded. From the properness of the operator

Aτ on closed bounded sets [55, 61] it follows that it has a convergent subsequence. Without loss of
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generality we can assume that ‖ui −w‖E1
μ
→ 0 for some function w ∈ E1

μ. Therefore, w
′(x) ≤ 0 for all

x ∈ R (component-wise). We show that this inequality is strict.

Lemma 3.1. Let w(x) be a solution of a locally monotone system (1.2). If w′(x) ≤ 0 for all x ∈ R

(component-wise) and w(x) 
≡ const, then w′(x) < 0.

Proof. Suppose that w′
i(x0) = 0 for some i = 1, ..., n and x0. Then w′′

i (x0) = 0. Hence, by virtue of the
ith equation of system (1.2), Fi(w(x0)) = 0. We set ui(x) = −w′

i(x) and differentiate the ith equation
of system (1.2). Then we get

diu
′′
i + cu′i +

∂Fi

∂wi
ui −

∑
j �=i

∂Fi

∂wj
w′
j = 0. (3.5)

Since ∂Fi
∂wj

> 0 (see (3.4)) and w′
j(x) ≤ 0, then

S(x0) ≡ −
∑
j �=i

∂Fi

∂wj
w′
j(x0) ≥ 0.

Assume, first, that w′
i(x) 
≡ 0 in any small interval I(x0) around x0. If we take it sufficiently

small, then S(x) ≥ 0 in I(x0) by virtue of (3.4) and the inequalities wj(x)
′ ≤ 0. Hence we obtain a

contradiction with the maximum principle for Eq. (3.5) in I(x0) since ui(x) ≥ 0 in I(x0), ui(x0) = 0,
and ui(x) 
≡ 0.

If w′
i(x) ≡ 0 in some interval I0, then we repeat the previous construction in a slightly larger interval

I and obtain a similar contradiction.

Next, we consider the sequence of nonmonotone solutions vi. For each such solution there is at
least one point xi where the derivative of one of the components of the solution vanishes. Suppose,
first, that this sequence is bounded. From the convergence ‖vi − w‖E1

μ
→ 0 as i → ∞ it follows that

the derivative of the limiting function w′(x) also vanish (for one of the components). We obtain a
contradiction with Lemma 3.1. Therefore, the sequence xi is not bounded. Without loss of generality
we can assume that xi → ∞ as i → ∞. This gives a contradiction with the following lemma.

Lemma 3.2. Let v(x) be a solution of system (1.2) such that v(x) → 0 as x → ∞. Moreover,
the matrix F ′(0) has positive off-diagonal elements and negative principal eigenvalue (i.e., with the
maximal real part). If v′(x0) < 0 (component-wise) for some x0 sufficiently large, then v′(x) < 0 for
all x ≥ x0.

Proof. Set u(x) = −v′(x) and differentiate Eq. (1.2):

Du′′ + cu′ +B(x)u = 0, (3.6)

where B(x) = F ′(v(x)), u(x0) > 0, u(x) → 0 as x → ∞. Since the matrix F ′(0) has positive off-
diagonal elements and a negative principal eigenvalue, then F ′(0)p < 0, where p is the principal
eigenvector. Therefore, we can choose x0 sufficiently large such that B(x)p < 0 for all x ≥ x0.

We need to prove that u(x) > 0 for x ≥ x0. Suppose that this is not true. If u(x) ≥ 0 for all
x ≥ x0 and uj(x1) = 0 for some j and x1, then we obtain a contradiction with the maximum principle.
Therefore, we consider the case where one of the components of the function u(x) becomes negative.
Hence there exists a positive number t such that the function û(x) = u(x) + tp satisfies the following
conditions: û ≥ 0 for all x ≥ x0, û(x0) > 0, ûj(x2) = 0 for some j and x2 > x0. It satisfies the
following equation:

Dû′′ + cû′ +B(x)û+ f(x) = 0, (3.7)

where f(x) = −tB(x)p > 0. Therefore, we obtain again a contradiction with the maximum principle.
This contradiction proves the lemma.

Thus, we have proved the following theorem.
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Theorem 3.1. Let the system
Dw′′ + cw′ + Fτ (w) = 0 (3.8)

be locally monotone, Fτ (w±) = 0 for some w±, w+ < w− (component-wise), and the matrices F ′
τ (w±)

have all eigenvalues in the left half-plane. Suppose that for any monotonically decreasing solution wm

of system (3.8) with the limits
w(±∞) = w± (3.9)

the estimate
‖wm − η‖E1

μ
≤ R (3.10)

holds with some positive constant R independent of the solution and of the value of τ ∈ [0, 1]. Then
there exists a positive constant r such that

‖wm − wn‖E1
μ
≥ r, (3.11)

where wn is any nonmonotone solution of problem (3.8), (3.9) possibly for a different value of τ and
r does not depend on solutions and on τ.

Remark 3.1. From the condition of local monotonicity it follows that the matrices F ′(w±) have
positive off-diagonal elements. Therefore, the Perron–Frobenius theorem affirms that their principal
eigenvalues are real and simple, and the corresponding eigenvectors are positive. These properties
were used in Lemma 3.2.

It is important to note that monotone systems satisfy the maximum principle but locally monotone
systems do not satisfy it. However, the property of separation of solutions remains valid for them.
Inequality (3.4) in the definition of local monotonicity can be nonstrict.

Let us also recall that the wave speed in (3.8), (3.9) can depend on parameter τ, c = cτ .

3.2. Estimates of solutions. In this section, we will obtain a priori estimates of monotone solu-
tions in weighted Hölder spaces. Since the principal eigenvalues of the matrices F ′

τ (w±) are negative,
then the solutions converge to their limiting values at infinity exponentially. In other words, the
following estimates hold:

|wm(x)− η(x)| ≤ K1e
−μ0x, x ≥ N+, |wm(x)− η(x)| ≤ K1e

μ0x, x ≤ N− (3.12)

with some positive constants K1 and μ0 independent of a monotone solution wm and the value of τ.
On the contrary, the values N+ and N− can depend on the solution. They are chosen in such a way
that

|wm(x)− η(x)| ≤ ε, x ≥ N+, |wm(x)− η(x)| ≤ ε, x ≤ N−
for some small positive ε. This means that estimates (3.12) hold in some neighborhoods of the points
w± in R

n (w-space). This property follows from the classical results on behavior of solutions of the
corresponding first-order ordinary differential system of equations in the vicinity of stationary points.

Since the weight function μ(x) has polynomial growth at infinity, then we obtain the estimate

|(wm(x)− η(x))μ(x)| ≤ K2 (3.13)

for x ≥ N+ and x ≤ N−. If N+ and N− are uniformly bounded for all solutions, then the last estimate
obviously holds for all x ∈ R.

Let us consider the case where these values are not uniformly bounded. Suppose that N i
+ → ∞

for some sequence of solutions wi, and N i− remains bounded. Consider the shifted functions vi(x) =

wi(x − N i
+). We have the equality |vi(0) − ν(0)| = ε. We can choose a subsequence of the sequence

vi(x) locally converging to some limiting function v0(x). It is a solution of system (3.8) for some τ, it
is monotonically decreasing, and |v0(0) − ν(0)| = ε. Hence v0(x) → w+ as x → ∞, and there exists
a limit v∗ = v0(−∞). Clearly, F (v∗) = 0. Since N i

+ − N i
i → ∞, then |v∗ − w−| ≥ ε. Thus, we have

constructed a solution with the limits

v0(−∞) = v∗, v0(∞) = w+, v∗ 
= w±. (3.14)
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Similarly, for the shifted functions ui(x) = wi(x − N i−) we obtain a limiting solution u0(x) with the
limits

u0(−∞) = w−, u0(∞) = v∗, v∗ 
= w±. (3.15)

We can now prove the following theorem.

Theorem 3.2. Let the system (3.8) be locally monotone, Fτ (w±) = 0 for some w±, w+ < w−, and
the matrices F ′

τ (w±) have all eigenvalues in the left half-plane. Suppose that for any other zero w0 of
the function F (w) such that w+ ≤ w0 ≤ w−, the principal eigenvalue of the matrix F ′(w0) is positive.
Then the estimate

sup
x

|(wm(x)− η(x))μ(x)| ≤ K (3.16)

holds for any monotonically decreasing solution wm(x) of problem (3.8), (3.9) with a constant K
independent of solution.

Proof. Suppose that the assertion of the theorem does not hold. Then, as is shown above, the values
N± in (3.12) are not uniformly bounded. Suppose that there is a sequence of solutions wi for which
N i

+ → ∞ as i → ∞, and N i− remain bounded. Then there are solutions v0(x) with limits (3.14) and

u0(x) with limits (3.15). The existence of the former implies that c < 0 and of the latter that c > 0
( [52] and [58, Lemma 2.8, Chap. 3, p. 165]). This contradiction proves that the assumption on N±
cannot hold.

Similarly, we can consider the case where N i− tends to −∞ and N i
+ remains bounded, or both of

them are unbounded. Since the solutions are invariant with respect to translation in space, all these
cases can be reduced to the case where the values N i− are bounded. The shift remains bounded due
to a priori estimates of the wave speed [52, 58].

Corollary 3.1. Let u = wm − η, where wm is a monotone solution of problem (3.8), (3.9). Then
‖u‖E1

μ
≤ K, where the positive constant K does not depend on the solution.

Thus, we obtain a priori estimates of monotone solutions.

4. Existence of Pulses and Waves

In this section, we will review the results on the existence of solutions obtained by the method
presented above. We begin with the scalar equation for which the existence of solutions can be studied
by elementary methods and which allows us to explain the interconnection between the existence of
waves and pulses. Some of these results can be generalized by the method of monotone solutions for
the systems of equations.

4.1. Pulses and waves for the scalar equation. Consider the problem

w′′ + cw′ + F (w) = 0, w(±∞) = w±, (4.1)

where w(x) is a scalar function, c is a constant, the wave speed, the function F (w) is bounded and
continuous together with its second derivatives, F (w±) = 0, and F ′(w±) < 0. Solutions of this problem
are called travelling waves.

Theorem 4.1. Suppose that F (w) < 0 for w+ < w < w0 and F (w) > 0 for w0 < w < w−. Then
problem (4.1) has a solution w(x) for a unique value of c. It is monotonically decreasing, and c � 0 if

and only if
w−∫
w+

F (w)dw � 0.

Proof. The proof of the existence of solutions follows from the elementary phase plane analysis of the
first-order system of equations

w′ = p, p′ = −cp− F (w)
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equivalent to Eq. (4.1) (see, e.g., [58]). The sign of the wave speed can be determined if we multiply
Eq. (4.1) and integrate over the whole axis.

Next, consider the problem
w′′ + F (w) = 0, w(±∞) = w+, (4.2)

similar to (4.1) with c = 0 and with equal limits at infinity. Nontrivial solutions of this problem are
called pulses.

Theorem 4.2. Suppose that F (w) < 0 for w+ < w < w0 and F (w) > 0 for w0 < w < w−. Then

problem (4.2) has a pulse solution w(x) > w+ if and only if
w−∫
w+

F (w)dw > 0.

The proof of this theorem can be done by an explicit construction of solution of the corresponding
first-order system.

Corollary 4.1. The pulse, i.e., the solution of problem (4.2) with w > w+, exists if and only if the
wave, i.e., the solution of problem (4.1), has a positive speed.

4.2. Monotone and locally monotone systems. The existence results formulated above for the
scalar equation can be generalized (with some restrictions) for locally monotone systems.

Theorem 4.3. Let system (1.2) be locally monotone, F (w±) = 0 for some w±, w+ < w−, and the
matrices F ′(w±) have all eigenvalues in the left half-plane. Suppose that for any other zero w0 of the
function F (w) such that w+ ≤ w0 ≤ w−, the principal eigenvalue of the matrix F ′(w0) is positive.
Then there exists a monotonically decreasing solution of problem (1.2), (1.3) for some values of c. If
the system is monotone, then such value of c is unique.

The proof of this theorem is based on the method of monotone solutions presented above. The
model system and the homotopy can be found in [52, 58]. Theorem 4.2 on the existence of pulses is
generalized for monotone systems of two equations [35, 36]:

Theorem 4.4. Let the system
Dw′′ + F (w) = 0, (4.3)

where w = (w1, w2), F = (F1, F2), be monotone, F (w±) = 0, and the principal eigenvalues of the
matrices F ′(w±) be negative. There is a single zero w0 of the function F such that w+ ≤ w0 ≤ w−,
and the principal eigenvalues of the matrices F ′(w±) are positive. Moreover, suppose that F1(w) = 0
(F2(w) = 0) if and only if w1 = f1(w2) (w2 = f2(w1)), where f ′

i(s) > 0, i = 1, 2. Then there exists a
solution w(x) of system (4.3) with the limits w(±∞) = w+, w(x) > w+ for x ∈ R if and only if the
wave speed (Theorem 4.3) is positive.

Thus, the existence of pulses is proved only for the system of two equations under some additional
conditions. The difficulty in proving a similar result for general monotone systems, and also for locally
monotone systems, consists in the choice of model problem and in the construction of the homotopy
with a priori estimates of solutions. Existence of pulses is also proved for a nonautonomous scalar
equation [22] and for the system of equations describing blood coagulation [31].

The system of competition of species. The system of competition of species is a system of two equations
where

F1(w1, w2) = w1(1− w1 − aw2), F2(w1, w2) = w2(1− bw1 − w2).

It provides a good example for the illustration of the existence of waves and pulses. The function
F (w) has up to four nonnegative zeros, P0 = (0, 0), P1 = (1, 0), P2 = (0, 1), P3 = (w0

1, w
0
2), where the

values w0
1, w

0
2 are determined as a solution of the system of equations w1 + aw2 = 1, bw1 + w2 = 1.

The point P0 is unstable, and the points P1 and P2 are stable if a > 1 and b > 1. In this case the
point P3 is unstable. We set w+ = P1, w− = P2.
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The off-diagonal elements of the matrix F ′(w) are negative. The system can be reduced to the
monotone system by the change of variables u1 = w1, u2 = 1−w2. Existence of waves and pulses follows
from Theorems 4.3 and 4.4 with some additional technical details which can be found in [52, 58].

If we consider a more general nonlinearity

F1(w1, w2) = w1φ1(w1, w2)(1− w1 − aw2), F2(w1, w2) = w2φ2(w1, w2)(1− bw1 − w2)

with some positive and sufficiently smooth functions φi(w1, w2), i = 1, 2, then this system remains
locally monotone after the change of variables, but it is not a monotone system. We still have the
existence of waves from Theorem 4.3, but Theorem 4.4 is not applicable, and the existence of pulses
is not proved.

A similar system of three or more equations can be reduced to a monotone system under some
additional conditions. Consider, e.g., the system of three equations with the nonlinearity

F1(w) = w1(1− w1 − a2w2 + a3w3), F2(w) = w2(1− b1w1 − w2 − b3w3), (4.4)

F3(w) = w3(1 + c1w1 − c2w2 − w3),

where w = (w1, w2, w3), and ai, bi, ci are some positive constants. After the change of variables
u1 = w1, u2 = 1− w2, u3 = w3 we get the system

Du′′ + cu′ +G(u) = 0, (4.5)

where
G1(u) = u1(1− u1 − a2(1− u2) + a3u3), G2(u) = (1− u2)(b1u1 − u2 + b3u3),

G3(u) = u3(1 + c1u1 − c2(1− u2)− u3).

This system satisfies the monotonicity condition for u1, u3 > 0, u2 < 1. We consider the points w+ =
(0, 0, 0) and w− = (w0

1, w
0
2 , w

0
3), where w0

1, w0
2, w

0
3 is a solution of the linear algebraic system of

equations Au = q, where

A =

⎛
⎝ −1 a2 a3

b1 −1 b3
c1 c2 −1

⎞
⎠ , q =

⎛
⎝ 1− a2

0
1− c2

⎞
⎠ .

It can be verified that the point w+ is stable if a2 > 1, c2 > 1. If the principal eigenvalue of the matrix
A is negative, then w− is positive and also stable. In this case, the existence of waves follows from
Theorem 4.3. However, we cannot state the existence of pulses since Theorem 4.4 is applicable only
for two equations. The form of nonlinearity (4.4) implies that the first and the third species are in
cooperation, and each of them is in competition with the second species.

4.3. Multidimensional equations and systems. If we consider wave propagation in unbounded
cylinders, then instead of Eq. (1.2) we have the equation

DΔw + c
∂w

∂x1
+ F (w, x′) = 0, (4.6)

where x1 is the variable along the axis of the cylinder, and x′ is the variable in the cross-section.
This equation is completed by Dirichlet or Neumann conditions at the boundary of the cylinder. The
problem in the cross-section of the cylinder,

DΔ′w + F (w, x′) = 0, (4.7)

is assumed to have two solutions w±(x′) for which the corresponding linearized operator has all eigen-
values in the left half-plane. Then we have the bistable case and we look for a solution of Eq. (4.6)
with the limits

lim
x1→±∞w(x) = w±(x′). (4.8)

In the multidimensional case, separation of solutions can be done for the monotone systems but not
for the locally monotone systems. Therefore, the existence of waves is proved for the scalar equations
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and for the monotone systems [54]. The problems with nonlinear boundary conditions arising in some
biomedical applications are studied in [5, 8, 9].

4.4. Nonlocal and delay equations. In this section, we present the existence results for nonlocal
and delay reaction-diffusion equations obtained by the method of monotone solutions. It is similar to
the approach described above for the locally monotone systems though some technical details can be
different.

4.4.1. Nonlocal equations. In order to introduce nonlocal equations, let us consider the scalar equa-
tion (1.1) with a particular form of the nonlinearity

F (u) = u2(1− au)− σu. (4.9)

In population dynamics, the first term on the right-hand side corresponds to sexual reproduction of
the population and the second term to its mortality. The function F (u) can have from one to three
nonnegative zeros. In the latter case, the results of Sec. 4.1 are applicable to it. The reproduction
term is proportional to available resources (1 − au), where the linear term describes consumption of
resources. In the case of nonlocal or global consumption of resources, instead of (4.9) we have

F (u, I(u)) = u2(1− aI(u))− σu, (4.10)

where

I(u) =

∞∫
−∞

φ(x− u)u(y, t)dy,

φ(x) has a finite support (nonlocal consumption), or φ(x) ≡ 1 (global consumption) [14]. Consider,
e.g., φ(x) = ψ(x)/(2N), where

ψ(x) =

{
1 , |x| ≤ N
0 , |x| > N

.

In the limit of small N, nonlocal consumption (4.10) is formally reduced to local consumption (4.9).
Existence of waves and pulses can be proved for small N by perturbation methods [69]. If φ(x) ≡ ψ(x),
then in the limit of large N (φ(x) ≡ 1), waves do not exist, and the existence of pulses can be
easily verified analytically. This allows us to prove their existence for sufficiently large N. Transition
between waves for small N and pulses for large N occurs through the periodic waves and nonlocal
bifurcations [63].

System with global consumption. The system of two equations with global consumption in the station-
ary case has the form

d1u
′′ + uv(1 − aI(u)− bI(v)) = 0, d2v

′′ + uv(1− cI(u)− dI(v)) = 0. (4.11)

The existence of pulses, i.e., positive solutions of this system with zero limits at infinity, is proved by
the method of monotone solutions [64]. If the coefficients in the two equations are equal to each other,
then system (4.11) can be reduced to a single equation (cf. (4.10)), where the existence of pulses is
obvious. If the coefficients are different, the proof of the existence becomes much more involved and
requires some sophisticated a priori estimates.

Scalar equation with nonlocal reproduction. Let us now consider another generalization of (4.9),

F (u, I(u)) = uI(u)(1 − au)− σu, (4.12)

where the kernel of the integral I(u) is a nonnegative function with a finite support. In this case the
method of monotone solutions is applicable, and the existence of waves is proved in [7, 19].
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4.4.2. Delay equation. The delay reaction-diffusion equation

∂u

∂t
= D

∂2u

∂x2
+ F (u, uτ ), (4.13)

where uτ (x, t) = u(x, t− τ), the function

F (u, uτ ) = u(1− u)− f(uτ )u

describes the propagation of viral infection in the tissue [15]. The first term in the nonlinearity
describes its reproduction, and the second one its mortality due to the immune response. The density
of immune cells f(uτ ) is determined by the virus concentration at time t− τ.

The travelling wave solution, u(x, t) = w(x− ct), satisfies the second-order delay equation

Dw′′ + cw′ + w(1− w − f(w(x+ cτ))) = 0. (4.14)

The unknown constant c, the wave speed, is involved in the nonlinear term due to time delay in the
equation. If f(u) is a monotonically decreasing function, then the maximum principle is applicable
to this equation, and it can be used in the proof of wave existence. However, if this function is not
decreasing, and this is the case of the model of immune response, then this approach cannot be used.
The existence of waves is proved by the method of monotone solutions [49].

5. Discussion

Bistability and essential spectrum. The construction of the topological degree implies that the essential
spectrum lies in the left half-plane of the complex plane. Therefore, we need to assume that the
matrices F ′(w±) have all eigenvalues with negative real parts. This is the so-called bistable case. In
the monostable case, one of them has eigenvalues with a positive real part. The essential spectrum is
partially in the right half-plane, and the same degree construction cannot be employed. The degree
can be defined in the monostable case by the introduction of an exponential weight that moves the
essential spectrum to the left half-plane. This approach was not used to investigate the existence of
waves.

Let us also note that in the bistable case the wave is unique or it form a discrete set of solutions.
In the monostable case, there are continuous families of solutions. This is related to the index of the
corresponding operators.

Other approaches to prove the existence of waves. The method presented here uses the topological
degree for elliptic operators in unbounded domains. It implies the degree construction and a priori
estimates of solutions in appropriate weighted spaces. Another approach to prove the existence of
travelling waves for the scalar reaction-diffusion equation is developed in [12, 13]. In order to prove
the existence of solutions in an unbounded cylinder, first, it is proved for a bounded part of the cylinder
using the LS degree. Uniform estimates of solutions allow passage to the limit as this bounded part
of the cylinder tends to infinity.

Systems of waves. The results on the existence of waves presented above are obtained under the
assumption that all zeros of the vector-function F (w) in the rectangle w+ ≤ w ≤ w− are unstable,
except for w+ and w−. Suppose now that there is a stable zero w0, w+ < w0 < w−. Then, according
to Theorem 4.3, there exists a [w+, w

0]-wave and a [w0, w−]-wave, i.e., the waves with the limits
w(∞) = w+, w(−∞) = w0 and w(∞) = w0, w(−∞) = w−, respectively. Denote their speeds by c+
and c−. Then the [w+, w−]-wave exists if and only if c− > c+. This result is obtained for the scalar
equation [24, 25, 59, 60] and for monotone systems [62]. If c− ≤ c+, then this common wave does not
exist, and there are two waves propagating one after another with different speeds.
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Limitations and further developments. The method of monotone solutions is based on two properties:
separation of monotone and nonmonotone solutions and on a priori estimates of monotone solutions.
These properties can be proved for some particular classes of problems, and they do not hold in
general. Other methods to prove the existence of waves and pulses are also developed only for some
particular models. The method of monotone solutions is applicable in particular for monotone and
locally monotone systems which have numerous applications. Some of them are presented in this work,
others can be found in [58, 62]. There are some recent applications for the delay equation without the
maximum principle [49].
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