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Abstract

We investigate spectral properties of periodic quantum graphs in the form of a kagome

or a triangular lattice in the situation when the condition matching the wave functions at

the lattice vertices is chosen of a particular form violating the time-reversal invariance. The

positive spectrum consists of infinite number of bands, some of which may be flat; the negative

one has at most three and two bands, respectively. The kagome lattice example shows that even

in graphs with such an uncommon vertex coupling spectral universality may hold: if its edges

are incommensurate, the probability that a randomly chosen positive number is contained in

the spectrum is ≈ 0.639.

1 Introduction

Quantum graphs proved to be a useful tool to model quantum transport in periodically structured

environments, both natural and artificially prepared; the latter are gaining importance in connection

with the progress in metamaterial physics. The fact that the way in which the wave functions are

coupled in the nodes of the network is vital for the band structure is quite old; one can trace it

back the celebrated paper of Kronig and Penney [10]. As long as the only requirement one imposes

is the conservation of the probability current, mathematically expressed as the self-adjointness of

the corresponding Hamiltonian, there is a number of ways how to do that [4, 8, 9]: for a vertex v

in which N edges meet, the self-adjointness is ensured provided the the boundary-value vectors of

the wave functions and their derivatives are matched through the condition

(U − I)ψ(v) + i`(U + I)ψ′(v) = 0, (1.1)
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where ` > 0 is the parameter fixing the length scale and U is an N ×N unitary matrix.

Given such a multitude, one naturally asks about the meaning of the couplings parametrized by

different matrices U . The simplest class, the so-called δ coupling with the wave functions continuous

at the vertex and the condition (1.1) being reduced to
∑N

j=1 ψ
′
j(v) = αψ(v) with a real parameter

α, can be understood easily as modeling a potential sharply localized around the vertex [6]. The

general coupling (1.1) can also be interpreted in terms of properly scaled potentials, however, the

approximation is considerably more complicated [5] and the result has mostly the existence meaning.

A pragmatic approach is to choose the coupling that suits the model in question. Recently a

class of couplings unnoticed so far attracted attention, with the motivation coming from an attempt

to model the anomalous Hall effect using a lattice graph [11]. The said model used the δ coupling

at the lattice nodes which forced the authors to impose by hand a preferential direction. That was

a flaw since such an assumption cannot justified on the lattice edges, but it inspired the observation

that the family specified by the condition (1.1) includes vertex couplings that may not be invariant

with respect to the time reversal [7]. The simplest among them corresponds to the matrix U of the

circulant type, with the entries equal to one at the first side diagonal and in the opposite corner, and

zero otherwise. A rotational motion associated with such a matrix becomes obvious if we realize

that U is nothing but the on-shell scattering matrix of vertex at the momentum k = `−1.

It appeared that such a coupling has a remarkable topological property, namely that the trans-

port properties of the vertex at high energies depend on the vertex parity ; in this asymptotic regime

the vertex remain transparent if the parity is even, while for the odd one we get an effective de-

coupling of the edges. This effect was illustrated in [7] through comparison of band spectra two

lattices, the square and the hexagonal one. The spectrum appeared to be dominated by the bands

and gaps, respectively, in the sense that the probability that a randomly chosen positive energy

belong to the spectrum, as defined by Band and Berkolaiko [1], equals one and zero, respectively.

However, things may not be that simple. In [2, 3], we investigated another graph with the

described vertex coupling, a periodic chain of rings connected either tightly, or loosely through

connecting links. The loosely connected chain with vertices of degree three appeared to be effectively

decoupled at high energies, but for the tightly connected one the probability of being in the spectrum

might or might not equal to one; this happened if the chain had (vertically) the mirror symmetry,

otherwise the said probability equaled one half. We also found that despite these differences the

spectrum of the loose chain converges to that of the tight one as the lengths of the connecting links

shrink to zero, but the convergence was rather non-uniform.

The aim of the present paper is to analyze another class of quantum graphs with the indicated

vertex coupling violating the time-reversal invariance, namely lattices of kagome and triangular type,

where the latter can be regarded as the degenerate case of the former. As in other periodic graphs

we find that under appropriate rationality conditions such a system exhibit flat bands. Apart from

them, there is no effective decoupling here since the vertex parities are always even in the present

situation. The probability that a positive energy belongs to a spectral band is equal to two thirds
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if the kagome lattice is equilateral or degenerate to the triangular one. If the lattice is asymmetric,

the probability is different, however, if the edge lengths are incommensurate, it takes a fixed value

≈ 0.639 showing that the universality result derived in [1] for Kirchhoff graphs may be valid for a

much wider class of vertex couplings.

Let us mention briefly the contents of the paper. In the next section we collect the needed

information about the vertex coupling. The spectral problem for the kagome and triangular lattices

are solved respectively in Secs. 3 and 4. We derive the appropriate spectral conditions and solve

then separately for the positive and negative part of the spectrum.

2 Preliminaries

Let us describe now the basic setting in more technical terms. We suppose that the motion on the

graph edges is free away from the vertices, so that the Hamiltonian acts there as − d2

dx2
. Consider a

vertex v of degree N . Writing the coupling condition (1.1) with the circulant matrix U described

above in components, we get

(ψj+1 − ψj) + i`(ψ′j+1 + ψ′j) = 0, (2.1)

where ψj, j = 1, . . . , N, are the components of ψ(v) and similarly for ψ′(v). The corresponding

on-shell scattering matrix, S(k) = k`−1+(k`+1)U
k`+1+(k`−1)U

, can be also expressed in components [7] being

Sij(k) =
1− η2

1− ηN

{
− η 1− ηN−2

1− η2
δij + (1− δij) η(j−i−1)(mod N)

}
, (2.2)

where η := 1−k`
1+k`

. Inspecting the behavior of this expression in the high-energy limit, η → 1−, we

find that limk→∞ S(k) = I if N is odd, while for N even the limit is different from the unit matrix

describing the full separation of the edges. The root of this difference is the fact that −1 is an

eigenvalue of U if and only if N is even.

The peculiar feature of quantum graphs is that they have a single propagating mode. As

a consequence, the motion is free away from the vertex and the scattering matrix makes sense

irrespective of the edge lengths. If the edges are semi-infinite, the Hamiltonian of such a star graph

has a nonempty discrete spectrum for any N ≥ 3 and the eigenvalues are

E = − tan2 mπ

N
, (2.3)

with m running through 1, · · · , [N
2

] for odd N and 1, · · · , [N−1
2

] for even N .

3



3 Kagome lattice

3.1 The spectral condition

Our main topic in this paper is spectral properties of periodic quantum graphs of kagome type

sketched in Fig. 1. We suppose that the edge lengths b and c are both positive, postponing the

degenerate case of a triangular lattice to the next section, and assume that their sum is fixed,

b+c = d. Since the system is periodic, its spectral analysis relies on the Floquet-Bloch decomposition

c
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Fig. 1. An elementary cell of the kagome network.

[4, Chap. 4] which makes it possible to reduce the task to investigation of an elementary cell of

the graph which contains three vertices of degree four. Choosing the coordinates on the edges to
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increase from the left to right, we employ the following Ansatz for the wave function components

ψj(x) = B+
j eikx +B−j e−ikx, x ∈ [0, 1

2
c], j = 1, 2,

ψj(x) = B+
j eikx +B−j e−ikx, x ∈ [0, 1

2
b], j = 3, 4,

ϕj(x) = C+
j eikx + C−j e−ikx, x ∈ [−1

2
b, 0], j = 2, 3,

ϕj(x) = C+
j eikx + C−j e−ikx, x ∈ [−1

2
c, 0], j = 1, 4,

χ1(x) = D+
1 eikx +D−1 e−ikx, x ∈ [0, 1

2
c], (3.1)

χ2(x) = D+
2 eikx +D−2 e−ikx, x ∈ [−1

2
b, 0],

χ3(x) = D+
3 eikx +D−3 e−ikx, x ∈ [0, 1

2
b],

χ4(x) = D+
4 eikx +D−4 e−ikx, x ∈ [−1

2
c, 0].

The network is periodic in two independent directions, for the sake of definiteness we assume that

they are associated with the unit vectors (1, 0) and 1
2
(1,
√

3); the periodicity in the remaining

direction is a superposition of those two. Consequently, the Floquet conditions at the free ends of

the graph cell are

χ1(1
2
c) = eiθ1ϕ4(−1

2
c), χ′1(1

2
c) = eiθ1ϕ′4(−1

2
c),

ψ1(1
2
c) = eiθ2ϕ1(−1

2
c), ψ′1(1

2
c) = eiθ2ϕ′1(−1

2
c),

ψ2(1
2
c) = ei(θ2−θ1)χ4(−1

2
c), ψ′2(1

2
c) = ei(θ2−θ1)χ′4(−1

2
c), (3.2)

referring to the parameters θ1, θ2 ∈ [−π, π); for simplicity we will speak of them as of quasimomen-

tum components, even if the true quasimomentum is 1
d
(θ1, θ2). In addition, the functions have to

be matched smoothly at the segment midpoints, that is,

χ2(0) = ψ4(0), χ′2(0) = ψ′4(0),

ϕ3(0) = ψ3(0), ϕ′3(0) = ψ′3(0),

ϕ2(0) = χ3(0), ϕ′2(0) = χ′3(0). (3.3)
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Most important, we have to impose the matching conditions (2.1) at the vertices of graph cell.

Remembering that the derivatives have to be taken in the outward direction, we get

ψ2(0)− ψ1(0) + i`
(
ψ′2(0) + ψ′1(0)

)
= 0,

ψ3(1
2
b)− ψ2(0) + i`

(
−ψ′3(1

2
b) + ψ′2(0)

)
= 0,

ψ4(1
2
b)− ψ3(1

2
b)− i`

(
ψ′4(1

2
b) + ψ′3(1

2
b)
)

= 0,

ψ1(0)− ψ4(1
2
b) + i`

(
ψ′1(0)− ψ′4(1

2
b)
)

= 0,

ϕ2(−1
2
b)− ϕ1(0) + i`

(
ϕ′2(−1

2
b)− ϕ′1(0)

)
= 0,

ϕ3(−1
2
b)− ϕ2(−1

2
b) + i`

(
ϕ′3(−1

2
b) + ϕ′2(−1

2
b)
)

= 0,

ϕ4(0)− ϕ3(−1
2
b) + i`

(
−ϕ′4(0) + ϕ′3(−1

2
b)
)

= 0, (3.4)

ϕ1(0)− ϕ4(0)− i`
(
ϕ′1(0) + ϕ′4(0)

)
= 0,

χ2(−1
2
b)− χ1(0) + i`

(
χ′2(−1

2
b) + χ′1(0)

)
= 0,

χ3(1
2
b)− χ2(−1

2
b) + i`

(
−χ′3(1

2
b) + χ′2(−1

2
b)
)

= 0,

χ4(0)− χ3(1
2
b)− i`

(
χ′4(0) + χ′3(1

2
b)
)

= 0,

χ1(0)− χ4(0) + i`
(
χ′1(0)− χ′4(0)

)
= 0.

Substituting now from (3.1) into (3.4), and using (3.2) and (3.3), we get a system of twelve linear

equations for the coefficients B±3 , B
±
4 , C

±
1 , C

±
4 , D

±
3 , D

±
4 ; computing the corresponding determinant,

taking into account that b = d − c, and neglecting the inessential multiplicative factor 65536 i, we

arrive at the spectral condition

e2iθ2k9`3 sin
kc

2
sin

kd

2
sin

k(d− c)
2

(
λ1(k)− λ2(k) fθ − λ3(k) gθ

)
= 0, (3.5)

where

λ1(k) := 2(k2`2 + 1)
(
4(k2`2 + 1)2

(
cos k(c+ d) + cos k(c− 2d) + 2 cos kd+ cos 2kd

)
+
(
k4`4 + 14k2`2 + 1

)
(2 cos kd+ 1) cos k(2c− d) +

(
3k4`4 + 18k2`2 + 3

)
+
(
5k4`4 + 22k2`2 + 5

) (
cos k(d− c) + cos kc

))
,

λ2(k) := 8
(
k2`2 + 1

) (
k2`2 − 1

)2
cos

k(d− c)
2

cos
kc

2

(
cos

k(2c− d)

2
+ 2 cos

kd

2

)
,

λ3(k) := 16k`
(
k2`2 − 1

)2
sin

k(d− c)
2

sin
kc

2
sin

k(d− 2c)

2
,

and the quasimomentum-dependent quantities in (3.5),

fθ := cos θ1 + cos(θ1 − θ2) + cos θ2,

gθ := sin θ2 + sin(θ1 − θ2)− sin θ1,
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range through [−3
2
, 3] and [−3

√
3

2
, 3
√

3
2

], respectively. In particular, for d = 2c, in which case the
graph is equilateral exhibiting a repeated David-star pattern, the coefficient λ3(k) vanishes and the
spectral condition (3.5) reduces to

4
(
k2`2 + 1

)(
2 cos kc+ 1

)
sin kc sin2 kc

2
(3.6)

×
((
k4`4 + 14k2`2 + 1

)
cos kc+

(
k2`2 + 1

)2 (
2 cos 2kc+ 2 cos 3kc+ 1

)
−
(

cos kc+ 1
) (
k2`2 − 1

)2
fθ

)
= 0.

3.2 Positive spectrum

According to the spectral conditions (3.5) and (3.6), the positive spectrum consists of two parts:

i. Infinitely degenerate eigenvalues

� In the general case, the number k2 belongs to the spectrum for k = 2nπ
l

with l = {d− c, c, d}
and n ∈ N, may or may not be embedded in the continuous spectrum. In particular, in the

equilateral case, they merge into k2 = (nπ
c

)2 which may not be embedded in the continuous

spectrum; inspecting the large bracket in (3.6) for k = nπ
c

, we get −12π2c−2n2`2 < 0 and

3
(
c2 + π2n2`2

)2 − fθ
(
c2 − π2n2`2

)2
+ 6π2c2n2`2 > 0 for odd and even n, respectively, the

latter can be easily checked in view of the inequality
(
c2 + π2n2`2

)2
>
(
c2 − π2n2`2

)2
.

� In the equilateral case, the number k2 belongs to the spectrum for k =
(
(−1)n+1 + (6n− 3)

)
π
6c

with n ∈ N, may or may not be embedded in the continuous spectrum.

� It is possible that some positive bands degenerate to the points; in the general case, this

happens at k = `−1 for {d− c, c, d} = `
(
(−1)n+1 + (6n− 3)

)
π
6

with n ∈ N; accordingly, in the

equilateral case, this happens at k = `−1 for c = `
(
(−1)n+1 + (6n− 3)

)
π
12

.

ii. Continuous bands

Away from the flat bands mentioned above, the rest of the spectrum is continuous having a band-

and-gap structure determined by vanishing of the bracket in (3.5), that is

λ1(k) = λ2(k) fθ + λ3(k) gθ. (3.7)

In order to describe the bands and gaps in a more explicit way, one can inspect the right-hand side

of this equation as a function of two variables (θ1, θ2); using the Hessian method of determining

extrema of multivariate functions as well as checking the boundaries of our rectangular domain, we

find that the global extrema of the function may happen at one of the points (0, 0) and
(
±2π

3
,∓2π

3

)
.

Hence, the positive spectrum is determined by the intersection of the function k 7→ λ1(k) with the
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region bordered from below and above by the curves k 7→ λ0(k) and k 7→ λ±(k), where

λ0(k) := 3λ2(k),

λ±(k) := −3

2

(
λ2(k)±

√
3λ3(k)

)
.

In other words, depending on the signs of the functions λ2(k) and λ3(k), a number k2 belongs to a

spectral band if and only if

k ∈
{
k : λ±(k) ≤ λ1(k) ≤ λ0(k) ∪ λ0(k) ≤ λ1(k) ≤ λ±(k)

}
. (3.8)

The band-and-gap pattern of the general model in dependence on d and c is illustrated in Figs. 3

and 4, respectively. Moreover, two other examples for specific values of c and d are shown in Fig. 5.

The spectrum of the equilateral model in dependence on, and for specific values of c is illustrated

in Figs. 6 and 7, respectively. We see that:

� For d ≥ 2
√

3 `, the positive spectrum starts at zero, and in contrast, for d < 2
√

3 `, the first

positive band remains separated from zero. To see that, let us inspect the behavior of the

band condition (3.8) for k → 0+; considering the first inequality condition, and using the

Taylor expansion to the second order, we arrive at

0 ≤ 108− 9k2
(
5c2 − 5cd+ 7d2 − 36`2

)
≤ 108− 9k2

(
5c2 − 5cd+ 3d2 + 12`2

)
,

where we have added 36− 3k2
(
5c2 − 5cd+ 3d2 + 12`2

)
to the inequality, all the terms with a

relative error O(k4). Simplifying the last two parts of the inequality, we get d2 ≥ 12`2, hence,

small values of k with d < 2
√

3 ` cannot belong to the spectral bands. Needless to say, it is

obvious that the second inequality in (3.8) does not hold for small values of k. Consequently,

the first positive band of the equilateral model starts at zero if c ≥
√

3 `, otherwise, it remains

separated from zero.

� In the high-energy regime, we have two types of asymptotic behavior. To take a closer look

at their structure, we rewrite the spectral condition (3.7) in the form

α(k) · k6 +O(k5) = 0, (3.9)

where

α(k) = 4

(
cos

k(2c− d)

2
+ 2 cos

kd

2

)
× (3.10)((

2 cos k(c− d) + 4 cos kd− 1
)

cos
kd

2
+ cos

k(2c+ d)

2
− 2 fθ cos

kc

2
cos

k(c− d)

2

)
.

Hence, as k → ∞, the function α(k) should be close to zero which results in two types of

spectral bands. We begin the discussion with the general model and discuss the equilateral

model as a special case:
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– Pairs of narrow bands in the vicinity of the roots of cos k(2c−d)
2

+ 2 cos kd
2

The bands appear in pairs centered around the points k which solve the equation

cos k(2c−d)
2

+ 2 cos kd
2

= 0. Note that these bands do not appear in the high energy

regime of the equilateral model. Indeed, the left-hand side of the mentioned equation

with d = 2c appears as a multiplicative factor in (3.9) corresponding to the flat bands of

the second bullet point in Sec. 3.2.

– Wide bands

The bands and the gaps between them grow asymptotically but not at the same rate;

they correspond to those values of k for which the function in the second bracket in

(3.10) is close to zero; without loss of generality, dividing the corresponding equation by

cos kc
2

cos k(c−d)
2

and after simple manipulations, the sufficient condition of belonging to

the spectral bands for large k is obtained as

0 ≤ 5

4
+

cos kd cos k(2c−d)
2

+ cos 3kd
2

cos k(2c−d)
2

+ cos kd
2

≤ 9

4
. (3.11)

As mentioned in the introduction, we are interested in the probability that a randomly

chosen energy lies in the spectrum, introduced in [1] as

Pσ(H) := lim
K→∞

1

K

∣∣σ(H) ∩ [0, K]
∣∣ . (3.12)

In the general case, we are unable to find it in a closed form and as Fig. 10 shows it

may take different values, however, for c and d incommensurate, the value is the same

being ≈ 0.639. There are two ways to see that. First of all, it is clear from Fig. 10

that for rational c
d

= p
q

with large coprime p and q, which we may regard as rational

approximation to a given irrational number, the probability is near to the indicated value.

Secondly, keeping the leading order in the band condition (3.8) we get asymptotically(
2 cos

k(c− 2d)

2
+cos

kc

2

)(
cos

k(c− d)

2
+2 cos

k(c+ d)

2

)(
cos

k(2c− d)

2
+2 cos

kd

2

)
≥ 0

(3.13)

We can rewrite the left-hand side of (3.13) as a function of sin kb
2

and sin kc
2

only. The

resulting expression is quite complicated and gives no hope to solve the inequality, how-

ever, if b and c are incommensurate, one can regard the two sines as a pair of independent

identically distributed random variables and compute numerically the probability that

such a quantity will be non-negative; this yields again the value mentioned above. In-

deed, if we calculate the area of the gray parts in Fig. 11, i.e. the region where the

left-hand side of (3.13) is non-negative, and divide it by 4π2, we get ≈ 0.639081. Hence,

despite the vertex coupling is in the present case substantially different, we find again

the universality demonstrated in [1] for periodic graphs with Kirchhoff vertices.
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Let us turn to the equilateral case, b = c. Requiring the second bracket in (3.10) to

vanish, we get

cos2 kc

2

(
4 cos kc− 4 cos 2kc+ fθ − 3

)
= O(k−1), (3.14)

indicating that, again, we have two types of spectral bands:

– Pairs of narrow bands in the vicinity of k = (2n− 1)π
c
, n ∈ N

The two bands around the points k = (2n− 1)π
c

and the gap between them have asymp-

totically constant width as n → ∞. To see that, we rewrite the expression in the large

brackets in (3.6) in the asymptotic form

β1(k) +
β2(k)

k2
= O(k−4), (3.15)

with

β1(k) = −2`4 cos2 kc

2
(4 cos kc− 4 cos 2kc+ fθ − 3) ,

β2(k) = 2`2
(
(cos kc+ 1) fθ + 7 cos kc+ 2 cos 2kc+ 2 cos 3kc+ 1

)
.

Then, setting k = (2n− 1)π
c

+ δ, we get k−2 = c2

4n2π2 +O(n−3) as n→∞. Substituting

these into (3.15) and solving the resulting equation for δ, we obtain

δ =

√
6

π`
√

11− fθ
1

n
+O(n−3).

Since the band edges correspond to fθ = −3
2

and 3, the width of the bands and the gap

between them are (on the energy scale) respectively determined as 2
5c`

√
3 +O(n−1) and

16
5c`

√
3 +O(n−1) as n→∞.

– Wide bands

Both bands and gaps grow asymptotically, again, not at the same rate; manipulating the

expression in the bracket in (3.14), or equivalently, substituting d = 2c in (3.11), we find

that large values of k belong to the spectral bands if and only if

0 ≤ ξ(k) ≤ 9

8
; ξ(k) := cos kc− cos 2kc, (3.16)

with a relative error O(k−1). The function ξ(k) is periodic with the period T = 2π
c

and

one can easily check that the maximum value of this function is 9
8

which happens at

k = 1
c
|2mπ ± arcsec 4| with m ∈ Z.

It remains to calculate the probability that ξ(k) is positive for a randomly chosen value of

k. The roots of ξ(k) in the period are 2π
3c

and 4π
3c

. On the other hand, we have ξ(π
c
) = −2,
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hence, ξ(k) is negative over the domain
(

2π
3c
, 4π

3c

)
and thus, the probability (3.12) is for

any c equal to

Pσ(H) = 1− 1

T

(
4π

3c
− 2π

3c

)
=

2

3
. (3.17)

This differs from the universal value obtained above which is not surprising: the equi-

lateral character of the graph, as a particular case of commensurability, means that the

ergodicity of the flow which was crucial for the universality [1] is lost.

� The fact that the lattice exhibits a nonvanishing transport in the sense of the probability (3.12)

follows from the fact that the high-energy limit of the vertex scattering matrix is nontrivial.

In fact, for vertices of degree four we get from (2.2) that

lim
k→∞

S(k) =
1

2

 1 1 −1 1

1 1 1 −1

−1 1 1 1

1 −1 1 1

,
which means that the probabilities of leaving the vertex in any of the four direction are

asymptotically the same. A comparison with other lattices and chains with vertices of degree

four [3, 7] shows, however, that the quantity (3.12) is different in different situations depending

on the topology of the structure.

� While generically the gaps are open, it may happen that some of them close for some particular

values of the parameters. This happens when the boundaries of neighboring bands touch as

illustrated in Fig. 3; note that such crossing points may occur in sequences with the same

energy. In general, it is not easy to find their coordinates in a closed form, however, introducing

the symbol ∆ :=
(
λ1(k) − λ2(k) fθ − λ3(k) gθ

)
for the bracket in (3.5) we can identify such

situations using the sufficient condition,

∂∆

∂θ1

=
∂∆

∂θ2

=
∂∆

∂k
=
∂∆

∂d
= 0, (3.18)

supposing that c and ` are fixed. For the first two derivatives we get the expressions

∂∆

∂θ1

= sin
(
θ1 −

θ2

2

)(
λ2(k) cos

θ2

2
− λ3(k) sin

θ2

2

)
,

∂∆

∂θ2

= sin
(
θ2 −

θ1

2

)(
λ2(k) cos

θ1

2
+ λ3(k) sin

θ1

2

)
,

which vanish at (θ1, θ2) = (0, 0) and (±2π
3
,∓2π

3
) corresponding to the band edges. Inspecting

then the last two derivatives in (3.18) at these values, one obtains a system of two equations

in variables k and d that may always be fulfilled for particular values of parameters.
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� The spectral bands are symmetric with respect to the exchange of c to d − c, as seen in

Fig. 4. The band condition (3.8) depends on the three functions λ1(k), λ2(k) and λ3(k); the

invariance of the first two functions under c ↔ d − c are easily checked since cos is an even

function; in the case of λ3(k), although it is an odd function, the functions λ±(k) in the band

condition (3.8) contain it with both the positive and negative signs.

� If the size of the lattice cell is large, that is, in the asymptotic regime d→∞, the the number

of bands in a fixed energy interval increases, roughly linearly with d, however, the probability

to belong to the spectrum remains asymptotically the same.

3.3 Negative Spectrum

Replacing the momentum variable k in (3.5) by iκ with κ > 0, we arrive at the spectral condition

e2iθ2κ9`3 sinh
κc

2
sinh

κd

2
sinh

κ(d− c)
2

(
λ̃1(κ)− λ̃2(κ) fθ − λ̃3(κ) gθ

)
= 0, (3.19)

where

λ̃1(κ) := 2(1− κ2`2)

(
4(κ2`2 − 1)2

(
coshκ(c+ d) + coshκ(c− 2d) + 2 coshκd+ cosh 2κd

)
+
(
κ4`4 − 14κ2`2 + 1

)
(2 coshκd+ 1) coshκ(2c− d) +

(
3κ4`4 − 18κ2`2 + 3

)
+
(
5κ4`4 − 22κ2`2 + 5

) (
coshκ(d− c) + coshκc

))
,

λ̃2(κ) := 8
(
1− κ2`2

) (
κ2`2 + 1

)2
(

cosh
κ(2c− d)

2
+ 2 cosh

κd

2

)
cosh

κ(d− c)
2

cosh
κc

2
,

λ̃3(κ) := 16κ`
(
κ2`2 + 1

)2
sinh

κ(d− c)
2

sinh
κc

2
sinh

κ(d− 2c)

2
.

Except for the equilateral case, flat bands in the negative part of the spectrum are obviously absent.

Mimicking the argument of Sec. 3.2, we infer that a number −κ2 belongs to a spectral band if and

only if

κ ∈
{
κ : λ̃±(κ) ≤ λ̃1(κ) ≤ λ̃0(κ) ∪ λ̃0(κ) ≤ λ̃1(κ) ≤ λ̃±(κ)

}
, (3.20)

where λ̃0,±(κ) are defined as

λ̃0(κ) := 3 λ̃2(κ),

λ̃±(κ) := −3

2

(
λ̃2(κ)±

√
3 λ̃3(κ)

)
.

12



In the equilateral case, λ̃3(κ) in (3.19) vanishes and the spectral condition reduces to

4
(
κ2`2 − 1

)
(2 coshκc+ 1) sinh

κc

2
sinhκc × (3.21)((

κ2`2 − 1
)2

(2 cosh 2κc+ 2 cosh 3κc+ 1) +
(
κ4`4 − 14κ2`2 + 1

)
coshκc−

(
κ2`2 + 1

)2
(coshκc+ 1)fθ

)
= 0.

The negative spectrum of the general and the equilateral lattices in dependence on d and c are shown

in Figs. 3, 4 and 6, respectively. Concerning the number of negative bands, since the elementary cell

of the kagome lattice contains three vertices of degree four, the corresponding matrix U in each of

them has one eigenvalue in the upper complex halfplane– cf. eq. (2.3) – thus the negative spectrum

cannot have more than three bands in accordance with Theorem 2.6 of [3]. It should be noted that

in the general case some gaps may close at specific values of κ. The crossing points are given by

a relation analogous to (3.18); it again does not allow for solution in a closed form but one can

check that such crossings indeed happen at the quasimomentum component values θ1 = −θ2 = ±2π
3

corresponding to the band edges. Here, we see that:

� As indicated, a flat band band occurs only in the equilateral case, corresponding to the energy

−`−2; it may not be embedded in the continuous spectrum as we will see below.

� The number −`−2 always belongs to the spectrum. Inspecting (3.19) for κ = `−1, we get

−64 gθ sinh
c

2`
sinh

d− 2c

2`
sinh

d− c
2`

= 0,

which holds for gθ = 0 independently of other parameters. In particular, as mentioned above,

for d = 2c, the band containing this number shrinks to the point −`−2 corresponding to the

flat band of the equilateral model.

� For d ≤ 2
√

3 `, the first negative band reaches zero, while for d > 2
√

3 ` the negative spectrum

remains separated from zero. Following an argument similar to that of Sec. 3.2, using the

Taylor expansion around κ → 0+ in (3.20), one can easily check that small values of κ with

d > 2
√

3 ` do not correspond to the spectral points. In particular, in the equilateral case, the

first negative band reaches zero if c ≤
√

3 `, otherwise it remains separated from zero.

� The negative bands are symmetric with respect to the interchange of c and d− c, cf. Fig. 4.

This property can be justified by an argument similar to that used in Sec. 3.2 for the mirror

symmetry of the positive bands.

� It is also interesting to inspect the situation where one of the edges, as well as the scale

parameter `, is kept fixed while the other becomes large assuming, say, that d � 2c. Since

attraction responsible for the negative spectrum comes from the vertex coupling only and the

transport requires tunneling over the edges which are now classically forbidden zones, one

13



expects that negative bands shrink to points as d→∞. It is indeed the case; the see that we

rewrite the spectral condition (3.19) in the form(
1− κ2`2

)
f(`, c;κ) e2κd + g(`, c;κ, fθ, gθ) eκd + h(`, c;κ) +O(e−κd) = 0, (3.22)

with

f(`, c;κ) := 4
(
e−κc + 1

) (
κ2`2 − 1

)2
+ e−2κc

(
κ4`4 − 14κ2`2 + 1

)
,

g(`, c;κ, θ1, θ2) :=
(
e−2κc + 3e−κc + 2

) (
κ2`2 − 1

) (
κ2`2 + 1

)2
fθ − 2κ`e−2κc (eκc − 1)

(
κ2`2 + 1

)2
gθ

−
(
κ2`2 − 1

) (
e−2κc

(
κ4`4 − 14κ2`2 + 1

)
+ e−κc

(
5κ4`4 − 22κ2`2 + 5

)
+ 4 (eκc + 2)

(
κ2`2 − 1

)2
)
,

h(`, c;κ) :=
(
1− κ2`2

) (
e−κc

(
e2κc + 1

) (
5κ4`4 − 22κ2`2 + 5

)
+ 6

(
κ4`4 − 6κ2`2 + 1

))
.

For large d the bands are thus in the vicinity of zeros of the first, θ-independent term, being

exponentially narrow with respect to d. One of those limit points is −`−2, and one of the

others in each of the the intervals (0, `−1) and (`−1,∞) being determined by the condition

f(`, c;κ) = 0. To see that, note that f(`, c; ·) is continuous assuming the values 9 and −12e−
2c
`

at κ = 0, `−1, respectively, and limκ→∞ f(`, c;κ) = +∞; recall that by general principles the

kagome lattice cannot have more than three negative bands.

� Consider finally the equilateral case in the asymptotic regime c→∞. We know that −`−2 is

a flat band, the other two bands now shrink to the same value. To see that, we rewrite the

spectral condition (3.21) in the form

fθ = F (κ) :=

(
κ2`2 − 1

)2
(2 cosh 2κc+ 2 cosh 3κc+ 1) +

(
κ4`4 − 14κ2`2 + 1

)
coshκc

(κ2`2 + 1)2 (coshκc+ 1)
. (3.23)

We note that F (`−1) = −3
2

(
tanh2 c

2`
+ 1
)
< −3

2
since tanhx > 0 holds for x > 0, hence the

flat band is not embedded in the continuous spectrum. On the other hand, we have F (0) = 3

and limκ→∞ F (κ) = +∞, hence there is one negative band below and above the energy

−`−2. For large values of c, the spectral condition (3.23) reads
(
κ2`2 − 1

)2
e3κc +O(e2κc) = 0

implying again that the bands shrink exponentially fast. To estimate the band widths, we

put κ2 = `−2 + ε in (3.21) obtaining

ε = ±
√

2fθ + 6 `−2e−
c
` +O(e−

2c
` ).

This yields the following asymptotic expression for the width of the two bands,

∆E =
√

3`−2e−
c
` +O(e−2 c

` );

this behavior is seen in Fig. 6.
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4 Triangular lattice

These lattices can be regarded as a degenerate case of a kagome lattice when one of the edge lengths,

b or c, shrinks to zero. The elementary cell now contains a single vertex of degree six, cf. Fig. 2. Let

c

b

b→0

⟹ d

Fig. 2. The kagome lattice degenerates to the triangular one when one of the edge lengths shrinks to zero assuming

that d = b+ c is fixed.

us recall that the condition (3.5) is symmetric with respect to the interchange of b = 0 and c = 0.

To find the spectral condition of the triangular lattice, we can either use the natural Ansätze and

match them as we did when deriving (3.5), or to take the limit c→ d in the latter; this yields(
k2`2 + 1

)
sin2 kd

2
× (4.1)(

3
(
k4`4 + 6k2`2 + 1

)
+
(
3k4`4 + 10k2`2 + 3

)
(2 cos kd+ cos 2kd)− 4

(
k2`2 − 1

)2
cos2 kd

2
fθ

)
= 0.

These two methods are almost equivalent, with a small exception which we will mention in Sec. 4.2

below. Let us look how the corresponding spectrum looks like considering again the positive and

negative part separately.

4.1 Positive Spectrum

The positive spectrum of the triangular lattice consists again of two parts:

i. Infinitely degenerate eigenvalues

� For k = 2nπ
d

with n ∈ N, the number k2 belongs to the spectrum. Inspecting the expression

in the ‘large’ bracket in (4.1) for k = 2nπ
d

, we get

4

d4

( (
d4 + 16π4n4`4

)
(3− fθ) + 8π2d2n2`2 (fθ + 6)

)
> 0,

which implies that the flat bands may not be embedded in the continuous spectrum.

� As in the kagome lattice case, it may happen that some positive bands degenerate to a point;

here this happens at k = `−1 for d = `
(
(−1)n+1 + (6n− 3)

)
π
6

with n ∈ N.
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ii. Continuous bands

The rest of the spectrum has a band-gap structure determined by vanishing of the ‘large’ bracket in

(4.1). Note that the latter reduces to 8
d2

(2n− 1)2`2π2 > 0 for k = (2n− 1)π
d
, n ∈ N; hence dividing

the corresponding equation by
(
k2`2 − 1

)2
cos2 kd

2
, it can be brought into a more convenient form

fθ = G(k) :=
2k2`2 sec2 kd

2
+
(
3k4`4 + 10k2`2 + 3

)
cos kd

(k2`2 − 1)2 . (4.2)

Consequently, a number k2 belongs to the spectral bands if and only if G(k) lies in the interval

[−3
2
, 3]. The band-gap pattern in dependence on d is illustrated in Fig. 8, and moreover, two

examples for d = 1 and 5 are shown in Fig. 9. We find that:

� The first positive band starts at zero if d ≥ 2
√

3 `, otherwise it remains separated from zero

since G(k) = 3 + 3
2
(12`2 − d2)k2 +O(k4) is greater than three for d < 2

√
3 ` and small values

of momentum k.

� In the high-energy regime, we have again two types of asymptotic behavior. To take a closer

look at their structure, we rewrite the spectral condition (4.1) in the form

γ1(k) +
γ2(k)

k2
= O(k−4), (4.3)

where

γ1(k) = 4`4 cos2 kd

2

(
3 cos kd− fθ

)
,

γ2(k) = 2`2
(
10 cos kd+ 5 cos 2kd+ 9 + 2(cos kd+ 1)fθ

)
.

To satisfy the condition (4.3) for large values of k, the the leading term γ1(k) should be close

to zero; this results in two types of spectral bands:

– Pairs of narrow bands in the vicinity of k = (2n− 1)π
d
, n ∈ N

The two bands around the points k = (2n − 1)π
d

and the gap between them are of

asymptotically constant width. To see that, we set k = (2n − 1)π
d

+ δ. Then we have

k−2 = d2

4n2π2 + O(n−3) as n → ∞; substituting these values into (4.3) and solving the

resulting equation for δ, we obtain

δ =

√
2

π`
√
fθ + 3

1

n
+O(n−3).

Since the band edges correspond to fθ = −3
2

and 3, the width of the bands and the gap

between them are respectively equal to 4
d`
√

3
+O(n−1) and 8

d`
√

3
+O(n−1) as n→∞.
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– Pairs of wide bands in the vicinity of k = 2nπ
d
, n ∈ N

These bands and the gaps between them grow asymptotically but not at the same rate;

large values of k belong to the spectrum if and only if

−1

2
≤ cos kd ≤ 1, (4.4)

with a relative error O(k−2). The function cos kd is periodic with the period T = 2π
d

, and

solutions of the equation cos kd = −1
2

in the period are 2π
3d

and 4π
3d

. On the other hand,

cos kd for k = π
d

is −1; and cos kd is less than −1
2

over the domain
(

2π
3d
, 4π

3d

)
. Consequently,

the probability of belonging to the spectrum is equal to

Pσ(H) = 1− 1

T

(
4π

3d
− 2π

3d

)
=

2

3
.

The triangular lattice is equilateral, hence it makes no sense to speak about the univer-

sality. It is nevertheless interesting that the above value coincides with (3.17). We note

also that these bands appear in pairs centered around the points k = 2nπ
d

marking the

flat bands; as mentioned earlier, they may not be embedded in the continuous spectrum;

from (4.4) we see that these gaps are situated in the vicinity of the Brillouin zone center.

� As in the kagome case, the on-shell scattering matrix is nontrivial at high energies. Now the

vertex degree is six and from (2.2) we get

lim
k→∞

S(k) =
2

3
I6 +

1

3


0 1 −1 1 −1 1

1 0 1 −1 1 −1

−1 1 0 1 −1 1

1 −1 1 0 1 −1

−1 1 −1 1 0 1

1 −1 1 −1 1 0

.
� As d → ∞, the number of bands in a fixed interval increases, roughly linearly with d, while

the probability to be in the spectrum is asymptotically constant.

4.2 Negative Spectrum

To find the negative spectrum, we may replace k by iκ in (4.1), which leads to the condition(
κ2`2 − 1

)
sinh2 κd

2
× (4.5)(

3
(
κ4`4 − 6κ2`2 + 1

)
+
(
3κ4`4 − 10κ2`2 + 3

)(
2 coshκd+ cosh 2κd

)
− 4
(
κ2`2 + 1

)2
cosh2 κd

2
fθ

)
= 0.

Let us mention first the exception mentioned in the opening of the section. It may seem that the

energy −`−2 belongs to the spectrum but in reality it is a spurious solution. To see that, we note
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that for the triangular lattice the functions χ2, χ3, ϕ2, ϕ3, ψ3, and ψ4 in (3.1) are absent; rewriting

then the matching condition (3.4) accordingly, and computing the determinant of the corresponding

system at k = i `−1, we arrive at the expression

1024 i e2iθ2 `−3 sinh2 d

2`

(
3 + 2 fθ + 2 (fθ + 1) cosh

d

`
+ cosh

2d

`

)
,

which is nonzero taking into account the range of fθ and the fact that cosh 2x > coshx holds for

x > 0, and consequently, the point −`−2 cannot belong to the spectrum. The true spectral condition

comes from vanishing of the ‘large’ bracket in (4.5); we can rewrite it in the form

fθ = G̃(κ) :=

(
3κ4`4 − 10κ2`2 + 3

)
coshκd− 2κ2`2sech2 κd

2

(κ2`2 + 1)2 . (4.6)

In other words, a number −κ2 belongs to the spectrum if G̃(κ) lies in the interval [−3
2
, 3]. The

negative spectrum in dependence on the length d is illustrated in Fig. 8. We see that:

� The spectrum consists of two bands. We first note that G̃(`−1) = − cosh d
`
− (cosh d

`
+ 1)−1 <

−3
2

which can be easily checked by computing the derivative of the right-hand side with respect

to d, equal to 1
`

sinh d
`

(
(cosh d

`
+ 1)−2 − 1

)
< 0. Hence d 7→ G̃(`−1) is decreasing reaching

the value −3
2

at d = 0. On the other hand, we have G̃(0) = 3 and limκ→∞ G̃(κ) = +∞.

Consequently, there is at least one negative band in each of the domains (0, `−1) and (`−1,∞),

however, according to Theorem 2.6 in [3] the lattice cannot have more than two negative

bands, since the matrix U describing the coupling (1.1) in a vertex of degree six has by (2.3)

exactly two eigenvalues in the upper complex halfplane.

� For d ≤ 2
√

3 `, the first negative reaches zero, while for d > 2
√

3 `, the spectrum remains

separated from zero since G̃(κ) = 3+ 3
2
(d2−12`2)κ2+O(κ4) is greater than three for d > 2

√
3 `

and small values of κ.

� For large values of d, the negative bends become exponentially narrow and approach the

eigenvalues of a star graph of degree six. Since we have coshκd ≈ 1
2
eκd as d → ∞, one can

write the spectral condition (4.5) as

f̃(`;κ) e2κd + g̃(`;κ, fθ) eκd + h̃(`;κ, fθ) +O(e−κd) = 0,

with

f̃(`;κ) := 1
2

(
3κ4`4 − 10κ2`2 + 3

)
,

g̃(`;κ, fθ) :=
(
3κ4`4 − 10κ2`2 + 3

)
−
(
κ2`2 + 1

)2
fθ,

h̃(`;κ, fθ) := 3
(
κ4`4 − 6κ2`2 + 1

)
− 2

(
κ2`2 + 1

)2
fθ.
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In the limit d → ∞, the bands therefore shrink to the points determined by the condition

f̃(`;κ) = 0, or explicitly to the energies −3`−2 and −1
3
`−2 which fits with (2.3). To estimate

the widths of the shrinking bands, we set κ1 =
√

3`−1 + δ1 and κ2 = (`
√

3)−1 + δ2; solving

then the resulting equations for δ1 and δ2, we obtain the following asymptotic expressions for

the energy and width of the bands

E1 = −κ2
1(fθ) = −3`−2 − 4`−2 e−

√
3d
` fθ +O(e−

2
√
3d
` ),

∆E1 = 18`−2e−
√

3d
` +O(e−

2
√
3d
` ),

E2 = −κ2
2(fθ) = −1

3
`−2 + 4

9
`−2 e

− d√
3` fθ +O(e

− 2d√
3` ),

∆E2 = 2`−2e
− d√

3` +O(e
− 2d√

3` ).
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(a) Spectral bands for d = 3; the first band remains separated from zero.

0 10 20 30 40 50 60 70

-4×1012

-2×1012

0

2×1012

4×1012

6×1012

8×1012

k

0.0 0.5 1.0 1.5 2.0 2.5 3.0

λ1(k)

λ0(k)

λ+(k)

λ-(k)

(b) Spectral bands for d = 4; the first band starts at zero.

Fig. 5. Spectral condition (3.8) for d = 3, 4 with c = ` = 1.

[8] M. Harmer: Hermitian symplectic geometry and extension theory, J. Phys. A: Math. Gen. 33

(2000), 9193–9203

[9] V. Kostrykin, R. Schrader: Kirchhoff’s rule for quantum wires, J. Phys. A: Math. Gen. 32

(1999), 595–630

[10] R. de L. Kronig, W.G. Penney: Quantum mechanics of electrons in crystal lattices, Proc. Roy.

Soc. (London) 130A (1931), 499–513

22
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Fig. 6. Spectrum of the equilateral kagome lattice in dependence on c for ` = 1. The red solid curves in the positive

spectrum correspond to the flat bands n2π2

c2 with n = 1, 2, 3 respectively. The blue dashed curves correspond to

the flat bands k2 for k =
(
(6n− 3) + (−1)n+1

)
π
6c with n = 1, . . . , 8 respectively. On the other hand, the values

c =
{
π
3 ,

2π
3 ,

4π
3

}
with energy k2 = 1 correspond to the degenerate eigenvalues of the third bullet point in Sec. 3.2.

The red line in the negative spectrum corresponds to the flat band −`−2.

24



(a) Spectral bands for c = 1; the first band remains separated from zero.

0 10 20 30 40 50

-4×1011

-2×1011

0

2×1011

4×1011

6×1011

8×1011

k

0.0 0.5 1.0 1.5 2.0
λ1(k)

3 λ2(k)

-
3

2
λ2(k)

(b) Spectral bands for c = 3; the first band starts at zero.

Fig. 7. Spectral condition (3.8) in the equilateral case for c = 1 and 3 with ` = 1.
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Fig. 8. Spectrum of the triangular lattice in dependence on d for ` = 1. The red curves correspond to the flat bands
4n2π2

d2 for n = 1, 2. On the other hand, the points (2π3 , 1) and (4π3 , 1) correspond to the flat bands of the second

bullet point in Sec. 4.1.
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(a) Spectral bands for d = 1; the first band remains separated from zero.
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(b) Spectral bands for d = 5; the first band starts at zero.

Fig. 9. Spectral condition (4.2) for d = 1 and 5 with ` = 1.
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Fig. 10. The probability (3.12) as a function of the edge length ratio.
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Fig. 11. The probability (3.12) calculated as the area of the indicated region.
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