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gence inL%(RY) of their right sides yields the existence and the convergeénc
H?3(RY) of the solutions. In the first part of the article the problesntains the sum
of the two negative Laplacians raised to two distinct fiacél powers. In the sec-
ond part we generalize the results obtained by incorpayatishallow, short-range
potential into the equation and we use the methods of thergpend scattering
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1. Introduction

Consider the equation
(—A+V(x))u—au=f, (1.1)

whereu € £ = H?(RY) andf € F = L*(RY), d € N, a is a constant andl ()

Is a function decaying t0 at infinity. If « > 0, then the essential spectrum of the
operatorA : £ — F corresponding to the left side of equation (1.1) contaies th
origin. Consequently, such operator fails to satisfy treRolm property. Its image
Is not closed, forl > 1 the dimension of its kernel and the codimension of its image
are not finite. The present article is devoted to the studiegain properties of
the sums of the operators of this kind raised to fractionalgys. Let us recall that
elliptic equations with non-Fredholm operators were dagxtensively in recent
years (see [9], [21], [24], [25], [22], [26], [27], [28], [32also [5]) along with
their potential applications to the theory of reactiorfttifon equations (see [7],
[8]). In the particular situation whem = 0 the operatotrd satisfies the Fredholm



property in certain properly chosen weighted spaces (skd4[l [3], [4], [5]).
However, the case with # 0 is considerably different and the method developed
in these works cannot be applied.

One of the important questions concerning the equations mon-Fredholm
operators is their solvability. Let us address it in thedwling setting. Letf,, be a
sequence of functions in the image of the operatpso thatf,, — f in L*(R?) as
n — oo. We denote by, a sequence of functions froft?(R?) such that

Au, = fn, n € N.

Since the operato fails to satisfy the Fredholm property, the sequemgcenay not
be convergent. Let us call a sequengeso thatAu,, — f a solution in the sense of
sequences of probleru = f (see [20]). If such sequence converges to a function
uo in the norm of the spacg, thenw, is a solution of this equation. The solution
in the sense of sequences is equivalent in this sense toulésmution. However,
in the case of the non-Fredholm operators, this convergeragenot hold or it can
occur in some weaker sense. In such case, the solution iretise ©f sequences
may not imply the existence of the usual solution. In the gmésvork we will find
sufficient conditions of equivalence of solutions in thessenf sequences and the
usual solutions. In the other words, the conditions on tiyeisecesf,, under which
the corresponding sequences are strongly convergent. The solvability in the
sense of sequences for the equations involving the secalat differential non-
Fredholm operators raised to fractional powers was studie[B2]. The present
article our modest attempt to generalize such results biyndeaith the solvability
of the generalized Poisson type equations containing in léfé sides the sums of
such second order differential operators without Fredhmioperty raised to the two
distinct fractional powers, which is relevant to the untsamding of thedouble scale
anomalous diffusioifsee e.g. [11]). Note that a fractional power of the negative
Laplacian or a Schrodinger type operator be defined viagbetsal calculus.

Let us first consider the problem

[(—A) + (=A)2|lu= f(z), z€RY deN, 0<s <sy<1 (L2)

with a square integrable right side. The operdteA)® is actively used, for exam-
ple in the studies of the anomalous diffusion problems (sge §9], [30], [32]
and the references therein). The probabilistic realipatidhe anomalous diffusion
was discussed in [17]. The equation analogous to (1.2) khtthve single standard
Laplace operator in the context of the solvability in thesseof sequences was stud-

ied in [23]. The situation when the power of the single negatiaplacians = -

was considered recently in [31]. The article [15] is devatedhe establishing
of the imbedding theorems and the studies of the spectrunteftain pseudodif-
ferential operator. The form boundedness criterion forrédativistic Schrodinger
operator was proved in [16]. Clearly, for the operator inlgfeside of our equation
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(1.2)
L= (—A)* + (=A)* : H**(R?) — L*(R?)

the essential spectrum fills the semi-akis o), so that its inverse froni?(R<) to
H?32(R%) is not bounded.

We write down the corresponding sequence of the approxiegiations with
n € Nas

[(=A)* + (=A)2u, = fo(x), z€RY deN, 0<s <sy;<1 (1.3)

with the right sides converging to the right side of (1.2)i{R¢) asn — co. The
inner product of two functions

() gt = [ Fe)gla)ds (14

with a slight abuse of notations when these functions aresguoare integrable.
Indeed, if f(x) € LY(R?) andg(x) € L*(R?), then obviously the integral in
the right side of (1.4) makes sense, like for example in tleesaf the functions
involved in the orthogonality conditions of our Theorem#olae We use the space
H?$(R%) equipped with the norm

ullFrze ey = lullZogay + [(=A)ulf2ge, 0<s<L. (1.5)
First of all, we formulate the solvability conditions forfion (1.2).

Theorem L.1.Letf(z) :R? - R, d € N, f(z) € L*(R?) and0 < s < 55 < 1.
a) Letd = 1. If s; € <0, i) and in additionf(z) € L'(R), then problem (1.2)
admits a unique solution(x) € H*2(R).
Suppose that; € E, Z) and in additionzf(z) € L'(R). Then equation (1.2)
possesses a unique solutiofx) € H?2(R) if and only if the orthogonality condi-
tion

(f(2), )2 =0 (1.6)
is valid.
Suppose that;, € E,l) and additionallyz? f(z) € L'(R). Then problem (1.2)
admits a unique solutiom(z) € H?(R) if and only if orthogonality relations
(1.6) and

(f(z),2) 2@ =0 (1.7)
hold.
b) Letd = 2. Then whers; € (0, %) and additionallyf(z) € L'(R?), problem

(1.2) has a unique solutiom(z) € H?**(R?).



Suppose that; € [%, 1) and in additionz f(z) € L'(R?). Then problem (1.2)
admits a unique solution(z) € H?2(R?) if and only if the orthogonality condition

(f(2), 1) r2e2) = 0 (1.8)
is valid.
Cc) Letd = 3. If s; € (0, Z) and in additionf(z) € L'(R?), then equation (1.2)
possesses a unique solutiofxr) € H>2(R3).
Suppose that; € E,l) and additionallyz f(z) € L'(R3). Then problem (1.2)

possesses a unique solutiofr) € H?*2(R?) if and only if the orthogonality rela-
tion

(f(x), 1) r2msy =0 (1.9)
is valid.
d) If d > 4 with s; € (0,1) and in additionf(z) € L'(R%), then equation (1.2)
admits a unique solution(z) € H?*2(R?).

Let us turn our attention to the issue of the solvability ia #ense of sequences
for our equation.

Theorem 1.2.Letn € Nand f,(z) : R? — R, f,(z) € L*(RY), d € N, so that
fo(z) = f(x)in L2(RY) asn — oo.
a) Letd = 1. If s; € (0,%) and in additionf,(z) € L'(R), n € N, so that

fo(x) — f(x)in LY(R) asn — oo, then problems (1.2) and (1.3) have unique
solutionsu(z) € H*2(R) andu,(z) € H*2(R) respectively, so that, (z) — u(x)
in H22(R) asn — oo.

Suppose that; € [i&) Let in additionzf,(z) € L'(R), n € N, so that
zf.(z) — xf(x)in LY(R) asn — oo and the orthogonality relations

(fa(2), D) 12@) =0 (1.10)

are valid for alln € N. Then problems (1.2) and (1.3) have unique solutions
u(x) € H*2(R) and u,(z) € H*2(R) respectively, so that,(r) — u(z) in
H?*2(R) asn — oo.

Suppose that; € E,l). Let in additionz?f,,(z) € L'(R), n € N, so that
2?2 f.(x) — 2> f(z) in L'(R) asn — oo and the orthogonality relations

(fn(x)v 1)L2(R) = 07 (fn(x)v x)LQ(R) =0 (111)

are valid for alln € N. Then problems (1.2) and (1.3) possess unique solutions
u(r) € H*2(R) andu,(z) € H*2(R) respectively, so that,,(x) — u(z) in
H?*2(R) asn — oo.



b) Letd = 2. If s, € (o%) and additionallyf,(z) € L'(R?), n € N, so that
fn(z) = f(z)in LY(R?) asn — oo, then problems (1.2) and (1.3) admit unique
solutionsu(z) € H??(R?) andu,(r) € H*2(R?) respectively, so that,(z) —
u(x) in H*2(R?) asn — oo.

1
Suppose that; € [5,1>. Let in additionzf,(z) € L'Y(R?), n € N, so that
zfo(z) = zf(x)in L'(R?*) asn — oo and the orthogonality conditions

(fa(z), D) r2@e) =0 (1.12)

are valid for alln € N. Then problems (1.2) and (1.3) have unique solutions
u(xr) € H*2(R?) andu,(z) € H?*2(R?) respectively, so that,(x) — u(x) in
H?2(R?) asn — oo.

c) Letd = 3. Suppose that;, € (0, Z) and additionallyf,,(z) € L'(R3), n € N,

so thatf,,(x) — f(x)in L'(R3) asn — oo. Then equations (1.2) and (1.3) admit
unique solutionsu(x) € H?2(R3) and u,(z) € H*?(R3) respectively, so that
un(z) = u(z) in H*2(R3) asn — oc.

Suppose that; € E,l). Let in additionzf,(z) € L'Y(R?), n € N, so that
zfo(z) = zf(x)in L'(R?) asn — oo and the orthogonality conditions

(fn(2), 1) 2msy =0 (1.13)

are valid for alln € N. Then equations (1.2) and (1.3) possess unique solutions
u(xr) € H*2(R?) andu,(z) € H*2(R?) respectively, so that,(x) — u(x) in
H?2(R3) asn — oo.

d) Letd > 4 with s, € (0,1) and additionallyf, () € L'*(R?), n € N, so that
fn(z) = f(x)in LY(R?) asn — co. Then problems (1.2) and (1.3) admit unique
solutionsu(z) € H*2(R?) andu,(z) € H?*2(R?) respectively, so that, (z) —

u(x) in H?2(R4) asn — oo,

Note that in the theorems above each of the ca$esd) contains the situation
when the orthogonality relations are not required.
Let us use the hat symbol to denote the standard Fouriefdrams

f(p) = F f(z)e Pdz, peR? deN, (1.14)

Rd

so that the inequality

1 ()] oo ety

_ L1 () 1.15
( ) 1f (@)l 1 (1.15)

holds. The second part of the article is devoted to the sumfiehe equation

{[—A+V(:c)]sl+[—A+V(x)]32}u =f(r), z€R’ 0<s <sy<1 (1.16)
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with a square integrable right side. The corresponding esecgl of approximate
equations for, € N will be

{[—A F V()] + A+ V(:c)]sz}un — fulz), zeR? (1.17)

with 0 < s; < s, < 1. Their square integrable right sides converge to the riglet s
of (1.16) inL?(R3) asn — oo. We make the following technical assumptions on the
scalar potential involved in the problems above. Note thatconditions oV (z),
which is shallow and short-range will be analogous to thagergin Assumption
1.1 of [25] (see also [24], [26]). The essential spectrumumihsa Schrodinger
operator—A + V (z) fills the nonnegative semi-axis (see e.g. [12]).

Assumption 1.3.The potential functio' (z) : R? — R satisfies the estimate
C
Vi) L ——=—
| ( )‘ — 1+ |x|3.5+5
with some) > 0 andx = (1, 22, x3) € R3 a.e. such that

19 _2 1 8
49§(47r) 3||V||EW(R3)||V||2%(R3) <1 and ‘/CHLSHVHL%(R:a) <4r. (1.18)

Here C' denotes a finite positive constant ang,s given on p.98 of [14] is the
constant in the Hardy-LittIewood-SoboIev inequality

(v) 3 3
——Cdxdy| < e L2(R?).
‘/R?) R3 |x—y\2 e CHLSHfl”LQ(RS) h (R)

By means of Lemma 2.3 of [25], under Assumption 1.3 above enpibtential
function, the operator A + V' (z) on L?*(RR?) is self-adjoint and unitarily equivalent

to —A via the wave operators (see [13], [19])
Q:I: — g — ”mt_):Fooeit(—A—i—V)eitA’

where the limit is understood in the strond sense (see e.g. [18] p.34, [6] p.90).
Therefore, the operator

L=[-A4+V(@)]" +[-A+V(x)]™ (1.19)

in the left sides of equations (1.16) and (1.17) consideref’¢R?) defined via the
spectral calculus has only the essential spectrum

Oess(L) = [0, 00)

and no nontrivialZL?(R?) eigenfunctions. By virtue of the spectral theorem, its
functions of the continuous spectrum satisfy

Low(x) = (|k[* + [k]**)or(z), &k €R, (1.20)
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in the integral formulation the Lippmann-Schwinger eqoiatfor the perturbed
plane waves (see e.g. [18] p.98)

B etk 1 6i\l<:||mfy| v J 101
o) = ooy g [ Ty Ve (1.21)

and the orthogonality conditions

(or(a), 0q(@))2rey = 0(k — q), k,q € R, (1.22)

In particular, when the vectdr = 0, we havey,(z). We denote the generalized
Fourier transform with respect to these functions usingitle symbol as

fk) = (f(x),01(2)) 12ms), k € R, (1.23)

(1.23) is a unitary transform oh?(R?). The integral operator involved in (1.21) is
being designated as

1 etlkllz—yl

(Qp)(x) := (Ve)(y)dy, » € L*(R%).

R rs [T — Y
We consideQ : L>*(R?) — L*>(R?). Under Assumption 1.3, via Lemma 2.1 of
[25] the operator nornfj@||.. is bounded above by the expressitiy’), which is
the left side of the first inequality in (1.18), so thal”) < 1. Corollary 2.2 of [25]
under our conditions yields the bound

(k)] < 1 ()] 22 (rs)- (1.24)

1 1
@mil—1(V)
Our result concerning the solvability of problem (1.16)sdallows.

Theorem 1.4.Let Assumption 1.3 hold, the powérs< s; < s, < 1 and f(x) €
L2(R?).

1) Lets; € (0, Z) and additionallyf(z) € L'(R?®). Then equation (1.16) has a
unique solutionu(x) € L*(R3).

2) Lets; € E, 1) and in additionz f () € L'(R?). Then problem (1.16) possesses
a unique solutioni(z) € L*(R?) if and only if the orthogonality relation

(f(z), o)) 2msy = 0 (1.25)
holds.

Our final main result is devoted to the solvability in the sen§sequences of
equation (1.16).



Theorem 1.5. Let Assumption 1.3 hold, € N, the powers) < s; < s, < 1 and
fn(z) € L*(R?), such thatf,, () — f(z) in L*(R?) asn — cc.

1)Ifs, € (o, %) and additionallyf, () € L(R?), n € N, suchthatf, () — f()

in L'(R?) asn — oo, then equations (1.16) and (1.17) admit unique solutions
u(xr) € L*(R3) andu,(x) € L*(R?) respectively, such that,(z) — u(z) in
L*(R3) asn — oo.

2) If s, € E, 1) and in additionz f,,(z) € L'(R3), n € N, such thatf,,(z) —
xf(x)in L*(R?) asn — oo and

(fa(), o(2)) L2ms) = 0 (1.26)

holds for alln € N, then equations (1.16) and (1.17) have unique solutign$
L*(R?) andu,(z) € L*(R®) respectively, such that,(z) — u(x) in L*(R?) as
n — oQ.

Note that (1.25) and (1.26) are the orthogonality condgitmthe function of
the continuous spectrum of our Schrodinger operator,sigdt from the Limiting
Absorption Principle in which one needs to orthogonalizéhi standard Fourier
harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [10]).

2. Solvability in the sense of sequences in the no potentisdse

Proof of Theorem 1.1Evidently, if u(x) € L?(R%) is a solution of equation (1.2)
with a square integrable right side, it belongsHé*2(R9) as well. Indeed, if we
apply the standard Fourier transform (1.14) to both sid€4.@), we arrive at

(Ip|% + |p*®)a(p) = f(p) € L*(RY),
such that
[l + P ) < oo

Using the trivial identity
Ay ulfamey = [ Ipl*Ia0)Pdp < o0,

we easily deduce thdt-A)*2u(z) € L*(R?), so that via norm definition (1.5) we
obtain thatu(x) € H*2(RY) as well.

To establish the uniqueness of solutions for our problemudesuppose that
(1.2) admits two solutiong, (), us(z) € H?*2(R%). Then their differences(z) :=
ui(z) — us(z) € H?2(R?) as well. Evidently, it satisfies the equation

(=8)" + (=2)Jw =0.
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Because the operator: H?2(R?) — L*(R?) does not have any nontrivial zero
modesuw () vanishes irRk¢.

Let us apply the standard Fourier transform (1.14) to batlesiof equation
(1.2). This yields

~ f(p) )
)= e+ [pP T e : 2.27
(p) |p\251 + \p|252 X{lpl<1} \p|251 + |p\252 X{lpl>1} ( )

Here and throughout the article, will stand for the characteristic function of a set
A C RY. Evidently, the second term in the right side of (2.27) caesténated from

above in the absolute value (p) € L*(R%) via the one of our assumptions.

Let us first consider the case a) of our theorem when the dimen$the prob-
lemd = 1. We easily obtain the upper bound on the first term in the rigie of

(@HLI(R)X -
\/%|p|281 {|p|_}

verified that this expression belongsit&(R) if s; € (0, i)

(2.27) in the absolute value using (1.15) It can be easily

13
To treat our problem in the situation whene [4 4) we use that

Fio = For+ [0y

This allows us to express the first term in the right side &{2as

~ df
f(0) Jy g da
5 X + X : (2.28)
[pPer 4 [pf2ee M Jppe - [pfe Y
By virtue of the definition of the standard Fourier transfdfini4), we easily derive
that
d
! ( | < s @l 229)
and similarly for the space of an arbitrary dimensiba N, d > 2
07(w)| _ N @l 2.30)
9lp| (2m)2

Hence, the second term in (2.28) can be estimated from ahdtie absolute value

by
[z f (@)l )
V2m

It can be easily checked that the first term in (2.28) is squeegrable if and only
if £(0) = 0. This is equivalent to orthogonality condition (1.6).

o] > xqpi<1y € LP(R).
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Finally, for the dimension of the problesh = 1, it remains to investigate the

o 3
situation whers; € [Z’ 1). For that purpose, we represent

fio) = Fo v 0+ [ (/ di{q(gq)dq>dr.

This enables us to write the first term in the right side of (2 &s

[ f(0) o) Sy (U g )r

X{lp|<1}- (2.31)
PPt IplPe T pPe 4 [pfP T [P [P ]{'p'—}

Definition (1.14) gives us

d2f( )

f@)llpr @) < o0

\/—II a? f
as assumed. This allows us to estimate

r d2 f
f0< P dq)dr
[pl?or + |p[*s2

1 9,
2\/%||932f(l°)||u<m)|p|2 “X(i<ny € LA(R).

By means of formula (1.14), we have

X{pl<1}| <

- 1 df i
0) = — Dremwy, —(0)=— T [2(R),
such that the sum of the first two terms in (2.31) can be writen
(f(2), 1) r2m) ip(f(x),7)12(w)
[wmpvﬂ +IpP) V(P + fple) |

It can be easily verified that expression (2.32) belongs*@R) if and only if or-
thogonality conditions (1.6) and (1.7) hold.

Then we consider the case b) of our theorem when the dimeasiba problem
d = 2. We easily estimate the first term in the right side of (2.2@jf above in the
[(@)||l 22 w2

1
€ L*(R?) for 0. -
2m|p|?: X{lpl<1} (R%) fors; € {0, 5

absolute value using (1.15)

. . 1 . .
To treat the situation whesy ¢ [5, 1) , We use the identity

. . Pl 9F(q. o
) = Fo) + /O %qq’)dq. (2.33)
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Here and further dowmr will stand for the angle variables on the sphere. This
allows us to express the first term in the right side of (2.27) a

-~ | |8A N
f(0) Jo" P dq

|p|281 + |p|232 {|p|_ } |p|231 + |p|232 {‘p‘_ }

The second term in (2.34) can be easily bounded from aboveialisolutely value
using inequality (2.30) by

2 f(2)]| L1 (2 p|1 2
2T

It can be checked that the first term in (2.34) belongd.tgR?) if and only if

f(0) = 0. This is equivalent to orthogonality condition (1.8).
Let us turn our attention to the case c) of the theorem. Wenesti the first
term in the right side of (2.27) from above in the absoluteugabia (1.15) by

1 @)l e
(2m)7 [pl2

. 3
grable inR? for s; € <0, Z)'

X{pi<1y € L*(R?).

X{pl<13- It can be easily verified that this expression is square inte

3 . .
If s; € 1,1 , we will use the analog of formula (2.33) in the space of three

dimensions, such that the first term in the right side of (Ri2 given by the analog
of (2.34). By means of (2.30), we derive

Ip| af(q,a)d
0 O q ||xf(x)||L1(R3) 1—92s 9 3
e TR Tt T s € ®.
It turns out that R
f(0) 0 s
T s Xdei<1y € L7(R?)
p|2st + |p[252 {lpI<1}

-~

if and only if f(0) vanishes. This is equivalent to orthogonality relatio®)1.

We conclude the proof of the theorem by considering the casendn the di-
mension of the probleni > 4. Let us obtain the upper bound on the first term in
the right side of (2.27) in the absolute value using (1.15) by

Hf(fc)HLl(Rd)

X € L*(R?
2m)Fppes IED (RY)
fors; € (0,1). u

We proceed to establishing the solvability in the sense qtiseces for our
problem in the no potential case.
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Proof of Theorem 1.2Suppose:(x) andu,(z), n € N are the unique solutions of
problems (1.2) and (1.3) ifF?*2(R%), d € Nrespectively) < s; < s, < 1 anditis
known thatu,,(z) — u(x) in L*(RY) asn — oo. Thenu, (z) — u(x) in H?*2(R?)
asn — oo as well. Indeed,

[(=4)" + (=8)*](un(2) = u(2)) = fulz) = f(2).

Using the standard Fourier transform (1.14), we easilyinbta

1(=4)% (un(x) = w(@)l 2@y < [[fu(2) = f(@) 2@ty = 0, 1 — 00

as assumed. Norm definition (1.5) implies tha{z) — wu(z) in H*2(R?) as
n — oQ.
If uw(z) andu,(z), n € N are the unique solutions of equations (1.2) and (1.3)
in H*2(R%), d € N respectively, by applying the standard Fourier transfdrh4)
we easily obtain

:ﬁ<p>—f<p>x _ Fulp) — f(p)
[pPer - JpPPes HIPET T oo s

u,(p) — u(p) X{lp|>1}- (2.35)

Obviously, the second term in the right side of identity 8).8an be bounded from
) — [(p)|
2

above in the absolute value in the space of any dimensi . Hence

fap) = f(p)
[pl?*r + [p|?=

< @) = F@)ll e

— 0 —
5 , N — 00

X{lpI>1}

L2(R4)
via the one of our assumptions.
Let us first consider the case a) of our theorem when the dimen$the prob-
. 1
lemd = 1. Then, ifs; € (0, Z> by means of the part a) of Theorem 1.1, prob-

lem (1.2) and each of equations (1.3) have unique solutigny € H?*2(R) and
u,(z) € H*2(R), n € N respectively. Evidently, the first term in the right
side of (2.35) can be estimated from above in the absoluteevasing (1.15) by

\/%—Wﬂfn(:c) — f@)l @) X@Ti?, so that itsZ?(R) norm can be bounded from
above by

n — 00

1 1
S=l(a) = F@) o = = O

. 1 . . .
as assumed if; € (0, Z)' Therefore, in this case,(r) — u(z) in L*(R) as
Then we turn our attention to the situation whene [Z’ Z) in dimensiond =

1. Note that by virtue of the parts a) and b) of Lemma 4.1 of [8R[er the given

12



conditions, we havd, (z) € L'(R), n € N, so thatf,(z) — f(z)in L'(R) as
n — oo. Then, by means of (1.10) we derive

[(F(@), Dzl = [(f(2) = fu(@), Dzl < fulz) = f(@)]l 1@ — 0

asn — oo. Hence,
(f(x), 1) 2@y =0 (2.36)

: . . 13
is valid. By virtue of the part a) of Theorem 1.1, whene [1, 1), problems

(1.2) and (1.3) have unique solution&r), u,(z) € H*?*(R), n € N respectively.
Orthogonality conditions (2.36) and (1.10) imply that

F0)=0, F£.(0)=0, neN

in our case. This enables us to express

Fo = [ 04 R = [ iDag, wen

which allows us to write the first term in the right side of farka (2.35) as

dfn(q f(9)
fO ( dq dqq )dq

21 + [p|2 X{lpl<1}- (2.37)
Using (2.29), we obtain the inequality
df, df
d](y g ( : \/—H zfo(2) = 2f(2)|| 21 R)- (2.38)

Then expression (2.37) can be estimated from above in treudbvalue by

1 o,
\/—27"4’7fn(x)—fcf(fc)HLl(Rﬂp\l I {lpl<1}-

Thus, we derive

asn — oo as assumed. Therefore,

dfn(a)  df(q)
fO ( dg qq )dq
[p|?r + [p[*>

<
7T(3 — 481)

X{lpl<1} 2 fn () =2 f ()| L1y — O

L2(R)

un(z) = u(xr) in L*(R), n— oo

. . 1
when the dimension of the problein= 1 ands; € [Z’ %)

13



Let us proceed to the proof of our theorem where P, 1) andd = 1. By

virtue of the parts c) and d) of Lemma 4.1 of [32] under the gigenditions we
havexf,(z) € L'(R), n € N, so thatr f,,(z) — xf(x) in L'(R) asn — oco. Then
by means of the parts a) and b) of Lemma 4.1 of [32] we have) € L}(R), n €
N, so thatf,(z) — f(z) in L'(R) asn — co. Orthogonality relation (2.36) here
can be easily derived using the limiting argument as aboyeiBue of the second
orthogonality condition in (1.11), we arrive at

|(f(z), 2) 2wyl = |(f () = ful®), 2) 2wy)| < |2 fu(2) — 2 f(2)|| L1y — O
asn — oo. Thus,
(f(2),2)2@) =0 (2.39)

is valid. By means of the part a) of Theorem 1.1gife E, 1), problems (1.2)

and (1.3) admit unique solutiongz), u,(r) € H*2(R), n € N respectively. Def-
inition of the standard Fourier transform (1.14) along vatthogonality conditions
(2.36), (1.11) and (2.39) imply that fare N

df,

o =0,

so that

J/C\(p) = /Op </07“ dzjq\gq)dq> dr, fn(p) = /Op (/Or dz(‘ggq)dq> dr, neN.

From definition (1.14) we easily obtain the inequality

&f,(p) d2f( )
dp?

F” 22 fuz) = 22 f(2) | 1wy

This yields the upper bound

p2

|27 fu(@) — 2*f (@) | 2wy

[Falp) = F() 7

< —|

\/_
which enables us to derive the estimate from above on thduibs@lue of the first
term in the right side of equality (2.35) by

1 _og
ﬁnﬁfn(x) — 2 f ()|l iy [P X qjpl<1) -

Thus,
Fu(p) = F(p) 1 2 2
251 255 Xlp|<1} = |2 fu(x) — 2" f(2) || L1 r) — O
[p[* + Ip| v 2V/(5 —ds1)
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whenn — oo as assumed. Therefore,

un(z) = u(xr) in L*R), n— oo
. . 3
when the dimensiod = 1 ands; € [Z’ 1).

N : . : 1
In the situation when the dimensidn= 2, we first treat the case of < (0, —).

By means of the part b) of Theorem 1.1, equation (1.2) and ebefuations (1.3)
admit unique solutions(z) € H*2(R?) andu,(z) € H**(R?), n € N respec-
tively. Evidently, the first term in the right side of (2.35rt be bounded from
X{lpI<1}

, SO that
|p|?s

. . 1
above in the absolute value via (1.15) 129y|]fn(:c) — f(@)]| (w2
N
its L*(IR?) norm can be estimated from above by

1

men(:c) — f@)lp@e) — 0, n— o

: : : .. 1
due to the one of our assumptions in the space of two dimesgidh s; € (0, 5) .
Hence, in this case

Un(x) = u(x) in L*(R?), n — oco.

. . . . 1
For the values of the power of the two dimensional negatiy@d@ans, € [5, 1),
the orthogonality condition

(f(2),1)2m2)y =0 (2.40)

can be obtained via the simple limiting argument, analolyaios(2.36). Note that
under the given conditions we hayg(z) € L'(R?), n € Nandf,(z) — f(z)

in L*(R?) asn — oo by virtue of the parts a) and b) of Lemma 4.1 of [32]. By
means of the part b) of Theorem 1.1, equations (1.2) andifaa) unique solutions
u(r) € H*2(R?) andu,(r) € H*?(R?), n € N respectively. Orthogonality
conditions (2.40) and (1.12) give us

o~

f0)=0, f,(0)=0, neN

. : . : 1 .
in the space of two dimensions with € [5, 1). This allows us to express

- Pl 9F (0. o . Pl OFf (q. 0
For= [ 0D d Fp) = "D, wen @ay

Let us write the first term in the right side of formula (2.35) a

Ipl ((0fn(a,0)  8f(q,0)
0 ( dq - dq dq

[pl?* + [p|?s2

X{lpl<1}- (2.42)

15



Inequality (2.30) yields

0f(p)  9f(p)
dlp| I|p|

Hence, expression (2.42) can be estimated from above irbgw@wde value by

< gellefu(@) = 2 (@)l (2.43)

1 —48
Iz fa(z) - zf(2) || Lozl Xqpl<1y-

Thus,
| (9fula.0) _ 9f(a.0)
0 ( 24 o4 )d‘-’ [ fn(x) — 2 f ()] 2 (e2)
P2t + [p[2+ X{lpI<1} < —0
p p @) 2./27(1 — s1)

asn — oo by means of the one of our assumptions. Therefore,

Uy (7) = u(x) in L*R?*), n— oo

: . . . 1
in the space of two dimensions with € [—, 1).
We proceed to the proof of the part c) of our theorem, when thesdsion
d = 3 ands; € (0, Z) In this case, by virtue of the part c) of Theorem 1.1,

equations (1.2) and (1.3) admit unique solutiaris) € H?*2(R3) andu,(z) €
H?2(R?), n € N respectively. Using (1.15), we derive the estimate fromvatin
the absolute value on the first term in the right side of (2I85)

) = £ iy
(2m) 2o

{lpl<1}>

so that itsZ.?(IR*) norm can be bounded from above by

1

TG =g ) L@l 0, e

via the one of the given conditions. Therefore,

un(2) = u(z) in L*(R®), n— oo

in the situation when the dimensidn= 3 with s; € <0, §>
For the higher values of the power of the three dimensiongainee Laplacian
s € E, 1), we havef,(x) € L*(R?), n € N, such thatf,,(z) — f(z)in L}(R?)
asn — oo by means of the parts a) and b) of Lemma 4.1 of [32]. Then the
orthogonality relation

(f(x), 1) r2msy =0 (2.44)
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can be derived via the simple limiting argument, similady(2.36). By virtue of
the part c) of Theorem 1.1, problems (1.2) and (1.3) admijjumsolutions:(z) €
H?*2(R?) andu,(z) € H*2(R?), n € N respectively. Orthogonality conditions
(2.44) and (1.13) give us

F0)=0, F.(0)=0, neN

. . 3 . .
when the dimensiod = 3 ands; € [Z’ 1). This enables us to derive here the

expressions analogous to (2.41). We use the three dimexisinalog of inequality
(2.43) to obtain the estimate from above on the first term érigpht side of (2.35)
in the absolute value by

|z fn(z) — xf(iU)HLl(RS
(2m)2

‘ 1—2s1

)
lp X{lp|<1}>

so that itsZ.?(IR*) norm can be bounded from above by

1

TG =g @) @l 0, n oo

as assumed. Therefore,

un(2) = u(z) in L*(R®), n— oo

: : . . : 3
in the situation when the dimensidn= 3 ands; € [Z’ 1).

Let us turn our attention to the case d) of the theorem. By seéathe part d)
of Theorem 1.1 problems (1.2) and (1.3) possess uniquemadut(x) € H22(R?)
andu, (z) € H*2(R?), n € N respectively. Using inequality (1.15), we obtain the
upper bound on the first term in the right side of (2.35) in thecdute value by

[fn(2) = f(@) ][ L1 ey
(2m)2[p|*

X{pl<1}, d =4,

so that itsL?(R?) norm can be estimated from above by

1 |59
(2m)2 || d—4s

[ folz) = f(@)1Rey = 0, 1 — 00

by means of the one of our assumptions. Hg#atands for the unit sphere centered
at the origin in our space afdimensions an¢iS?| for its Lebesgue measure. Thus,

un(x) = u(x) in L*R?Y), d>4, n— oo
with s; € (0, 1) |
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3. Solvability in the sense of sequences with a scalar potesit

Proof of Theorem 1.4To establish the uniqueness of solutions for our problem, we
suppose that there exist bath(x) andu,(z) which are square integrable R¥ and
satisfy (1.16). Then their difference(x) := u;(z) — us(z) € L*(R?) solves the
equation

Lw = 0.

The fact that the operatdr defined in (1.19) has no nontriviéP (R?) zero modes
as discussed above implies tha&tr) vanishes a.e. ifR?.

We apply the generalized Fourier transform (1.23) with ttvecfions of the
continuous spectrum of our Schrodinger operator to batbssof equation (1.16).
This gives us

f (k) f (k)

k) = oo 112 AT AT . 3.45
u(k) |K|2s1 + | k|2s2 X{lkl<1} T k|21 4 [k[2o2 X{|k|>1} ( )

The second term in the right side of (3.45) can be easily bedficm above in the
absolute value as

f(k)
k2 + [k[2= X{|k|>1}

< O gy

. , . 3
due to the one of our assumptions. Let us first discuss thevdase() < s; < -.
Then the first term in the right side of (3.45) can be estiméttech above in the

absolute value via inequality (1.24) as
(OO N
e[ 250 4 || 252 {lk|I<1}

1 1
2m): 1—I(V)

X{|k|<1
||f(x)||L1(R3)ﬁ28l} € L2(R%).

<
(

This completes the proof of part 1) of the theorem. We corelied argument by
L 3
considering the case when the povxieg s; < 1. Let us express

) ) M 8F( o
Flk) = F0) + / %qq’)dq

Here B
f(0) = (f(2), po(z)) L2 (w3)-
Therefore, the first term in the right side of (3.45) can betemi as

. Ikl 9f(q.0)
f(0) Jo “oedg

0
_— — ) 3.46
‘]{;‘281 + ‘k‘QSQ X{ng} + ‘k‘Qsl + ‘k‘QSQ X{ng} ( )
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Obviously, the second term in sum (3.46) can be easily baliatleve in the abso-
lute value as

k| 0f(q,0)
0 a?; dq

TP [R[ees KM= | = IV f (@) oo sy K2 xai<ay € LA(R?).

Note that under the given assumpti(ﬁi@f(q) € L*°(R3) via Lemma 2.4 of [25].
Thus, it remains to analyze the term

f(0)
|k|251 + |k|252 X{|k|<1}- (3.47)

It can easily checked that (3.47) is square integrable if@mg if f(O) vanishes.
This is equivalent to orthogonality condition (1.25). [ |

Let us turn our attention to the establishing of our final nsiatement dealing
with the solvability in the sense of sequences.

Proof of Theorem 1.5.Evidently, each problem (1.17) admits a unique solution
un(z) € L*(R3), n € N via the result of Theorem 1.4 above. It can be easily
checked that in case 2) of the theorem the limiting orthoyneondition

(f(x), po(®))r2msy = 0 (3.48)

is valid. Indeed, by virtue of (1.26) along with inequality.24)

|(f(2), po()) 23| = |(f(2) = fu(), p0(@)) 2| <

- 1 1
S @il 1)

Note that via the assumptions of part 2) of our theorem we Hage) € L'(R?),

so thatf,(z) — f(z) in L'(R®) asn — oo by means of the parts a) and b) of
Lemma 4.1 of [32]. Thus, in both cases of the theorem, ligiproblem (1.16) has

a unigue solutioni(z) € L*(R?) due to the result of Theorem 1.4. We apply the
generalized Fourier transform (1.23) to both sides of eqndf..17). This yields

fulk)

[ folz) = f(2)|lL1@s) — 0, n — oo.

'ljh@(k) = —|k|281 +|k|282’ nEN,
such that
i _ Jo(k) = [ (k) fo(k) = [ (k)

19



Evidently, the second term in the right side of (3.49) can &silg bounded from
above in the absolute value M"(k) 2_ f(k)] . Thus,

falk) — f(K)

e B A S <
k21 + |k|252X{\k|>1} =

L2(R3)

[ fn(z) = f(2)||L2@®3) = 0, n — o0

N | —

. . . 3
due to the one of our assumptions. First we consider the chsaiv< s; < 7
(1.24) gives us

[falk) = f (k)| < [fn(2) = f(2)]| 2 @3)-

1 1
(2m)2 1 —1(V)

Hence, we derive the estimate from above for the first tertenight side of (3.49)
in the absolute value as

fulk) — f(k)
‘k‘Qsl I ‘k‘QSQX{WSl}

1

1 X{IkI<1}
2m): 1—1(V)

[ fn(z) — f(x)HLl(W) e

<
(
Clearly, this implies

Julk) — f (k)

S A A 1 1 | fo(2) — f(x)||L1(R3)
|/{7|231 T |/{7|232 {Ik|<1}

< — 0
)—\/iﬂl—[(V) V3 —4s

L2(R3

asn — oo as assumed. Thus, (z) — u(z) in L?*(R?) asn — oo in the situation
3

whens; € (0, Z>'

. 3 .
Let us turn our attention to the case whene [Z’ 1). As discussed above,

it is sufficient to consider the first term in the right side 8f49). Orthogonality
conditions (3.48) and (1.26) imply that

so that

. kl 5 f _ M af (q,
Flk) = /O %dq, Fulk) = /O %dq, neN.

This allows us to express the first term in the right side cf4Bas

k| | 0fn(a,0) _ 0f(g,0)
0 [ dq - dq dq

kP TP

X{|k|<1}5
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which can be easily bounded from above in the absolute value b

IVl fa(@) = F (@)l ooy R~ X g1y

Hence,
fulk) — f(k ) ) ,
WMMSH . < IVl fula) - f(Q)]HL“(R?’)\/%.

By virtue of the result of Lemma 3.4 of [23] under the statesbasptions we have

Vol fala) — f(Q)]’\Lw(RS) — 0, n— o0,

which completes the proof of our theorem. [ |
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