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Rokitanského 62, 500 03 Hradec Králové, Czechia
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1. Introduction

Symmetry plays an important role in many branches of physics and mathematics. It
can be found in many systems in physics, chemistry or biology, as crystals, molecules,
living organisms, or the structure of fundamental laws of nature. Its importance lies in
simplifying the tasks; even a very difficult problem can be reduced, using its symmetry,
and solved significantly more easily.

The quantum graphs, first used for the description of aromatic molecules in the 1930’s
[1] and 1950’s [2], then widely studied since the 1980’s, can serve as a nice example of
the importance of symmetry. This model, reasonably simple from the mathematical
point of view (set of ordinary differential equations), shows many non-trivial properties
and therefore is used as a toy model, e.g. for describing quantum chaos [3, 4]. Quantum
graphs, however, are not an artificial problem; the Schrödinger equation on a network
has applications in describing nanotubes, photonic crystals, etc. The mathematical
claims on the properties of this quantum problem, do not need quantum theory to be
experimentally verified. Using similar forms of the Schrödinger and telegraph equation,
one can model quantum graphs with the so-called microwave graphs – the behavior
of a quantum particle is replaced by the propagation of microwaves in coaxial cables
[5, 6, 7, 8, 9].
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2 QUOTIENT GRAPHS

Symmetry allows decomposing complicated graphs with many edges into simpler
graphs, for which the term quotient graphs is used. This is useful e.g. for finding
the secular equation for the graph eigenvalues or the resonance condition for resolvent
resonances. As we show in Section 3, the secular equation is given by the determinant of
a square matrix with the number of rows and columns being double the number of graph
edges. Hence reducing the number of edges significantly simplifies the computation.

The paper [10] summarized the theory (previously developed in [11, 12]) for con-
structing quotient graphs using the symmetry groups of the graph. Applications to
both combinatorial and quantum graphs are provided in the mentioned paper. Using
this construction, one may obtain the quotient graphs, each corresponding to one par-
ticular irreducible representation of the symmetry group. There are various utilizations
of this theory, it was used for simplifying the graph and computing the secular equa-
tion e.g. in [14]. The theory was also applied to the construction of quantum graphs
providing GSE (Gaussian Symplectic Ensemble) statistics in [15].

The present paper aims to introduce the quotient graph theory developed in [10]
in a compact form and showing its applications in rather simple, but still non-trivial
examples. We focus on quantum graphs quotients only, in particular, we chose equi-
lateral star graphs consisting of three edges. Alternating the coupling condition at the
central vertex, we can change the symmetry group of the graph. In detail, we show
the construction for the S3 group (the symmetry group for standard and δ-coupling),
including the construction of the irreducible representations of this group. Introducing
a preferred direction in the graph using a special type of coupling first used in [13], one
may reduce the group symmetry to C3. Hence the irreducible representations change
and instead of two one-dimensional and one two-dimensional representations we obtain
three one-dimensional representations.

The paper is structured as follows. In the next two sections, we give necessary
preliminaries needed for stating the theorem of [10] – in Section 2 we introduce the
main notions of the group theory, and Section 3 is devoted to quantum graphs. In
Section 4 we state the procedure from [10] allowing us to obtain quotients for the
quantum graphs. In Section 5 we apply this theory to three-edge graphs. We obtain
the representations of the S3 group and find the kernel space needed in the procedure.
Using it, we find in Subsections 5.3 and 5.4 the quotient graphs for standard and
δ-coupling. Subsection 5.5 is devoted to the example of the graph with preferred-
orientation coupling which is symmetric under the C3 group. Finally, we conclude the
results in Section 6.

2. Preliminaries about group theory

In this section, we revise necessary notions of the group theory, which allow us to
formulate the quotient graph method. We focus mainly on the representation theory
for groups. The current paper cannot give a full and detailed description of the field,
therefore, we refer the interested reader e.g. to publications [16, 17, 18]. We start with
the definition of the group.

Definition 2.1. Group (G, ·) is a set G with a binary operation “·” for which the
following properties hold

(1) G is closed with respect to “·”, i.e. a · b ∈ G for all a, b ∈ G,
(2) the operation “·” is associative, i.e. (a · b) · c = a · (b · c) for all a, b, c ∈ G,
(3) there exists an identity element e for which e · a = a · e for all a ∈ G,
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(4) for each a ∈ G there exists the inverse element a−1 such that a−1 ·a = a·a−1 = e.

Definition 2.2. Two elements a, b ∈ G are in the same conjugacy class if there is an
element g ∈ G, such that b = g−1 · a · g.

Definition 2.3. Let (G, ∗) and (H, ·) be two groups. The map ϕ : G → H is called a
homomorphism from the group G to H if it satisfies

ϕ(a ∗ b) = ϕ(a) · ϕ(b) .

If a homomorphism is bijective, we call it isomorphism. Isomorphism ϕ : G → G is
called automorphism.

Note that “∗” is the group operation in the group G and “·” is the group operation
in the group H. The homomorphism, therefore, preserves the group operation. In the
following text, we will consider finite groups (groups with a finite number of elements).

Definition 2.4. Let V be a vector space. The representation of the group (G, ∗) on V
is a map ρ : G→ GL(V ) such that

ρ(a ∗ b) = ρ(a) · ρ(b)

for all a, b ∈ G. Here GL(V ) is the general linear group of the vector space V , i.e. the
group of all automorphisms on V . The dimension of the vector space V is called the
dimension of the representation or its degree. The space V is called the carrier space
of the representation.

Let us briefly comment on the previous definition. The elements of the linear group
GL(V ) can be viewed as square matrices; the corresponding group operation is matrix
multiplication. This allows us to obtain an equivalent group to (G, ∗), where the
elements of the new group are square d × d matrices and the group operation is the
matrix multiplication; here, d is the dimension of the representation.

Definition 2.5. Let (G, ∗) be a group and ρ be its representation. A linear subspace
W ⊂ V is called G-invariant if ρ(a) · w ∈ W for all a ∈ G and all w ∈ W . Here,
“·” is matrix multiplication between the matrix ρ(a) and the finite-dimensional column
vector w. If V contains a subspace W ( V with the previously mentioned property, we
call the representation ρ reducible. Otherwise, it is called irreducible.

The meaning of the previous definition is that if we find a subspace for which all
the matrices ρ(a), a ∈ G map this vector subspace to itself, we have a reducible repre-
sentation. In other words, there exists a similarity transformation of all the matrices

ρ(a) which maps them into matrices of the block type

(
DW DWW ′

0 DW ′

)
. Moreover, if

the block DWW ′ = 0, the representation is called decomposable, as the next definition
states.

Definition 2.6. The representation ρ is called decomposable if there is a basis in which
the matrices ρ(a) are of block diagonal form. Then the subspace W ⊂ V is called the
reducing subspace.

Each decomposable representation can therefore be written as a direct sum of two
(or more) irreducible representations, each of them given by the matrices in blocks.
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Definition 2.7. Let V be a finite dimensional vector space over a field T , (G, ∗) a
group and ρ a representation of (G, ∗) on V . Then the function χρ : G→ T defined as

χρ(a) = Tr (ρ(a))

for each a ∈ G is called a character of the representation ρ. Here, the symbol Tr
denotes the trace of a matrix. By χρ(a) we mean the character of the element a in the
representation ρ.

Proposition 2.8. The characters of the group elements in the same conjugacy class
are the same.

Proof. Clearly, using the properties of the trace, we have

Tr (g−1 · a · g) = Tr (a)

which proves the claim. �

Definition 2.9. Let |G| be the number of elements of the group G. For characters χρ1,
χρ2 of two representations ρ1, ρ2 we define the inner product as

〈χρ1 , χρ2〉 :=
1

|G|
∑
a∈G

χρ1(a)χρ2(a) .

We state the following proposition, the proof can be found, e.g. in [16].

Proposition 2.10. The following properties of the inner product hold.

i) The representation ρ is irreducible if and only if its character χρ satisfies
〈χρ, χρ〉 = 1.

ii) Let Vj, j = 1, . . . k be the vector spaces associated with the irreducible represen-
tations ρj and V be the vector space associated with the reducible representation
π of the group (G, ·). Let V ∼= V ⊕α1

1 ⊕ V ⊕α2
2 ⊕ · · · ⊕ V ⊕αk

k (the sign ∼= denotes
isomorphism, ⊕ denotes the direct sum, and V ⊕α1

1 means α1 copies of the vector
space V1). Then the multiplicity αj of the irreducible representation ρj in π is
given by

αj =
〈
χπ, χρj

〉
.

Definition 2.11. Let (G, ∗) be a group with the identity element e and let S be a set.
Then the (left) action of G on S is the operation ◦ : G×S → S satisfying the following
three axioms

a) g ◦ s ∈ S for all s ∈ S and g ∈ G,
b) e ◦ s = s for all s ∈ S,
c) g1 ◦ (g2 ◦ s) = (g1 ∗ g2) ◦ s for all s ∈ S and g1, g2 ∈ G.

In the following text, we will, with small abuse of notation, denote the group action
by the same symbol “∗” as the group multiplication.

3. Preliminaries about quantum graphs

We briefly introduce the usual description of quantum graphs. For more details, we
refer the reader to the publications [19, 20].

Let us consider a metric graph consisting of |V| vertices and |E| edges ej of finite
lengths `j, j = 1, . . . , |E| that connect two vertices. The vertex set is denoted by V
and the edge set by E . We consider the Hilbert space H = ⊕|E|j=1L

2(ej). In this Hilbert
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space we define a second-order differential operator H acting as H = − d2

dx2
with the

domain consisting of the functions with edge components in the Sobolev space W 2,2(ej)
satisfying the coupling conditions at each vertex Xs ∈ V with the degree (valency) ds

AsΨs +BsΨ
′
s = 0 , (3.1)

where As and Bs are ds×ds matrices satisfying As ·B†s = Bs ·A†s († denotes the hermitian
conjugation) and the joined rectangular matrix (As, Bs) has maximal rank. The vector
Ψs is the vector of the limiting values of functions at the vertex Xs from the edges
incident to this vertex and Ψ′s is a similarly defined vector of outgoing derivatives.

The coupling on the whole graph can be described by the 2|E|×2|E| matrices A and
B that can be obtained from block matrices consisting of As and Bs, respectively, after
a transformation that interchanges rows and columns. The coupling conditions (3.1)
can be written in one equation

AΨ +BΨ′ = 0 . (3.2)

Here, the vectors are

Ψ = (f1(0), f1(`1), f2(0), f2(`2), . . . , f|E|(`|E|))
T ,

Ψ′ = (f ′1(0),−f ′1(`1), f ′2(0),−f ′2(`2), . . . ,−f ′|E|(`|E|))T ,

where fj are the components of the wavefunction on the edges of the graph.
The operator defined in the above manner is the Hamiltonian of a quantum particle

on the graph in the set of units with ~2
2m

= 1 which moves freely on the graph edges and
interacts only at the vertices. The properties of the matrices As and Bs ensure that
the Hamiltonian is self-adjoint. Similarly, the matrices A and B satisfy A ·B† = B ·A†
and the maximal-rank condition. There is an alternative description of the coupling
conditions using a unitary matrix U (unitarity means the condition U ·U † = U †U = I,
where I is an identity matrix). Since the whole equation (3.2) can be multiplied by
a regular square matrix from the left without changing the coupling condition, one can
choose A = C(U−I), B = iC(U +I) with C being a regular 2|E|×2|E| square matrix.
Unitarity of U results in satisfying the conditions on A and B and the Hamiltonian is
therefore self-adjoint.

From the mathematical point of view, a quantum graph is a set of ordinary differ-
ential equations (ODE) coupled by vertex conditions. When finding the spectrum of
the graph, one has to solve the eigenvalue equation −f ′′j (x) = k2fj(x) at each edge
of the graph. It follows from the ODE theory that the solutions fj can be found in
the form fj(x) = aj sin (kx) + bj cos (kx). Thus the energies k2 can be found when
one substitutes the above form of the wavefunctions into the coupling condition (3.2),
and constructs the secular equation given by vanishing the determinant of the matrix
multiplying the vector of coefficients (a1, b1, . . . , a|E|, b|E|)

T.

4. Quotient graph theory

The procedure for obtaining the quotient graphs from the original quantum graph
was described in [10]. We briefly describe its main concepts; for the proof and more
insight, we refer to the mentioned publication.

First, we introduce the Kronecker product.
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Definition 4.1. The Kronecker product of two matrices C (m×n matrix) and D (p×q
matrix) is a mp× nq matrix given by

C ⊗D :=


c11D c12D . . . c1nD
c21D c22D . . . c2nD

...
...

. . .
...

cm1D cm2D . . . cmnD

 ,

where cij, i = 1, . . . ,m, j = 1, . . . , n are the entries of the matrix C. In the above
equation there are denoted the p× q blocks of the resulting matrix.

Secondly, we introduce the notion of a π-symmetric graph. Let us consider a quantum
graph Γ with finitely many finite edges ej. Let (G, ∗) be the symmetry group of the
graph Γ which maps each edge ej to another edge g ∗ ej, where “∗” now denotes the
group action on a set. The edge g ∗ ej may or may not be the same one, however, we
assume that G does not map any edge to its reverse. In that case, we would introduce
a vertex with the standard condition in the middle of this edge and thus dividing it
into two.

Definition 4.2. Let π : G→ GL(C|E|) be a representation of a group (G, ∗) such that
for each g ∈ G the matrix π(g) is a permutation matrix. The graph Γ is π-symmetric
if the following two conditions hold

(1) For each g ∈ G and each j = 1, . . . , |E| and the index i given by ei = g ∗ ej, the
condition `j = `i holds.

(2) The coupling condition (3.2) for the coupling matrices A and B is satisfied
iff this coupling condition is satisfied for each g ∈ G for the coupling matrices
A · π̂(g) and B · π̂(g) (dot denotes matrix multiplication), where π̂(g) = π(g)⊗I2

(here I2 denotes the 2× 2 identity matrix).

The previous definition allows us to define the action π(g) on the vector of edge
components of the function f ∈ W 2,2(Γ) as

π(g)


fe1
fe2
...

fe|E|

 =


fg−1∗e1
fg−1∗e2

...
fg−1∗e|E|

 . (4.1)

The following definition of the kernel space will be useful for defining the quotient
graph.

Definition 4.3. Let Γ be a graph with the symmetry given by the symmetry group
(G, ∗), let π be the permutation representation defined by (4.1) and let ρ be an irre-
ducible representation of G with the dimension r. Then the kernel space associated
with ρ is defined as

KG(ρ, π) :=
⋂
g∈G

Ker [Ir ⊗ π(g)− ρ(g)T ⊗ I|E|] . (4.2)

Here, Ker denotes the kernel of the space in the parentheses, Ir and I|E| the r × r and
|E| × |E| identity matrices, respectively, and T the transpose of a matrix.

The following, slightly technical definition, introduces matrices needed in quotient
graph construction.
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Definition 4.4. We define the orbits Oi := {ej ∈ P : ej = g ∗ ei for some g ∈ G}.
Let ej be the standard basis of vectors in C|E| (do not confuse with the edges ej). We
define the space Xi as the span of {ej : ej ∈ Oi}. We define the set D = {ej1 , . . . , ej|D|}
the set of edges so that each eji is one representative for each orbit Oi, hence |D| is the
number of orbits. Let Vρ denote the carrier space of ρ. Then we define the subspaces
Ki
G(ρ, π) := KG(ρ, π) ∩ [Vρ ⊗ Xi], i = 1, . . . , |D|. Let di := dimKi

G(ρ, π) Let Θi be
the matrices consisting of columns of vectors in the orthonormal basis of Ki

G(ρ, π) for

i = 1, . . . , |D|. Finally, we define the matrices Θ := (Θ1,Θ2, . . . ,Θ|D|) and Θ̂ := Θ⊗I2.

Finally, we arrive at the definition of a quotient graph and at the main theorem.

Definition 4.5. Let Γ be a finite quantum graph with |E| edges and the coupling con-
ditions (3.2) given by the matrices A and B, which has the symmetry given by the
group (G, ∗). Then the quotient graph Hamiltonian Hρ corresponding to irreducible
representation ρ contained in the representation π of (G, ∗) of dimension r is defined
in the following way. It is given by the operator acting as negative second derivative on
a graph Γρ consisting of the edges {ei,j} with i ∈ D, j = 1, . . . , di of the length `i (the
edge length of the former edge ei). The domain of the Hamiltonian on Γρ are functions
in the Sobolev space W 2,2(Γρ) satisfying the coupling conditions given by the matrices

Aρ := Θ̂†[Ir ⊗ Ã]Θ̂ , Bρ := Θ̂†[Ir ⊗ B̃]Θ̂ ,

where † denotes the hermitian conjugation and Ã := (A+ iB)−1A, B̃ := (A+ iB)−1B.

Theorem 4.6. (Band, Berkolaiko, Joyner, Liu)
The original Hamiltonian H on the graph Γ is unitarily equivalent to the direct sum
over all irreducible representations of G contained in π.

H ∼=
⊕
ρ

H⊕r(ρ)
ρ .

Here r(ρ) is the dimension of the representation ρ and H
⊕r(ρ)
ρ denotes r(ρ) copies of

the quotient graph operator Hρ.

The second part of the theorem says that one has to take r copies of the quotient
graph corresponding to the representation ρ.

5. The three-edge graph

We will apply the method introduced in the previous section to a particular graph.
We consider a star graph consisting of three edges of the same length ` with the
same boundary conditions at the loose ends and a symmetric coupling condition at
the central vertex. Later, we will introduce the coupling conditions; we will consider
Neumann boundary conditions at the loose ends and three versions of the coupling
condition at the central vertex. However, the first two quantum graphs are symmetric
under the group S3 – the group of permutations of three elements; the third one has
C3 symmetry.

5.1. Representations of the group S3. Let us start by describing the group S3.
It consists of six elements: the identity element is the permutation that keeps all the
edges, there are three permutations interchanging two edges and two which cyclically
interchange all three edges. We will employ the notation [ijk] for a permutation g
for which g(1) = i, g(2) = j, g(3) = k. In Table 1 we list all the permutations
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(group elements of the considered group (G, ∗)) and their inverse elements. There are
three conjugacy classes, consisting of one, three, and two elements; in the table, these
conjugacy classes are separated by a double vertical line.

g [123] [213] [321] [132] [231] [312]
g−1 [123] [213] [321] [132] [312] [231]

Table 1. Elements of the group S3 and their inverses.

We give the form of the representation π defined by (4.1). The representation π at
each element is a 3× 3 permutation matrix. One can notice that for an element [ijk],
ones are in the first column and i-th row, second column and j-th row and in the third
column and the k-th row, the other entries of the matrix are zero. The representation
π is for the group S3 usually called the defining representation.

π([123]) =

1 0 0
0 1 0
0 0 1

 , π([213]) =

0 1 0
1 0 0
0 0 1

 , π([321]) =

0 0 1
0 1 0
1 0 0

 ,

π([132]) =

1 0 0
0 0 1
0 1 0

 , π([231]) =

0 0 1
1 0 0
0 1 0

 , π([312]) =

0 1 0
0 0 1
1 0 0

 . (5.1)

We leave for the reader to check that this really is a representation, i.e. that π(g1 ∗
g2) = π(g1) ·π(g2), where star denotes the group operation in the group G (composition
of permutations) and dot denotes matrix multiplication.

The next step will be finding the irreducible representations of the group S3. Al-
though the procedure can be found in the literature (e.g. [16]), for the reader’s con-
venience we state it here as well. Any group has the so-called trivial representation,
which is a one-dimensional representation assigning to all the elements number 1. One
can easily prove that the one-dimensional representation assigning 1 to all even per-
mutations and −1 to all odd permutations is also a representation of the group S3. We
will call it the signum representation. The most difficult task will be to find the third
irreducible representation, the orthogonal representation, later we will find that it is a
two-dimensional one.

First, we give the table of characters of the representations (see Table 2). For the
defining representation, the characters are obtained as the traces of the matrices in
(5.1). For the one-dimensional representations (the trivial and signum representations)
the characters are identical with the 1× 1 matrices of the representations. Notice that
according to Proposition 2.8 the characters of the elements in the same conjugacy class
are the same. In the following paragraphs, we comment on how the characters of the
elements of the orthogonal representation are obtained and therefore how the last row
of Table 2 is found.

Let us now show that the trivial and signum representations are irreducible and that
the defining representation is not. We will use Proposition 2.10. The inner products
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group element [123] [213] [321] [132] [231] [312]
defining representation 3 1 1 1 0 0
trivial representation 1 1 1 1 1 1
signum representation 1 −1 −1 −1 1 1

orthogonal representation 2 0 0 0 −1 −1

Table 2. Characters of the representations.

are

〈χdef , χdef〉 =
1

6
(1 · 3 · 3 + 3 · 1 · 1 + 2 · 0 · 0) = 2 ,

〈χtriv, χtriv〉 =
1

6
(1 · 1 · 1 + 3 · 1 · 1 + 2 · 1 · 1) = 1 ,

〈χsign, χsign〉 =
1

6
(1 · 1 · 1 + 3 · (−1) · (−1) + 2 · 1 · 1) = 1 .

The inner products for the trivial and signum representations are equal to 1, therefore
these representations are irreducible, the defining representation is not.

Now we find the multiplicities of the trivial and signum representations in the defining
representation.

〈χdef , χtriv〉 =
1

6
(1 · 3 · 1 + 3 · 1 · 1 + 2 · 0 · 1) = 1 ,

〈χdef , χsign〉 =
1

6
(1 · 3 · 1 + 3 · 1 · (−1) + 2 · 0 · 1) = 0 .

We can see that the multiplicity of the trivial representation in the defining representa-
tion is 1, while the signum representation is not contained in the defining representation.
Hence we define the orthogonal representation as the complement of the trivial repre-
sentation in the defining representation and we have χorth = χdef −χtriv. This equation
gives the last row in Table 2. One can simply verify that the orthogonal representation
is irreducible.

〈χorth, χorth〉 =
1

6
(1 · 2 · 2 + 3 · 0 · 0 + 2 · (−1) · (−1)) = 1 .

We proceed by finding the matrices of the orthogonal representation; the procedure
was described, e.g., in [21, 22]. Since the trivial representation is contained in the
defining representation with multiplicity one, we write the defining representation on a
certain basis of the orthogonal complement of the subspace corresponding to the trivial
representation. We use the following basis of the R3 space.

f1 = e1 + e2 + e3 =

1
1
1

 , f2 = e2 − e1 =

−1
1
0

 , f2 = e3 − e1 =

−1
0
1

 .
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Let us show the construction for the group element [321], which interchanges the
first and the third edge.

π([321])f1 = π([321])(e1 + e2 + e3) =

0 0 1
0 1 0
1 0 0

1
1
1

 =

1
1
1

 = e1 + e2 + e3 = f1 .

π([321])f2 = π([321])(e2 − e1) =

0 0 1
0 1 0
1 0 0

−1
1
0

 =

 0
1
−1

 =

= e2 − e3 = e2 − e1 − (e3 − e1) = f2 − f3 .

π([321])f3 = π([321])(e3 − e1) =

0 0 1
0 1 0
1 0 0

−1
0
1

 =

 1
0
−1

 = e1 − e3 = −f3 .

If we write the action of this group element in the basis f1, f2, f3, we obtain the

matrix

1 0 0
0 1 0
0 −1 −1

. Since the subspace corresponding to the trivial represen-

tation is the span of f1, the restriction to the orthogonal space span {f2, f3} gives

ρorth([321]) =

(
1 0
−1 −1

)
. Similarly, we can obtain the other matrices of the two-

dimensional orthogonal representation.

ρorth([123]) =

(
1 0
0 1

)
, ρorth([213]) =

(
−1 −1
0 1

)
, ρorth([321]) =

(
1 0
−1 −1

)
,

ρorth([132]) =

(
0 1
1 0

)
, ρorth([231]) =

(
−1 −1
1 0

)
, ρorth([312]) =

(
0 1
−1 −1

)
.

5.2. Application of the quotient graph theory. In this subsection, we obtain
the kernel space KG(ρ, π) and the corresponding matrices Θ and Θ̂ corresponding to
irreducible representations of the group S3. This part of the quotient graph theory
does not depend on the coupling conditions, only on the symmetry group.

Let us start with the orthogonal representation. We obtain the kernel space according
to the equation (4.2). Since the representation is two-dimensional, we will use r = 2.
The number of edges of the graph is |E| = 3. We will show the construction of the
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kernel for the group element [321] in detail and then list the results for other elements.

I2 ⊗ π([321])− ρT
orth([321])⊗ I3 =

(
1 0
0 1

)
·

0 0 1
0 1 0
1 0 0

− (1 −1
0 −1

)
·

1 0 0
0 1 0
0 0 1

 =

=


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

−


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 =

=


−1 0 1 1 0 0
0 0 0 0 1 0
1 0 −1 0 0 1
0 0 0 1 0 1
0 0 0 0 2 0
0 0 0 1 0 1

 .

Hence we find that Ker (I2 ⊗ π([321]) − ρT
orth([321]) ⊗ I3) is composed of the vectors

(a1, a2, . . . , a6)T that satisfy

a5 = 0 , a4 = −a6 , −a1 + a3 + a4 = 0 .

If we write down the conditions for the above kernels for the other group elements,
we find that the space KG(ρorth, π) consists of vectors (a1, a2, . . . , a6)T satisfying

a1 = −a2 = a4 = −a6 , a3 = 0 , a5 = 0 .

Therefore, the kernel space is the span of the vector (1,−1, 0, 1, 0− 1)T. To obtain the
matrix Θ, we have to normalize this vector. We have

Θorth =



1
2
−1

2
0
1
2
0
−1

2

 , Θ̂orth = Θorth ⊗ I2 =



1
2
−1

2
0
1
2
0
−1

2

⊗
(

1 0
0 1

)
=



1
2

0
0 1

2
−1

2
0

0 −1
2

0 0
0 0
1
2

0
0 1

2
0 0
0 0
−1

2
0

0 −1
2



.

Now we continue with the trivial representation. Now r = 1. Let us again show the
construction for the group element [321].

I1 ⊗ π([321])− ρT
triv([321])⊗ I3 = 1⊗

0 0 1
0 1 0
1 0 0

− 1⊗

1 0 0
0 1 0
0 0 1

 =

−1 0 1
0 0 0
1 0 −1

 .

Hence Ker (I1 ⊗ π([321]) − ρT
triv([321]) ⊗ I3) consists of vectors (a1, a2, a3)T satisfying

a1 − a3 = 0.
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N

NN

ℓ

ℓℓ

S

(a) Standard coupling

N

NN

ℓ

ℓℓ

δ

(b) δ-coupling

N

NN

ℓ

ℓℓ

(c) Preferred-orientation
coupling

Figure 1. Figures of the three-edge graphs considered in Subsec-
tions 5.3, 5.4, and 5.5.

From the other group elements we obtain equations a1 = a2 and a2 = a3, thus
resulting into equation a1 = a2 = a3 which describes the vectors in KG(ρtriv, π). This
kernel space thus is the span of the vector (1, 1, 1)T. After normalization we obtain

Θtriv =

 1√
3

1√
3

1√
3

 , Θ̂triv = Θtriv ⊗ I2 =

 1√
3

1√
3

1√
3

⊗ (1 0
0 1

)
=



1√
3

0

0 1√
3

1√
3

0

0 1√
3

1√
3

0

0 1√
3


.

By a similar procedure, it can be proven that the kernel space for the signum repre-
sentation is empty. This is connected to the fact that the signum representation is not
contained in the defining representation.

5.3. Standard condition at the central vertex. Let us first consider a quantum
star graph consisting of three edges of the length ` (see Fig. 1a). We parametrize the
edges by the intervals (0, `) with x = 0 at the loose ends and x = ` at the central vertex.
We assume Neumann boundary conditions at the loose ends and standard coupling at
the central vertex.

f ′1(0) = f ′2(0) = f ′3(0) = 0 , f1(`) = f2(`) = f3(`) , −f ′1(`)−f ′2(`)−f ′3(`) = 0 . (5.2)

The matrices A and B corresponding to these coupling conditions are

A =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 −1 0 0
0 1 0 0 0 −1
0 0 0 0 0 0

 , B =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 1 0 1

 .
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Hence we obtain

Ã =


0 0 0 0 0 0
0 2

3
0 −1

3
0 −1

3
0 0 0 0 0 0
0 −1

3
0 2

3
0 −1

3
0 0 0 0 0 0
0 −1

3
0 −1

3
0 2

3

 , B̃ =


−i 0 0 0 0 0
0 − i

3
0 − i

3
0 − i

3
0 0 −i 0 0 0
0 − i

3
0 − i

3
0 − i

3
0 0 0 0 −i 0
0 − i

3
0 − i

3
0 − i

3

 .

Using Definition 4.5 we obtain for the orthogonal representation

Aρorth = Θ̂†orth(I2 ⊗ Ã)Θorth =

(
0 0
0 1

)
, Bρorth = Θ̂†orth(I2 ⊗ B̃)Θorth =

(
−i 0
0 0

)
.

and for the trivial representation

Aρtriv = Θ̂†trivÃΘtriv =

(
0 0
0 0

)
, Bρtriv = Θ̂†trivB̃Θtriv =

(
−i 0
0 −i

)
.

The graph Γρ is for the trivial representation the segment (0, `); for the orthogonal
representation we obtain two copies of this segment. The coupling conditions of the

graphs Γρ are given by condition (3.2) with Ψ =

(
f(0)
f(`)

)
and Ψ′ =

(
f ′(0)
−f ′(`)

)
, where

f denotes the wavefunction on the segment. For the orthogonal representation, the
coupling condition (3.2) with the coupling matrices Aρorth and Bρorth gives f ′(0) = 0
and f(`) = 0, i.e. the Neumann boundary condition at one end and Dirichlet at the
other. There are two copies of this graph since the dimension of the representation
is two. The coupling matrices for the trivial representation follow from the coupling
condition (3.2) with the matrices Aρtriv and Bρtriv . We obtain f ′(0) = 0 and f ′(`) = 0,
which corresponds to Neumann boundary conditions at both ends of the segment. Since
the kernel space for the signum representation is trivial, the graph Γρ is in this case
empty.

5.4. δ-condition at the central vertex. In the second example, we consider the
same graph as in Subsection 5.3, only the coupling condition at the central vertex is
replaced by the so-called δ-condition of the strength α ∈ R (see Fig. 1b).

f ′1(0) = f ′2(0) = f ′3(0) = 0 , f1(`) = f2(`) = f3(`) , −f ′1(`)− f ′2(`)− f ′3(`) = αf1(`) .

The corresponding coupling matrices read as follows.

A =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 −1 0 0
0 1 0 0 0 −1
0 −α 0 0 0 0

 , B =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 1 0 1

 .
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Hence we obtain

Ã =


0 0 0 0 0 0
0 α−2i

α−3i
0 i

α−3i
0 i

α−3i

0 0 0 0 0 0
0 i

α−3i
0 α−2i

α−3i
0 i

α−3i

0 0 0 0 0 0
0 i

α−3i
0 i

α−3i
0 α−2i

α−3i

 , B̃ =


−i 0 0 0 0 0
0 −1

α−3i
0 −1

α−3i
0 −1

α−3i

0 0 −i 0 0 0
0 −1

α−3i
0 −1

α−3i
0 −1

α−3i

0 0 0 0 −i 0
0 −1

α−3i
0 −1

α−3i
0 −1

α−3i

 .

From Definition 4.5 we obtain for the orthogonal representation

Aρorth = Θ̂†orth(I2 ⊗ Ã)Θorth =

(
0 0
0 1

)
, Bρorth = Θ̂†orth(I2 ⊗ B̃)Θorth =

(
−i 0
0 0

)
.

and for the trivial representation

Aρtriv = Θ̂†trivÃΘtriv =

(
0 0
0 α

α−3i

)
, Bρtriv = Θ̂†trivB̃Θtriv =

(
−i 0
0 −3

α−3i

)
.

Similarly to the previous example, the orthogonal representation gives two copies
of the quotient graph with Neumann boundary condition at one end and Dirichlet at
the other. The trivial representation leads to the segment with Neumann boundary
condition at one end and Robin boundary condition with the coupling parameter α/3

αg(`)− 3(−g′(`)) = 0 ⇒ −g′(`) =
α

3
g(`)

at the other end. The signum representation gives, as in the previous section, the
empty graph.

5.5. Preferred-orientation coupling at the central vertex. In the last example,
we consider the coupling condition of preferred orientation at the central vertex, earlier
studied in [13, 14, 23, 24]. This coupling condition, motivated by application to model-
ing quantum Hall effect was first used in [13]. For the particular energy E = 1 the wave
coming from one edge is fully transmitted to the neighbouring edge, the wave coming
from this edge is fully transmitted to the next edge, etc. cyclically (see Figure 1c). It
was found that the transport properties of the preferred orientation coupling depend
on the parity of the vertex (i.e. whether the vertex degree is even or odd). The vertex

coupling matrices are Av = Uv − I and Bv = i(Uv + I) with U =

0 1 0
0 0 1
1 0 0

. The

boundary conditions at the loose ends will again be Neumann.
The coupling matrices of the whole graph are

A =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 1 0 0
0 0 0 −1 0 1
0 1 0 0 0 −1

 , B =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 i 0 i 0 0
0 0 0 i 0 i
0 i 0 0 0 i

 .
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We have

Ã =


0 0 0 0 0 0
0 1

2
0 −1

2
0 0

0 0 0 0 0 0
0 0 0 1

2
0 −1

2
0 0 0 0 0 0
0 −1

2
0 0 0 1

2

 , B̃ =


−i 0 0 0 0 0
0 − i

2
0 − i

2
0 0

0 0 −i 0 0 0
0 0 0 − i

2
0 − i

2
0 0 0 0 −i 0
0 − i

2
0 0 0 − i

2

 .

However, one cannot use the same symmetry group as in the previous two examples.
The graph is no longer symmetric with respect to the symmetry group S3 since e.g.
interchanging two edges would change the direction of the wave for E = 1. From the
former group S3 only the elements [123] (identity), [231] and [312] (cyclic permutations)
do not change the symmetry of the graph (note that all these permutations are even).
The symmetry of the graph is, therefore, C3. It has three elements, the identity, the
rotation (denoted by a) by the angle 2π/3 and its inverse element a−1, i.e. the rotation
by the angle −2π/3. The group has three one-dimensional irreducible representations,
its character table is given in Table 3.

1 a a−1

χ1 1 1 1
χ2 1 ω ω̄
χ3 1 ω̄ ω

Table 3. Character table of the group C3. Here, ω = e2πi/3, ω̄ = e−2πi/3.

We proceed similarly as with the group S3 – we find the representation π and the
three irreducible representations that are identical to the above characters. Then we
apply the procedure from Subsection 5.2 to find the matrices Θ and Θ̂. Finally, we
obtain coupling matrices of the quotient graphs Aρ and Bρ. We list the results.

The representation π is

π(1) =

1 0 0
0 1 0
0 0 1

 , π(a) =

0 0 1
1 0 0
0 1 0

 , π(a−1) =

0 1 0
0 0 1
1 0 0

 .

The irreducible representations are

ρ1(1) = 1 , ρ1(a) = 1 , ρ1(a−1) = 1 ,

ρ2(1) = 1 , ρ2(a) = e2πi/3 , ρ2(a−1) = e−2πi/3 ,

ρ3(1) = 1 , ρ3(a) = e−2πi/3 , ρ3(a−1) = e2πi/3 .
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All the graphs Γρ are segments of the length `. Below, we obtain their boundary
conditions. For the first irreducible representation, we get

Θ1 =

− 1√
3

− 1√
3

− 1√
3

 , Θ̂1 =



− 1√
3

0

0 − 1√
3

− 1√
3

0

0 − 1√
3

− 1√
3

0

0 − 1√
3


, Aρ1 =

(
0 0
0 0

)
, Bρ1 =

(
−i 0
0 −i

)
.

This corresponds to the Neumann boundary condition at both ends of the interval.
The second and third representations yield (ω = e2πi/3, ω̄ = e−2πi/3)

Θ2 =

− 1√
3

− ω̄√
3

− ω√
3

 , Θ̂2 =



− 1√
3

0

0 − 1√
3

− ω̄√
3

0

0 − ω̄√
3

− ω√
3

0

0 − ω√
3


, Aρ1 =

(
0 0
0 1

2
(1− ω̄)

)
, Bρ1 =

(
−i 0
0 −i

2
(1 + ω̄)

)
.

Θ3 =

− 1√
3

− ω√
3

− ω̄√
3

 , Θ̂3 =



− 1√
3

0

0 − 1√
3

− ω√
3

0

0 − ω√
3

− ω̄√
3

0

0 − ω̄√
3


, Aρ3 =

(
0 0
0 1

2
(1− ω)

)
, Bρ3 =

(
−i 0
0 −i

2
(1 + ω)

)
.

These coupling matrices correspond to the Neumann boundary condition at one end
of the segment and Robin condition with the coefficient ±

√
3 at the other. For the

second representation, we have

g′(0) = 0 , −g′(`) =
1

i

1− ω̄
1 + ω̄

g(`) =
√

3g(`)

and for the third

g′(0) = 0 , −g′(`) =
1

i

1− ω
1 + ω

g(`) = −
√

3g(`) .

6. Conclusions

We have illustrated the usage of the quotient graph method on three-edge star graphs.
For the graph with Neumann boundary condition at the loose ends and standard cou-
pling at the central vertex, we obtained three segments of lengths `, one with Neumann
boundary condition at both ends, two with Neumann boundary condition at one end,
and Dirichlet at the other end. For the graph with Neumann boundary condition at
the loose ends and δ-condition at the central vertex, we again obtained two copies of
the segment of length ` with Neumann and Dirichlet conditions at the opposite ends;
the third quotient graph is a segment of length ` with Neumann boundary condition
at one end, and Robin condition (with the coupling parameter α/3) at the other end.
The example with the preferred-orientation coupling is symmetric under the C3 sym-
metry group and its quotient graphs are the segments of length `, one with Neumann
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condition at both ends, the two other with Neumann condition at one end and Robin
(with the parameter ±

√
3) at the other end.

We should stress that the above results can be obtained also without the machinery
of [10]. The trivial representation corresponds to the symmetric subspace of the domain
of the Hamiltonian and the orthogonal representation (or, in the case of preferred-
orientation coupling the representations χ2 and χ3) correspond to the two-dimensional
subspace of antisymmetric functions. However, the current note can serve as a simple
but non-trivial example of the quotient graph theory for quantum graphs and together
with the original paper [10] can teach the reader the procedures necessary for dealing
with more complicated problems.

Finally, let us illustrate how the relation H ∼=
⊕

ρH
⊕r(ρ)
ρ can be obtained in case

of the graph with standard coupling at the central vertex. Let the wavefunction com-
ponents of the three-edge graph be f1, f2, f3. The domain of the Hamiltonian on
the three-edge graph can be decomposed into the symmetric subspace (represented by
hsym(x) = 1√

3
(f1(x) + f2(x) + f3(x)) with x ∈ (0, `) and corresponding to the triv-

ial representation) and the two-dimensional anti-symmetric subspace (represented by
hant1(x) = 1√

2
(f1(x) − f2(x)) and hant2(x) = 1√

2
(f1(x) − f3(x)) with x ∈ (0, `), corre-

sponding to the orthogonal representation). The coupling conditions on the three-edge
graph (5.2) yield

h′sym(0) =
1√
3

(f ′1(0) + f ′2(0) + f ′3(0)) = 0 ,

h′sym(`) =
1√
3

(f ′1(`) + f ′2(`) + f ′3(`)) = 0 ,

h′ant1(0) =
1√
2

(f ′1(0)− f ′2(0)) = 0 ,

hant1(`) =
1√
2

(f1(`)− f2(`)) = 0 ,

h′ant2(0) =
1√
2

(f ′1(0)− f ′3(0)) = 0 ,

hant2(`) =
1√
2

(f1(`)− f3(`)) = 0 .

Therefore, we show that the symmetric subspace corresponds to the segment with Neu-
mann boundary conditions at both ends and the antisymmetric subspace to two copies
of the segment with Neumann condition at one end and Dirichlet at the other. The
Hamiltonian on the former three-edge graph is unitarily equivalent to the orthogonal
sum of the three mentioned operators.
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[9] M.  Lawniczak, J. Lipovský, M. Bia lous, L. Sirko, Application of topological resonances in exper-
imental investigation of a Fermi golden rule in microwave networks, Phys. Rev. E 103 (2021),
032208. DOI: 10.1103/PhysRevE.103.032208.

[10] R. Band, G. Berkolaiko, C. H. Joyner, W. Liu, Quotients of finite-dimensional operators by
symmetry representations, arXiv preprint, arXiv:1711.00918 [math-ph].

[11] R. Band, O. Parzanchevski, G. Ben-Shach, The Isospectral Fruits of Representation Theory:
Quantum Graphs and Drums, J. Phys. A: Math. Theor. 42 (2009), 17520. DOI: 10.1088/1751-
8113/42/17/175202.

[12] O. Parzanchevski, R. Band, Linear Representations and Isospectrality with Boundary Conditions,
J. Geom. Anal. 20 (2010), p. 439–471. DOI: 10.1007/s12220-009-9115-6.

[13] P. Exner, M. Tater, Quantum graphs with vertices of a preferred orientation, Phys. Lett. A 382
(2018), pp. 283–287. DOI: j.physleta.2017.11.028.
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