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1. Introduction

Consider the equation
(−∆+ V (x))u− au = f, (1.1)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant andV (x)
is a function decaying to0 at infinity. If a ≥ 0, then the essential spectrum of the
operatorA : E → F corresponding to the left side of equation (1.1) contains the
origin. Consequently, such operator fails to satisfy the Fredholm property. Its image
is not closed, ford > 1 the dimension of its kernel and the codimension of its image
are not finite. The present article is devoted to the studies of certain properties of
the sums of the operators of this kind raised to fractional powers. Let us recall that
elliptic equations with non-Fredholm operators were treated extensively in recent
years (see [9], [21], [24], [25], [22], [26], [27], [28], [32], also [5]) along with
their potential applications to the theory of reaction-diffusion equations (see [7],
[8]). In the particular situation whena = 0 the operatorA satisfies the Fredholm
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property in certain properly chosen weighted spaces (see [1], [2], [3], [4], [5]).
However, the case witha 6= 0 is considerably different and the method developed
in these works cannot be applied.

One of the important questions concerning the equations with non-Fredholm
operators is their solvability. Let us address it in the following setting. Letfn be a
sequence of functions in the image of the operatorA, so thatfn → f in L2(Rd) as
n → ∞. We denote byun a sequence of functions fromH2(Rd) such that

Aun = fn, n ∈ N.

Since the operatorA fails to satisfy the Fredholm property, the sequenceun may not
be convergent. Let us call a sequenceun so thatAun → f a solution in the sense of
sequences of problemAu = f (see [20]). If such sequence converges to a function
u0 in the norm of the spaceE, thenu0 is a solution of this equation. The solution
in the sense of sequences is equivalent in this sense to the usual solution. However,
in the case of the non-Fredholm operators, this convergencemay not hold or it can
occur in some weaker sense. In such case, the solution in the sense of sequences
may not imply the existence of the usual solution. In the present work we will find
sufficient conditions of equivalence of solutions in the sense of sequences and the
usual solutions. In the other words, the conditions on the sequencesfn under which
the corresponding sequencesun are strongly convergent. The solvability in the
sense of sequences for the equations involving the second order differential non-
Fredholm operators raised to fractional powers was studiedin [32]. The present
article our modest attempt to generalize such results by dealing with the solvability
of the generalized Poisson type equations containing in their left sides the sums of
such second order differential operators without Fredholmproperty raised to the two
distinct fractional powers, which is relevant to the understanding of thedouble scale
anomalous diffusion(see e.g. [11]). Note that a fractional power of the negative
Laplacian or a Schrödinger type operator be defined via the spectral calculus.

Let us first consider the problem

[(−∆)s1 + (−∆)s2 ]u = f(x), x ∈ R
d, d ∈ N, 0 < s1 < s2 < 1 (1.2)

with a square integrable right side. The operator(−∆)s is actively used, for exam-
ple in the studies of the anomalous diffusion problems (see e.g. [29], [30], [32]
and the references therein). The probabilistic realization of the anomalous diffusion
was discussed in [17]. The equation analogous to (1.2) but with the single standard
Laplace operator in the context of the solvability in the sense of sequences was stud-

ied in [23]. The situation when the power of the single negative Laplacians =
1

2
was considered recently in [31]. The article [15] is devotedto the establishing
of the imbedding theorems and the studies of the spectrum of acertain pseudodif-
ferential operator. The form boundedness criterion for therelativistic Schrödinger
operator was proved in [16]. Clearly, for the operator in theleft side of our equation
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(1.2)
l := (−∆)s1 + (−∆)s2 : H2s2(Rd) → L2(Rd)

the essential spectrum fills the semi-axis[0, ∞), so that its inverse fromL2(Rd) to
H2s2(Rd) is not bounded.

We write down the corresponding sequence of the approximateequations with
n ∈ N as

[(−∆)s1 + (−∆)s2 ]un = fn(x), x ∈ R
d, d ∈ N, 0 < s1 < s2 < 1 (1.3)

with the right sides converging to the right side of (1.2) inL2(Rd) asn → ∞. The
inner product of two functions

(f(x), g(x))L2(Rd) :=

∫

Rd

f(x)ḡ(x)dx, (1.4)

with a slight abuse of notations when these functions are notsquare integrable.
Indeed, if f(x) ∈ L1(Rd) and g(x) ∈ L∞(Rd), then obviously the integral in
the right side of (1.4) makes sense, like for example in the cases of the functions
involved in the orthogonality conditions of our Theorems below. We use the space
H2s(Rd) equipped with the norm

‖u‖2H2s(Rd) := ‖u‖2L2(Rd) + ‖(−∆)su‖2L2(Rd), 0 < s < 1. (1.5)

First of all, we formulate the solvability conditions for equation (1.2).

Theorem 1.1.Letf(x) : Rd → R, d ∈ N, f(x) ∈ L2(Rd) and0 < s1 < s2 < 1.

a) Let d = 1. If s1 ∈
(
0,

1

4

)
and in additionf(x) ∈ L1(R), then problem (1.2)

admits a unique solutionu(x) ∈ H2s2(R).

Suppose thats1 ∈
[1
4
,
3

4

)
and in additionxf(x) ∈ L1(R). Then equation (1.2)

possesses a unique solutionu(x) ∈ H2s2(R) if and only if the orthogonality condi-
tion

(f(x), 1)L2(R) = 0 (1.6)

is valid.

Suppose thats1 ∈
[3
4
, 1
)

and additionallyx2f(x) ∈ L1(R). Then problem (1.2)

admits a unique solutionu(x) ∈ H2s2(R) if and only if orthogonality relations
(1.6) and

(f(x), x)L2(R) = 0 (1.7)

hold.

b) Let d = 2. Then whens1 ∈
(
0,

1

2

)
and additionallyf(x) ∈ L1(R2), problem

(1.2) has a unique solutionu(x) ∈ H2s2(R2).

3



Suppose thats1 ∈
[1
2
, 1
)

and in additionxf(x) ∈ L1(R2). Then problem (1.2)

admits a unique solutionu(x) ∈ H2s2(R2) if and only if the orthogonality condition

(f(x), 1)L2(R2) = 0 (1.8)

is valid.

c) Letd = 3. If s1 ∈
(
0,

3

4

)
and in additionf(x) ∈ L1(R3), then equation (1.2)

possesses a unique solutionu(x) ∈ H2s2(R3).

Suppose thats1 ∈
[3
4
, 1
)

and additionallyxf(x) ∈ L1(R3). Then problem (1.2)

possesses a unique solutionu(x) ∈ H2s2(R3) if and only if the orthogonality rela-
tion

(f(x), 1)L2(R3) = 0 (1.9)

is valid.
d) If d ≥ 4 with s1 ∈ (0, 1) and in additionf(x) ∈ L1(Rd), then equation (1.2)
admits a unique solutionu(x) ∈ H2s2(Rd).

Let us turn our attention to the issue of the solvability in the sense of sequences
for our equation.

Theorem 1.2. Let n ∈ N andfn(x) : Rd → R, fn(x) ∈ L2(Rd), d ∈ N, so that
fn(x) → f(x) in L2(Rd) asn → ∞.

a) Let d = 1. If s1 ∈
(
0,

1

4

)
and in additionfn(x) ∈ L1(R), n ∈ N, so that

fn(x) → f(x) in L1(R) as n → ∞, then problems (1.2) and (1.3) have unique
solutionsu(x) ∈ H2s2(R) andun(x) ∈ H2s2(R) respectively, so thatun(x) → u(x)
in H2s2(R) asn → ∞.

Suppose thats1 ∈
[1
4
,
3

4

)
. Let in additionxfn(x) ∈ L1(R), n ∈ N, so that

xfn(x) → xf(x) in L1(R) asn → ∞ and the orthogonality relations

(fn(x), 1)L2(R) = 0 (1.10)

are valid for all n ∈ N. Then problems (1.2) and (1.3) have unique solutions
u(x) ∈ H2s2(R) and un(x) ∈ H2s2(R) respectively, so thatun(x) → u(x) in
H2s2(R) asn → ∞.

Suppose thats1 ∈
[3
4
, 1
)

. Let in additionx2fn(x) ∈ L1(R), n ∈ N, so that

x2fn(x) → x2f(x) in L1(R) asn → ∞ and the orthogonality relations

(fn(x), 1)L2(R) = 0, (fn(x), x)L2(R) = 0 (1.11)

are valid for all n ∈ N. Then problems (1.2) and (1.3) possess unique solutions
u(x) ∈ H2s2(R) and un(x) ∈ H2s2(R) respectively, so thatun(x) → u(x) in
H2s2(R) asn → ∞.
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b) Let d = 2. If s1 ∈
(
0,

1

2

)
and additionallyfn(x) ∈ L1(R2), n ∈ N, so that

fn(x) → f(x) in L1(R2) asn → ∞, then problems (1.2) and (1.3) admit unique
solutionsu(x) ∈ H2s2(R2) andun(x) ∈ H2s2(R2) respectively, so thatun(x) →
u(x) in H2s2(R2) asn → ∞.

Suppose thats1 ∈
[1
2
, 1
)

. Let in additionxfn(x) ∈ L1(R2), n ∈ N, so that

xfn(x) → xf(x) in L1(R2) asn → ∞ and the orthogonality conditions

(fn(x), 1)L2(R2) = 0 (1.12)

are valid for all n ∈ N. Then problems (1.2) and (1.3) have unique solutions
u(x) ∈ H2s2(R2) and un(x) ∈ H2s2(R2) respectively, so thatun(x) → u(x) in
H2s2(R2) asn → ∞.

c) Letd = 3. Suppose thats1 ∈
(
0,

3

4

)
and additionallyfn(x) ∈ L1(R3), n ∈ N,

so thatfn(x) → f(x) in L1(R3) asn → ∞. Then equations (1.2) and (1.3) admit
unique solutionsu(x) ∈ H2s2(R3) and un(x) ∈ H2s2(R3) respectively, so that
un(x) → u(x) in H2s2(R3) asn → ∞.

Suppose thats1 ∈
[3
4
, 1
)

. Let in additionxfn(x) ∈ L1(R3), n ∈ N, so that

xfn(x) → xf(x) in L1(R3) asn → ∞ and the orthogonality conditions

(fn(x), 1)L2(R3) = 0 (1.13)

are valid for all n ∈ N. Then equations (1.2) and (1.3) possess unique solutions
u(x) ∈ H2s2(R3) and un(x) ∈ H2s2(R3) respectively, so thatun(x) → u(x) in
H2s2(R3) asn → ∞.
d) Let d ≥ 4 with s1 ∈ (0, 1) and additionallyfn(x) ∈ L1(Rd), n ∈ N, so that
fn(x) → f(x) in L1(Rd) asn → ∞. Then problems (1.2) and (1.3) admit unique
solutionsu(x) ∈ H2s2(Rd) andun(x) ∈ H2s2(Rd) respectively, so thatun(x) →
u(x) in H2s2(Rd) asn → ∞.

Note that in the theorems above each of the casesa)− d) contains the situation
when the orthogonality relations are not required.

Let us use the hat symbol to denote the standard Fourier transform

f̂(p) :=
1

(2π)
d
2

∫

Rd

f(x)e−ipxdx, p ∈ R
d, d ∈ N, (1.14)

so that the inequality

‖f̂(p)‖L∞(Rd) ≤
1

(2π)
d
2

‖f(x)‖L1(Rd) (1.15)

holds. The second part of the article is devoted to the studies of the equation
{
[−∆+V (x)]s1+[−∆+V (x)]s2

}
u = f(x), x ∈ R

3, 0 < s1 < s2 < 1 (1.16)
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with a square integrable right side. The corresponding sequence of approximate
equations forn ∈ N will be

{
[−∆+ V (x)]s1 + [−∆+ V (x)]s2

}
un = fn(x), x ∈ R

3 (1.17)

with 0 < s1 < s2 < 1. Their square integrable right sides converge to the right side
of (1.16) inL2(R3) asn → ∞. We make the following technical assumptions on the
scalar potential involved in the problems above. Note that the conditions onV (x),
which is shallow and short-range will be analogous to those given in Assumption
1.1 of [25] (see also [24], [26]). The essential spectrum of such a Schrödinger
operator−∆+ V (x) fills the nonnegative semi-axis (see e.g. [12]).

Assumption 1.3.The potential functionV (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+δ

with someδ > 0 andx = (x1, x2, x3) ∈ R
3 a.e. such that

4
1

9

9

8
(4π)−

2

3‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4
3 (R3)

< 1 and
√
cHLS‖V ‖

L
3
2 (R3)

< 4π. (1.18)

HereC denotes a finite positive constant andcHLS given on p.98 of [14] is the
constant in the Hardy-Littlewood-Sobolev inequality

∣∣∣
∫

R3

∫

R3

f1(x)f1(y)

|x− y|2 dxdy
∣∣∣ ≤ cHLS‖f1‖2

L
3
2 (R3)

, f1 ∈ L
3

2 (R3).

By means of Lemma 2.3 of [25], under Assumption 1.3 above on the potential
function, the operator−∆+V (x) onL2(R3) is self-adjoint and unitarily equivalent
to−∆ via the wave operators (see [13], [19])

Ω± := s− limt→∓∞eit(−∆+V )eit∆,

where the limit is understood in the strongL2 sense (see e.g. [18] p.34, [6] p.90).
Therefore, the operator

L = [−∆+ V (x)]s1 + [−∆+ V (x)]s2 (1.19)

in the left sides of equations (1.16) and (1.17) considered onL2(R3) defined via the
spectral calculus has only the essential spectrum

σess(L) = [0, ∞)

and no nontrivialL2(R3) eigenfunctions. By virtue of the spectral theorem, its
functions of the continuous spectrum satisfy

Lϕk(x) = (|k|2s1 + |k|2s2)ϕk(x), k ∈ R
3, (1.20)
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in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [18] p.98)

ϕk(x) =
eikx

(2π)
3

2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (1.21)

and the orthogonality conditions

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3. (1.22)

In particular, when the vectork = 0, we haveϕ0(x). We denote the generalized
Fourier transform with respect to these functions using thetilde symbol as

f̃(k) := (f(x), ϕk(x))L2(R3), k ∈ R
3. (1.23)

(1.23) is a unitary transform onL2(R3). The integral operator involved in (1.21) is
being designated as

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕ)(y)dy, ϕ ∈ L∞(R3).

We considerQ : L∞(R3) → L∞(R3). Under Assumption 1.3, via Lemma 2.1 of
[25] the operator norm‖Q‖∞ is bounded above by the expressionI(V ), which is
the left side of the first inequality in (1.18), so thatI(V ) < 1. Corollary 2.2 of [25]
under our conditions yields the bound

|f̃(k)| ≤ 1

(2π)
3

2

1

1− I(V )
‖f(x)‖L1(R3). (1.24)

Our result concerning the solvability of problem (1.16) is as follows.

Theorem 1.4.Let Assumption 1.3 hold, the powers0 < s1 < s2 < 1 andf(x) ∈
L2(R3).

1) Let s1 ∈
(
0,

3

4

)
and additionallyf(x) ∈ L1(R3). Then equation (1.16) has a

unique solutionu(x) ∈ L2(R3).

2) Lets1 ∈
[3
4
, 1
)

and in additionxf(x) ∈ L1(R3). Then problem (1.16) possesses

a unique solutionu(x) ∈ L2(R3) if and only if the orthogonality relation

(f(x), ϕ0(x))L2(R3) = 0 (1.25)

holds.

Our final main result is devoted to the solvability in the sense of sequences of
equation (1.16).
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Theorem 1.5. Let Assumption 1.3 hold,n ∈ N, the powers0 < s1 < s2 < 1 and
fn(x) ∈ L2(R3), such thatfn(x) → f(x) in L2(R3) asn → ∞.

1) If s1 ∈
(
0,

3

4

)
and additionallyfn(x) ∈ L1(R3), n ∈ N, such thatfn(x) → f(x)

in L1(R3) as n → ∞, then equations (1.16) and (1.17) admit unique solutions
u(x) ∈ L2(R3) and un(x) ∈ L2(R3) respectively, such thatun(x) → u(x) in
L2(R3) asn → ∞.

2) If s1 ∈
[3
4
, 1
)

and in additionxfn(x) ∈ L1(R3), n ∈ N, such thatxfn(x) →
xf(x) in L1(R3) asn → ∞ and

(fn(x), ϕ0(x))L2(R3) = 0 (1.26)

holds for alln ∈ N, then equations (1.16) and (1.17) have unique solutionsu(x) ∈
L2(R3) andun(x) ∈ L2(R3) respectively, such thatun(x) → u(x) in L2(R3) as
n → ∞.

Note that (1.25) and (1.26) are the orthogonality conditions to the function of
the continuous spectrum of our Schrödinger operator, as distinct from the Limiting
Absorption Principle in which one needs to orthogonalize tothe standard Fourier
harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [10]).

2. Solvability in the sense of sequences in the no potential case

Proof of Theorem 1.1.Evidently, if u(x) ∈ L2(Rd) is a solution of equation (1.2)
with a square integrable right side, it belongs toH2s2(Rd) as well. Indeed, if we
apply the standard Fourier transform (1.14) to both sides of(1.2), we arrive at

(|p|2s1 + |p|2s2)û(p) = f̂(p) ∈ L2(Rd),

such that ∫

Rd

[|p|2s1 + |p|2s2]2|û(p)|2dp < ∞.

Using the trivial identity

‖(−∆)s2u‖2L2(Rd) =

∫

Rd

|p|4s2|û(p)|2dp < ∞,

we easily deduce that(−∆)s2u(x) ∈ L2(Rd), so that via norm definition (1.5) we
obtain thatu(x) ∈ H2s2(Rd) as well.

To establish the uniqueness of solutions for our problem, let us suppose that
(1.2) admits two solutionsu1(x), u2(x) ∈ H2s2(Rd). Then their differencew(x) :=
u1(x)− u2(x) ∈ H2s2(Rd) as well. Evidently, it satisfies the equation

[(−∆)s1 + (−∆)s2 ]w = 0.
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Because the operatorl : H2s2(Rd) → L2(Rd) does not have any nontrivial zero
modes,w(x) vanishes inRd.

Let us apply the standard Fourier transform (1.14) to both sides of equation
(1.2). This yields

û(p) =
f̂(p)

|p|2s1 + |p|2s2χ{|p|≤1} +
f̂(p)

|p|2s1 + |p|2s2χ{|p|>1}. (2.27)

Here and throughout the articleχA will stand for the characteristic function of a set
A ⊆ R

d. Evidently, the second term in the right side of (2.27) can beestimated from

above in the absolute value by
|f̂(p)|
2

∈ L2(Rd) via the one of our assumptions.

Let us first consider the case a) of our theorem when the dimension of the prob-
lem d = 1. We easily obtain the upper bound on the first term in the rightside of

(2.27) in the absolute value using (1.15) by
‖f(x)‖L1(R)√

2π|p|2s1
χ{|p|≤1}. It can be easily

verified that this expression belongs toL2(R) if s1 ∈
(
0,

1

4

)
.

To treat our problem in the situation whens1 ∈
[1
4
,
3

4

)
, we use that

f̂(p) = f̂(0) +

∫ p

0

df(q)

dq
dq.

This allows us to express the first term in the right side of (2.27) as

f̂(0)

|p|2s1 + |p|2s2χ{|p|≤1} +

∫ p

0
df̂(q)
dq

dq

|p|2s1 + |p|2s2χ{|p|≤1}. (2.28)

By virtue of the definition of the standard Fourier transform(1.14), we easily derive
that ∣∣∣∣∣

df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xf(x)‖L1(R) (2.29)

and similarly for the space of an arbitrary dimensiond ∈ N, d ≥ 2
∣∣∣∣∣
∂f̂(p)

∂|p|

∣∣∣∣∣ ≤
‖xf(x)‖L1(Rd)

(2π)
d
2

. (2.30)

Hence, the second term in (2.28) can be estimated from above in the absolute value
by

‖xf(x)‖L1(R)√
2π

|p|1−2s1χ{|p|≤1} ∈ L2(R).

It can be easily checked that the first term in (2.28) is squareintegrable if and only
if f̂(0) = 0. This is equivalent to orthogonality condition (1.6).
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Finally, for the dimension of the problemd = 1, it remains to investigate the

situation whens1 ∈
[
3

4
, 1

)
. For that purpose, we represent

f̂(p) = f̂(0) + p
df̂

dp
(0) +

∫ p

0

(∫ r

0

d2f̂(q)

dq2
dq

)
dr.

This enables us to write the first term in the right side of (2.27) as

[
f̂(0)

|p|2s1 + |p|2s2 +
pdf̂

dp
(0)

|p|2s1 + |p|2s2 +

∫ p

0

( ∫ r

0
d2f̂(q)
dq2

dq
)
dr

|p|2s1 + |p|2s2

]
χ{|p|≤1}. (2.31)

Definition (1.14) gives us
∣∣∣∣∣
d2f̂(p)

dp2

∣∣∣∣∣ ≤
1√
2π

‖x2f(x)‖L1(R) < ∞

as assumed. This allows us to estimate
∣∣∣∣∣

∫ p

0

( ∫ r

0
d2f̂(q)
dq2

dq
)
dr

|p|2s1 + |p|2s2 χ{|p|≤1}

∣∣∣∣∣ ≤
1

2
√
2π

‖x2f(x)‖L1(R)|p|2−2s1χ{|p|≤1} ∈ L2(R).

By means of formula (1.14), we have

f̂(0) =
1√
2π

(f(x), 1)L2(R),
df̂

dp
(0) = − i√

2π
(f(x), x)L2(R),

such that the sum of the first two terms in (2.31) can be writtenas
[

(f(x), 1)L2(R)√
2π(|p|2s1 + |p|2s2)

− ip(f(x), x)L2(R)√
2π(|p|2s1 + |p|2s2)

]
χ{|p|≤1}. (2.32)

It can be easily verified that expression (2.32) belongs toL2(R) if and only if or-
thogonality conditions (1.6) and (1.7) hold.

Then we consider the case b) of our theorem when the dimensionof the problem
d = 2. We easily estimate the first term in the right side of (2.27) from above in the

absolute value using (1.15) by
‖f(x)‖L1(R2)

2π|p|2s1 χ{|p|≤1} ∈ L2(R2) for s1 ∈
(
0,

1

2

)
.

To treat the situation whens1 ∈
[
1

2
, 1

)
, we use the identity

f̂(p) = f̂(0) +

∫ |p|

0

∂f̂ (q, σ)

∂q
dq. (2.33)

10



Here and further downσ will stand for the angle variables on the sphere. This
allows us to express the first term in the right side of (2.27) as

f̂(0)

|p|2s1 + |p|2s2χ{|p|≤1} +

∫ |p|

0
∂f̂(q,σ)

∂q
dq

|p|2s1 + |p|2s2χ{|p|≤1}. (2.34)

The second term in (2.34) can be easily bounded from above in the absolutely value
using inequality (2.30) by

‖xf(x)‖L1(R2)

2π
|p|1−2s1χ{|p|≤1} ∈ L2(R2).

It can be checked that the first term in (2.34) belongs toL2(R2) if and only if
f̂(0) = 0. This is equivalent to orthogonality condition (1.8).

Let us turn our attention to the case c) of the theorem. We estimate the first
term in the right side of (2.27) from above in the absolute value via (1.15) by
‖f(x)‖L1(R3)

(2π)
3

2 |p|2s1
χ{|p|≤1}. It can be easily verified that this expression is square inte-

grable inR3 for s1 ∈
(
0,

3

4

)
.

If s1 ∈
[
3

4
, 1

)
, we will use the analog of formula (2.33) in the space of three

dimensions, such that the first term in the right side of (2.27) is given by the analog
of (2.34). By means of (2.30), we derive

∣∣∣∣∣

∫ |p|

0
∂f̂(q,σ)

∂q
dq

|p|2s1 + |p|2s2χ{|p|≤1}

∣∣∣∣∣ ≤
‖xf(x)‖L1(R3)

(2π)
3

2

|p|1−2s1χ{|p|≤1} ∈ L2(R3).

It turns out that
f̂(0)

|p|2s1 + |p|2s2χ{|p|≤1} ∈ L2(R3)

if and only if f̂(0) vanishes. This is equivalent to orthogonality relation (1.9).
We conclude the proof of the theorem by considering the case d) when the di-

mension of the problemd ≥ 4. Let us obtain the upper bound on the first term in
the right side of (2.27) in the absolute value using (1.15) by

‖f(x)‖L1(Rd)

(2π)
d
2 |p|2s1

χ{|p|≤1} ∈ L2(Rd)

for s1 ∈ (0, 1).

We proceed to establishing the solvability in the sense of sequences for our
problem in the no potential case.
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Proof of Theorem 1.2.Supposeu(x) andun(x), n ∈ N are the unique solutions of
problems (1.2) and (1.3) inH2s2(Rd), d ∈ N respectively,0 < s1 < s2 < 1 and it is
known thatun(x) → u(x) in L2(Rd) asn → ∞. Thenun(x) → u(x) in H2s2(Rd)
asn → ∞ as well. Indeed,

[(−∆)s1 + (−∆)s2 ](un(x)− u(x)) = fn(x)− f(x).

Using the standard Fourier transform (1.14), we easily obtain

‖(−∆)s2(un(x)− u(x))‖L2(Rd) ≤ ‖fn(x)− f(x)‖L2(Rd) → 0, n → ∞

as assumed. Norm definition (1.5) implies thatun(x) → u(x) in H2s2(Rd) as
n → ∞.

If u(x) andun(x), n ∈ N are the unique solutions of equations (1.2) and (1.3)
in H2s2(Rd), d ∈ N respectively, by applying the standard Fourier transform (1.14)
we easily obtain

ûn(p)− û(p) =
f̂n(p)− f̂(p)

|p|2s1 + |p|2s2χ{|p|≤1} +
f̂n(p)− f̂(p)

|p|2s1 + |p|2s2χ{|p|>1}. (2.35)

Obviously, the second term in the right side of identity (2.35) can be bounded from

above in the absolute value in the space of any dimension by
|f̂n(p)− f̂(p)|

2
. Hence

∥∥∥∥∥
f̂n(p)− f̂(p)

|p|2s1 + |p|2s2χ{|p|>1}

∥∥∥∥∥
L2(Rd)

≤
‖fn(x)− f(x)‖L2(Rd)

2
→ 0, n → ∞

via the one of our assumptions.
Let us first consider the case a) of our theorem when the dimension of the prob-

lem d = 1. Then, if s1 ∈
(
0,

1

4

)
by means of the part a) of Theorem 1.1, prob-

lem (1.2) and each of equations (1.3) have unique solutionsu(x) ∈ H2s2(R) and
un(x) ∈ H2s2(R), n ∈ N respectively. Evidently, the first term in the right
side of (2.35) can be estimated from above in the absolute value using (1.15) by
1√
2π

‖fn(x)− f(x)‖L1(R)

χ{|p|≤1}

|p|2s1 , so that itsL2(R) norm can be bounded from

above by
1√
π
‖fn(x)− f(x)‖L1(R)

1√
1− 4s1

→ 0, n → ∞

as assumed ifs1 ∈
(
0,

1

4

)
. Therefore, in this caseun(x) → u(x) in L2(R) as

n → ∞.

Then we turn our attention to the situation whens1 ∈
[1
4
,
3

4

)
in dimensiond =

1. Note that by virtue of the parts a) and b) of Lemma 4.1 of [32],under the given

12



conditions, we havefn(x) ∈ L1(R), n ∈ N, so thatfn(x) → f(x) in L1(R) as
n → ∞. Then, by means of (1.10) we derive

|(f(x), 1)L2(R)| = |(f(x)− fn(x), 1)L2(R)| ≤ ‖fn(x)− f(x)‖L1(R) → 0

asn → ∞. Hence,
(f(x), 1)L2(R) = 0 (2.36)

is valid. By virtue of the part a) of Theorem 1.1, whens1 ∈
[1
4
,
3

4

)
, problems

(1.2) and (1.3) have unique solutionsu(x), un(x) ∈ H2s2(R), n ∈ N respectively.
Orthogonality conditions (2.36) and (1.10) imply that

f̂(0) = 0, f̂n(0) = 0, n ∈ N

in our case. This enables us to express

f̂(p) =

∫ p

0

df̂(q)

dq
dq, f̂n(p) =

∫ p

0

df̂n(q)

dq
dq, n ∈ N,

which allows us to write the first term in the right side of formula (2.35) as

∫ p

0

(
df̂n(q)
dq

− df̂(q)
dq

)
dq

|p|2s1 + |p|2s2 χ{|p|≤1}. (2.37)

Using (2.29), we obtain the inequality
∣∣∣∣∣
df̂n(p)

dp
− df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xfn(x)− xf(x)‖L1(R). (2.38)

Then expression (2.37) can be estimated from above in the absolute value by

1√
2π

‖xfn(x)− xf(x)‖L1(R)|p|1−2s1χ{|p|≤1}.

Thus, we derive

∥∥∥∥∥

∫ p

0

(
df̂n(q)
dq

− df̂(q)
dq

)
dq

|p|2s1 + |p|2s2 χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ 1√
π(3− 4s1)

‖xfn(x)−xf(x)‖L1(R) → 0

asn → ∞ as assumed. Therefore,

un(x) → u(x) in L2(R), n → ∞

when the dimension of the problemd = 1 ands1 ∈
[1
4
,
3

4

)
.

13



Let us proceed to the proof of our theorem whens1 ∈
[3
4
, 1
)

andd = 1. By

virtue of the parts c) and d) of Lemma 4.1 of [32] under the given conditions we
havexfn(x) ∈ L1(R), n ∈ N, so thatxfn(x) → xf(x) in L1(R) asn → ∞. Then
by means of the parts a) and b) of Lemma 4.1 of [32] we havefn(x) ∈ L1(R), n ∈
N, so thatfn(x) → f(x) in L1(R) asn → ∞. Orthogonality relation (2.36) here
can be easily derived using the limiting argument as above. By virtue of the second
orthogonality condition in (1.11), we arrive at

|(f(x), x)L2(R)| = |(f(x)− fn(x), x)L2(R)| ≤ ‖xfn(x)− xf(x)‖L1(R) → 0

asn → ∞. Thus,
(f(x), x)L2(R) = 0 (2.39)

is valid. By means of the part a) of Theorem 1.1, ifs1 ∈
[3
4
, 1
)

, problems (1.2)

and (1.3) admit unique solutionsu(x), un(x) ∈ H2s2(R), n ∈ N respectively. Def-
inition of the standard Fourier transform (1.14) along withorthogonality conditions
(2.36), (1.11) and (2.39) imply that forn ∈ N

f̂(0) = 0, f̂n(0) = 0,
df̂

dp
(0) = 0,

df̂n

dp
(0) = 0,

so that

f̂(p) =

∫ p

0

(∫ r

0

d2f̂(q)

dq2
dq

)
dr, f̂n(p) =

∫ p

0

(∫ r

0

d2f̂n(q)

dq2
dq

)
dr, n ∈ N.

From definition (1.14) we easily obtain the inequality
∣∣∣∣∣
d2f̂n(p)

dp2
− d2f̂(p)

dp2

∣∣∣∣∣ ≤
1√
2π

‖x2fn(x)− x2f(x)‖L1(R).

This yields the upper bound

|f̂n(p)− f̂(p)| ≤ 1√
2π

‖x2fn(x)− x2f(x)‖L1(R)

p2

2
,

which enables us to derive the estimate from above on the absolute value of the first
term in the right side of equality (2.35) by

1

2
√
2π

‖x2fn(x)− x2f(x)‖L1(R)|p|2−2s1χ{|p|≤1}.

Thus,
∥∥∥∥∥
f̂n(p)− f̂(p)

|p|2s1 + |p|2s2χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ 1

2
√
π(5− 4s1)

‖x2fn(x)− x2f(x)‖L1(R) → 0

14



whenn → ∞ as assumed. Therefore,

un(x) → u(x) in L2(R), n → ∞

when the dimensiond = 1 ands1 ∈
[3
4
, 1
)

.

In the situation when the dimensiond = 2, we first treat the case ofs1 ∈
(
0,

1

2

)
.

By means of the part b) of Theorem 1.1, equation (1.2) and eachof equations (1.3)
admit unique solutionsu(x) ∈ H2s2(R2) andun(x) ∈ H2s2(R2), n ∈ N respec-
tively. Evidently, the first term in the right side of (2.35) can be bounded from

above in the absolute value via (1.15) by
1

2π
‖fn(x)− f(x)‖L1(R2)

χ{|p|≤1}

|p|2s1 , so that

itsL2(R2) norm can be estimated from above by

1

2
√

π(1− 2s1)
‖fn(x)− f(x)‖L1(R2) → 0, n → ∞

due to the one of our assumptions in the space of two dimensions withs1 ∈
(
0,

1

2

)
.

Hence, in this case

un(x) → u(x) in L2(R2), n → ∞.

For the values of the power of the two dimensional negative Laplacians1 ∈
[1
2
, 1
)

,

the orthogonality condition

(f(x), 1)L2(R2) = 0 (2.40)

can be obtained via the simple limiting argument, analogously to (2.36). Note that
under the given conditions we havefn(x) ∈ L1(R2), n ∈ N andfn(x) → f(x)
in L1(R2) asn → ∞ by virtue of the parts a) and b) of Lemma 4.1 of [32]. By
means of the part b) of Theorem 1.1, equations (1.2) and (1.3)have unique solutions
u(x) ∈ H2s2(R2) and un(x) ∈ H2s2(R2), n ∈ N respectively. Orthogonality
conditions (2.40) and (1.12) give us

f̂(0) = 0, f̂n(0) = 0, n ∈ N

in the space of two dimensions withs1 ∈
[1
2
, 1
)

. This allows us to express

f̂(p) =

∫ |p|

0

∂f̂ (q, σ)

∂q
dq, f̂n(p) =

∫ |p|

0

∂f̂n(q, σ)

∂q
dq, n ∈ N. (2.41)

Let us write the first term in the right side of formula (2.35) as

∫ |p|

0

(
∂f̂n(q,σ)

∂q
− ∂f̂(q,σ)

∂q

)
dq

|p|2s1 + |p|2s2 χ{|p|≤1}. (2.42)
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Inequality (2.30) yields
∣∣∣∣∣
∂f̂n(p)

∂|p| − ∂f̂ (p)

∂|p|

∣∣∣∣∣ ≤
1

2π
‖xfn(x)− xf(x)‖L1(R2). (2.43)

Hence, expression (2.42) can be estimated from above in the absolute value by

1

2π
‖xfn(x)− xf(x)‖L1(R2)|p|1−2s1χ{|p|≤1}.

Thus,

∥∥∥∥∥

∫ |p|

0

(
∂f̂n(q,σ)

∂q
− ∂f̂(q,σ)

∂q

)
dq

|p|2s1 + |p|2s2 χ{|p|≤1}

∥∥∥∥∥
L2(R2)

≤ ‖xfn(x)− xf(x)‖L1(R2)

2
√
2π(1− s1)

→ 0

asn → ∞ by means of the one of our assumptions. Therefore,

un(x) → u(x) in L2(R2), n → ∞

in the space of two dimensions withs1 ∈
[1
2
, 1
)

.

We proceed to the proof of the part c) of our theorem, when the dimension

d = 3 and s1 ∈
(
0,

3

4

)
. In this case, by virtue of the part c) of Theorem 1.1,

equations (1.2) and (1.3) admit unique solutionsu(x) ∈ H2s2(R3) andun(x) ∈
H2s2(R3), n ∈ N respectively. Using (1.15), we derive the estimate from above in
the absolute value on the first term in the right side of (2.35)by

‖fn(x)− f(x)‖L1(R3)

(2π)
3

2 |p|2s1
χ{|p|≤1},

so that itsL2(R3) norm can be bounded from above by

1

π
√

2(3− 4s1)
‖fn(x)− f(x)‖L1(R3) → 0, n → ∞

via the one of the given conditions. Therefore,

un(x) → u(x) in L2(R3), n → ∞

in the situation when the dimensiond = 3 with s1 ∈
(
0,

3

4

)
.

For the higher values of the power of the three dimensional negative Laplacian

s1 ∈
[3
4
, 1
)

, we havefn(x) ∈ L1(R3), n ∈ N, such thatfn(x) → f(x) in L1(R3)

asn → ∞ by means of the parts a) and b) of Lemma 4.1 of [32]. Then the
orthogonality relation

(f(x), 1)L2(R3) = 0 (2.44)
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can be derived via the simple limiting argument, similarly to (2.36). By virtue of
the part c) of Theorem 1.1, problems (1.2) and (1.3) admit unique solutionsu(x) ∈
H2s2(R3) andun(x) ∈ H2s2(R3), n ∈ N respectively. Orthogonality conditions
(2.44) and (1.13) give us

f̂(0) = 0, f̂n(0) = 0, n ∈ N

when the dimensiond = 3 ands1 ∈
[3
4
, 1
)

. This enables us to derive here the

expressions analogous to (2.41). We use the three dimensional analog of inequality
(2.43) to obtain the estimate from above on the first term in the right side of (2.35)
in the absolute value by

‖xfn(x)− xf(x)‖L1(R3)

(2π)
3

2

|p|1−2s1χ{|p|≤1},

so that itsL2(R3) norm can be bounded from above by

1

π
√

2(5− 4s1)
‖xfn(x)− xf(x)‖L1(R3) → 0, n → ∞

as assumed. Therefore,

un(x) → u(x) in L2(R3), n → ∞

in the situation when the dimensiond = 3 ands1 ∈
[3
4
, 1
)

.

Let us turn our attention to the case d) of the theorem. By means of the part d)
of Theorem 1.1 problems (1.2) and (1.3) possess unique solutionsu(x) ∈ H2s2(Rd)
andun(x) ∈ H2s2(Rd), n ∈ N respectively. Using inequality (1.15), we obtain the
upper bound on the first term in the right side of (2.35) in the absolute value by

‖fn(x)− f(x)‖L1(Rd)

(2π)
d
2 |p|2s1

χ{|p|≤1}, d ≥ 4,

so that itsL2(Rd) norm can be estimated from above by

1

(2π)
d
2

√
|Sd|

d− 4s1
‖fn(x)− f(x)‖L1(Rd) → 0, n → ∞

by means of the one of our assumptions. HereSd stands for the unit sphere centered
at the origin in our space ofd dimensions and|Sd| for its Lebesgue measure. Thus,

un(x) → u(x) in L2(Rd), d ≥ 4, n → ∞

with s1 ∈ (0, 1).
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3. Solvability in the sense of sequences with a scalar potential

Proof of Theorem 1.4.To establish the uniqueness of solutions for our problem, we
suppose that there exist bothu1(x) andu2(x) which are square integrable inR3 and
satisfy (1.16). Then their differencew(x) := u1(x) − u2(x) ∈ L2(R3) solves the
equation

Lw = 0.

The fact that the operatorL defined in (1.19) has no nontrivialL2(R3) zero modes
as discussed above implies thatw(x) vanishes a.e. inR3.

We apply the generalized Fourier transform (1.23) with the functions of the
continuous spectrum of our Schrödinger operator to both sides of equation (1.16).
This gives us

ũ(k) =
f̃(k)

|k|2s1 + |k|2s2χ{|k|≤1} +
f̃(k)

|k|2s1 + |k|2s2χ{|k|>1}. (3.45)

The second term in the right side of (3.45) can be easily bounded from above in the
absolute value as

∣∣∣∣∣
f̃(k)

|k|2s1 + |k|2s2χ{|k|>1}

∣∣∣∣∣ ≤
|f̃(k)|
2

∈ L2(R3)

due to the one of our assumptions. Let us first discuss the casewhen0 < s1 <
3

4
.

Then the first term in the right side of (3.45) can be estimatedfrom above in the
absolute value via inequality (1.24) as
∣∣∣∣∣

f̃(k)

|k|2s1 + |k|2s2χ{|k|≤1}

∣∣∣∣∣ ≤
1

(2π)
3

2

1

1− I(V )
‖f(x)‖L1(R3)

χ{|k|≤1}

|k|2s1 ∈ L2(R3).

This completes the proof of part 1) of the theorem. We conclude the argument by

considering the case when the power
3

4
≤ s1 < 1. Let us express

f̃(k) = f̃(0) +

∫ |k|

0

∂f̃ (q, σ)

∂q
dq.

Here
f̃(0) = (f(x), ϕ0(x))L2(R3).

Therefore, the first term in the right side of (3.45) can be written as

f̃(0)

|k|2s1 + |k|2s2χ{|k|≤1} +

∫ |k|

0
∂f̃(q,σ)

∂q
dq

|k|2s1 + |k|2s2χ{|k|≤1}. (3.46)
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Obviously, the second term in sum (3.46) can be easily bounded above in the abso-
lute value as

∣∣∣∣∣

∫ |k|

0
∂f̃(q,σ)

∂q
dq

|k|2s1 + |k|2s2χ{|k|≤1}

∣∣∣∣∣ ≤ ‖∇qf̃(q)‖L∞(R3)|k|1−2s1χ{|k|≤1} ∈ L2(R3).

Note that under the given assumptions∇qf̃(q) ∈ L∞(R3) via Lemma 2.4 of [25].
Thus, it remains to analyze the term

f̃(0)

|k|2s1 + |k|2s2χ{|k|≤1}. (3.47)

It can easily checked that (3.47) is square integrable if andonly if f̃(0) vanishes.
This is equivalent to orthogonality condition (1.25).

Let us turn our attention to the establishing of our final mainstatement dealing
with the solvability in the sense of sequences.

Proof of Theorem 1.5.Evidently, each problem (1.17) admits a unique solution
un(x) ∈ L2(R3), n ∈ N via the result of Theorem 1.4 above. It can be easily
checked that in case 2) of the theorem the limiting orthogonality condition

(f(x), ϕ0(x))L2(R3) = 0 (3.48)

is valid. Indeed, by virtue of (1.26) along with inequality (1.24)

|(f(x), ϕ0(x))L2(R3)| = |(f(x)− fn(x), ϕ0(x))L2(R3)| ≤

≤ 1

(2π)
3

2

1

1− I(V )
‖fn(x)− f(x)‖L1(R3) → 0, n → ∞.

Note that via the assumptions of part 2) of our theorem we havefn(x) ∈ L1(R3),
so thatfn(x) → f(x) in L1(R3) asn → ∞ by means of the parts a) and b) of
Lemma 4.1 of [32]. Thus, in both cases of the theorem, limiting problem (1.16) has
a unique solutionu(x) ∈ L2(R3) due to the result of Theorem 1.4. We apply the
generalized Fourier transform (1.23) to both sides of equation (1.17). This yields

ũn(k) =
f̃n(k)

|k|2s1 + |k|2s2 , n ∈ N,

such that

ũn(k)− ũ(k) =
f̃n(k)− f̃(k)

|k|2s1 + |k|2s2χ{|k|≤1} +
f̃n(k)− f̃(k)

|k|2s1 + |k|2s2χ{|k|>1}. (3.49)
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Evidently, the second term in the right side of (3.49) can be easily bounded from

above in the absolute value by
|f̃n(k)− f̃(k)|

2
. Thus,

∥∥∥∥∥
f̃n(k)− f̃(k)

|k|2s1 + |k|2s2χ{|k|>1}

∥∥∥∥∥
L2(R3)

≤ 1

2
‖fn(x)− f(x)‖L2(R3) → 0, n → ∞

due to the one of our assumptions. First we consider the case when0 < s1 <
3

4
.

(1.24) gives us

|f̃n(k)− f̃(k)| ≤ 1

(2π)
3

2

1

1− I(V )
‖fn(x)− f(x)‖L1(R3).

Hence, we derive the estimate from above for the first term in the right side of (3.49)
in the absolute value as

∣∣∣∣∣
f̃n(k)− f̃(k)

|k|2s1 + |k|2s2χ{|k|≤1}

∣∣∣∣∣ ≤
1

(2π)
3

2

1

1− I(V )
‖fn(x)− f(x)‖L1(R3)

χ{|k|≤1}

|k|2s1 .

Clearly, this implies
∥∥∥∥∥
f̃n(k)− f̃(k)

|k|2s1 + |k|2s2χ{|k|≤1}

∥∥∥∥∥
L2(R3)

≤ 1√
2π

1

1− I(V )

‖fn(x)− f(x)‖L1(R3)√
3− 4s1

→ 0

asn → ∞ as assumed. Thus,un(x) → u(x) in L2(R3) asn → ∞ in the situation

whens1 ∈
(
0,

3

4

)
.

Let us turn our attention to the case whens1 ∈
[3
4
, 1
)

. As discussed above,

it is sufficient to consider the first term in the right side of (3.49). Orthogonality
conditions (3.48) and (1.26) imply that

f̃(0) = 0, f̃n(0) = 0, n ∈ N,

so that

f̃(k) =

∫ |k|

0

∂f̃(q, σ)

∂q
dq, f̃n(k) =

∫ |k|

0

∂f̃n(q, σ)

∂q
dq, n ∈ N.

This allows us to express the first term in the right side of (3.49) as

∫ |k|

0

[
∂f̃n(q,σ)

∂q
− ∂f̃(q,σ)

∂q

]
dq

|k|2s1 + |k|2s2 χ{|k|≤1},
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which can be easily bounded from above in the absolute value by

‖∇q[f̃n(q)− f̃(q)]‖L∞(R3)|k|1−2s1χ{|k|≤1}.

Hence,
∥∥∥∥∥
f̃n(k)− f̃(k)

|k|2s1 + |k|2s2χ{|k|≤1}

∥∥∥∥∥
L2(R3)

≤ ‖∇q[f̃n(q)− f̃(q)]‖L∞(R3)

2
√
π√

5− 4s1
.

By virtue of the result of Lemma 3.4 of [23] under the stated assumptions we have

‖∇q[f̃n(q)− f̃(q)]‖L∞(R3) → 0, n → ∞,

which completes the proof of our theorem.
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