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Abstract. It is shown that some class of differential inclusions
has solutions that are defined and bounded for all real values of
independent variable. Applications to dynamics are considered.

1. Introduction

Discontinuous differential equations often arise in applied mathe-
matics: one of the traditional examples is the motion of a body in
presence of dry friction [8]; more recent sources of interest come from
control theory and games theory. In important article [7] the author
studies and compares solutions in sense of [8] with other notions, due
to Krasowskii and Hermes, and with the classical ones (Newton and
Carathodory solutions). Other remarkable work was done in [3], [5]
and [4] (see also the reference therein).

In the context of control theory, other types of solutions (Euler solu-
tions) have been successfully employed (see Ancona et al [2], Malisoff
et al [12]).

In the present article we focus our attention on discontinuous differ-
ential equations of type which usually arises in mechanics of systems
with the Coulomb (dry) friction. Such systems are described by Filip-
pov’s construction presented in [8].
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We study the systems of the Newton second law type, that is the
systems of the second order equations. The Coulomb friction generates
discontinuities in velocities and generally it does not spoil dependence
on time and spatial variables. So that we impose conditions which
carry out such a specialization.

We show that in some sense unstable system with Coulomb friction
has solutions defined for all real time and these solutions are bounded
in both directions of time. Herewith the Coulomb friction mollifies
the system in the direction of positive time and destabilizes it in the
negative time direction.

The main effect can be described as follows. Assume we have a
mechanical system

ẍ = −∂V
∂x

(x), x ∈ Rm

and the potential energy V = V (x) attains maximum at a point x̃ ∈
Rm. It is well known that the equilibrium x(t) ≡ x̃ is unstable. Now
let us perturbate the system:

ẍ = −∂V
∂x

(x) + g(t, x, ẋ). (1.1)

It turns out that if we impose certain conditions on g, V then system
(1.1) has a solution x(t) that is defined for all t ∈ R and supt∈R |x(t)| <
∞. This holds true even if the term g is a discontinuous function of ẋ,
the Coulomb friction for example.

2. Definitions and The Statement of the Problem

Let µ stand for the standard Lebesgue measure in

Rm = {x = (x1, . . . , xm)}, dµx = dx1 . . . dxm.

By (x, y) =
∑m

k=1 x
iyi we denote the standard Euclidean inner product

and |x| stands for the corresponding norm.
Let

Br(x0) = {x ∈ Rm | |x− x0| < r}
stand for the open ball of radius r > 0 with center at x0;

∂Br(x0) = {x ∈ Rm | |x− x0| = r}.
Let convU, U ⊂ Rm stand for the closed convex hull of U .
Let M ⊂ Rm be an open domain. Introduce a domain

G = R×M × Rm.

Consider a mapping

f : G→ Rm, f = f(t, x, y).
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For each (t, x) ∈ R×M the mapping f(t, x, ·) is measurable in y; for
almost all y the functions

f(t, x, y), dxf(t, x, y), d2xxf(t, x, y)

are continuous in (t, x) ∈ R×M .
Moreover, the following hypotheses hold:

A: for any compact setK ⊂ R×M there exists a positive constant
cK such that for almost all y and for all (t, x) ∈ K it follows
that

|dxf(t, x, y)|+ |d2xxf(t, x, y)|+ |f(t, x, y)| < cK ;

B: for all small enough ε > 0, for any compact interval I ⊂ R
and for any compact set K ⊂ M there exists δ > 0 such that
for almost all y and for all

x ∈ K, t′, t′′ ∈ I
the following implication holds:

|t′ − t′′| < δ =⇒ |f(t′, x, y)− f(t′′, x, y)| < ε;

C: for all small enough ε > 0, for any t and for any x̃ ∈M there
exists δ > 0 such that for almost all y we have

f(t, Bδ(x̃), y) ⊂ Bε(f(t, x̃, y)).

The main object of our study is the following initial value problem

ẍ = f(t, x, ẋ). (2.1)

Now we introduce a concept of generalized solution to this system.
For briefness we will say ”generalized solution” but it would be more
accurate to call it ”the solution in the sense of inclusions”.

The following definition is a modified version of one in [8]. This
modification is physically reasonable.

Definition 1. We shall say that a function x(t) ∈ C1((t1, t2),Rm) is a
generalized solution to problem (2.1) if

1) ẋ(t) is an absolutely continuous function in (t1, t2);
2) for almost all t ∈ (t1, t2) the following inclusion holds

ẍ(t) ∈
⋂
r>0

⋂
N

conv f
(
t, x(t), Br

(
ẋ(t)

)
\N
)
. (2.2)

Here
⋂
N stands for the intersection over all measure-null sets:

N ⊂ Rm, µ(N) = 0.

Recall that an absolutely continuous function has derivative almost
everywhere and this derivative is locally Lebesgue integrable [11].
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Remark 1. If the function f is continuous in G then the set in the
right-hand side of (2.2) consists of the single element {f(t, x(t), ẋ(t))}.

3. The Main Theorem

Introduce a function F ∈ C4(M) and two sets

Dc = {x ∈M | F (x) < c}, D̂c = {x ∈M | F (x) = c}.
Here c is a constant.

Suppose that

d1: the closure of Dc in Rm is a compact set and it is contained
in M :

Dc ⊂M ;

d2: there exists a homeomorphism ψ : B1(0)→ Dc∪D̂c such that

ψ(∂B1(0)) = D̂c.

Theorem 1. Assume that A, B, C, d1, d2 are satisfied. Let a form
d2F (x) be positive definite or positive semi-definite for all x ∈ D̂c; and
for almost all

(t, x, y) ∈ R× D̂c × Rm

it follows that
dF (x)[f(t, x, y)] > 0.

Then equation (2.1) has a generalized solution x(t) ∈ C(R,Rm), and
for all t one has

x(t) ∈ Dc.

Remark 2. The theorem remains valid if we replace condition d2 with
the following one: the set Dc does not admit a continuous retraction
Dc → ∂Dc and ∂Dc = D̂c.

If f ∈ C2(G,Rm) and all the above conditions except C are satisfied
then the theorem remains valid and x(t) is a solution in the classical
sense.

Note also that the function ẋ(t) is not obliged to be bounded in R.
Theorem 1 is proved in section 6; section 5 contains auxiliary facts.

4. System with Potential Forces and Discontinuous
Perturbation

Let F, f be the same functions as in sections 2, 3 and all the above
conditions, particularly A, B, C, d1, d2, are fulfilled.

Consider a system

ẍ =
∂F

∂x
(x) + f(t, x, ẋ). (4.1)
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Here the function F plays a role of potential energy taken with opposite
sign.

Theorem 2. Let the form d2F (x) be positive definite or positive semi-

definite for all x ∈ D̂c; and for almost all

(t, x, y) ∈ R× D̂c × Rm

it follows that

|dF (x)|2 + dF (x)[f(t, x, y)] > 0.

Then equation (4.1) has a generalized solution x(t) ∈ C(R,Rm), and
for all t one has

x(t) ∈ Dc.

Indeed, introduce a function η ∈ C∞(Rm) such that η(x) = 1 pro-
vided x ∈ Dc and supp η ⊂M is a compact set.

Consider a system

ẍ = η(x)
∂F

∂x
(x) + f(t, x, ẋ).

By theorem 1 this system has a solution x(t) and this solution belongs
to Dc for all time. Thus x(t) is a solution to system (4.1) also.

5. Regular Statement

5.1. Forward Bounded Solutions. We use the following smooth re-
sult.

Let

H = R+ ×M × Rm, R+ = {t ≥ 0}.
Consider a system

ẍ = a(t, x, ẋ), a ∈ C2(H,Rm). (5.1)

Theorem 3 ([13]). Assume that the conditions d1, d2 hold and for
any compact set

K ⊂ R+ ×M
there exists a positive constant CK such that for all

(t, x, y) ∈ K × Rm

one has

|a(t, x, y)| < CK .

Assume also that for all x ∈ D̂c a quadratic form d2F (x) is positive
definite or positive semi-definite; and for all

(t, x, y) ∈ R+ × D̂c × Rm
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it follows that

dF (x)[a(t, x, y)] > 0.

Then equation (5.1) has a solution x(t) ∈ C4(R+,Rm), and for all
t ≥ 0 one has

x(t) ∈ Dc.

5.2. Forward-Backward bounded solutions. Consider a system

ẍ = b(t, x, ẋ). (5.2)

The functions b = b(t, x, y),

dyb(t, x, y), dxb(t, x, y), d2xyb(t, x, y), d2yyb(t, x, y), d2xxb(t, x, y)

are continuous in G.
Let the following hypotheses hold.

H1: For any compact set

K ⊂ R×M

there exists positive constant čK such that for all

(t, x, y) ∈ K × Rm

one has

|dxb(t, x, y)|+ |d2xyb(t, x, y)|+ |d2yyb(t, x, y)|+ |d2xxb(t, x, y)|
+ |b(t, x, y)|+ |dyb(t, x, y)| < čK ;

H2: for all small enough ε > 0, for any compact interval I ⊂ R
and for any compact set K ⊂M there exists δ > 0 such that for
all (x, y) ∈ K×Rm and for all t′, t′′ ∈ I the following implication
holds:

|t′ − t′′| < δ =⇒ |b(t′, x, y)− b(t′′, x, y)| < ε.

Theorem 4. Assume that the conditions H1, H2, d1, d2 hold.
Assume also that for all x ∈ D̂c a quadratic form d2F (x) is positive

definite or positive semi-definite; and for all

(t, x, y) ∈ R× D̂c × Rm

it follows that

dF (x)[b(t, x, y)] > 0.

Then equation (5.2) has a solution x(t) ∈ C2(R,Rm) such that

x(t) ∈ Dc

for any t ∈ R.
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5.2.1. Proof of theorem 4. Let χk(t), k ∈ N stand for the indicator:

χk(t) = 1 provided t ∈ (−k, k],

and χk(t) = 0 otherwise.
Pick a function ψ ∈ C∞(R) such that

suppψ ⊂ (−1, 1), ψ ≥ 0,

∫
R
ψ(t)dt = 1.

Introduce a sequence of functions

δl(t) = lψ(lt), supp δl ⊂ (−1/l, 1/l), l ∈ N.

Introduce a function

bk(t, x, y) =
∑
j∈Z

b(t+ 2kj, x, y)χk(t+ 2kj)

and a function

bkl(t, x, y) =

∫
R
bk(s, x, y)δl(s− t)ds.

It is clear all the functions bk, bkl are 2k− periodic in t and

bk(t, x, y) = b(t, x, y), t ∈ (−k, k]. (5.3)

Moreover bkl ∈ C2(G,Rm).
For any ε > 0, for any T > 0 and for any compact set K ⊂M there

exists L > 0 such that for all k ≥ 2T ,

t ∈ [−T, T ] ⊂ [−k/2, k/2], (x, y) ∈ K × Rm

the following implication holds

l > L =⇒ |bkl(t, x, y)− b(t, x, y)| < ε. (5.4)

This follows from the hypothesis H2 and formula (5.3).
Consider the following system

ẍ = bkl(t, x, ẋ). (5.5)

This system satisfies all the conditions of theorem 3. Indeed, let
(t, x, y) ∈ R× D̂c × Rm then

dF (x)[bkl(t, x, y)]

=

∫
R

∑
j∈Z

dF (x)[b(s+ 2kj, x, y)]χk(s+ 2kj)δl(s− t)ds > 0;

and for any compact set K ⊂ R×M it follows that

|bkl(t, x, y)| ≤ čK , (t, x, y) ∈ K × Rm. (5.6)
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Thus system (5.5) has a solution xkl ∈ C4(R+,Rm) and

xkl(t) ∈ Dc, t ≥ 0.

Introduce functions

zkli(t) = xkl(t+ 2ki), i ∈ N.

All these functions are the solutions to (5.5) and

zkli ∈ C4([−2ki,∞),Rm); zkli(t) ∈ Dc, t ≥ −2ki. (5.7)

Due to (5.6) for k, i, l ∈ N and fixed T ≤ k/2 we have

|z̈kli(t)| ≤ č[−T,T ]×Dc
, t ∈ [−T, T ]. (5.8)

Let H2([−T, T ],Rm) stand for the Sobolev space of functions u(t) such
that

u, u̇, ü ∈ L2([−T, T ],Rm).

Recall that H2([−T, T ],Rm) is a Hilbert space with the inner product

(a, b)H2[−T,T ] =

∫ T

−T

(
(a(s), b(s)) + (ä(s), b̈(s))

)
ds.

Another inner product

〈a, b〉H2[−T,T ] =

∫ T

−T

(
(a(s), b(s)) + (ȧ(s), ḃ(s)) + (ä(s), b̈(s))

)
ds

gives the same topology in H2([−T, T ],Rm).
Recall also that there is a compact embedding

H2([−T, T ],Rm) ⊂ C1([−T, T ],Rm). (5.9)

Here and below we refer [1] for the properties of the Sobolev spaces.

Lemma 1. The sequence Zp := zppp contains a subsequence Zps that
is convergent to a function z∗ ∈ C1(R,Rm) in C1([−T, T ],Rm) for any
T > 0.

The function z∗ is such that

z∗(t) ∈ Dc, t ∈ R.

Proof of the lemma 1. Fix T = 1. From formulas (5.8), (5.7),
(5.9) it follows that there exists a subsequence Zpq that is convergent
in C1([−1, 1],Rm). By the same reason this subsequence contains a
subsequence that is convergent in C1([−2, 2],Rm) etc.

The diagonal argument finishes the proof.
The function z∗ is the announced solution to system (5.2).
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Indeed, to see this fix T > 0 and for t ∈ [−T, T ] write

Żps(t) = Żps(0) +

∫ t

0

bpsps(ξ, Zps(ξ), Żps(ξ))dξ.

To pass to the limit in this equality let∫ t

0

bpsps(ξ, Zps(ξ), Żps(ξ))dξ −
∫ t

0

b(ξ, z∗(ξ), ż∗(ξ))dξ

=

∫ t

0

(
bpsps(ξ, Zps(ξ), Żps(ξ))− b(ξ, Zps(ξ), Żps(ξ))

)
dξ

+

∫ t

0

(
b(ξ, Zps(ξ), Żps(ξ))− b(ξ, z∗(ξ), ż∗(ξ))

)
dξ. (5.10)

By (5.4) we have

|bpsps(ξ, Zps(ξ), Żps(ξ))− b(ξ, Zps(ξ), Żps(ξ))| → 0

uniformly in ξ ∈ [−T, T ].
On the other hand the difference

|b(ξ, Zps(ξ), Żps(ξ))− b(ξ, z∗(ξ), ż∗(ξ))| → 0

vanishes pointwise in ξ ∈ [−T, T ] and

|b(ξ, Zps(ξ), Żps(ξ))− b(ξ, z∗(ξ), ż∗(ξ))| ≤ 2č[−T,T ]×Dc
.

Thus the last integral in (5.10) also tends to zero by the dominated
convergence theorem.

Theorem 4 is proved.

6. Proof of Theorem 1

Pick a function ϕ ∈ C∞(Rm) such that

suppϕ ⊂ B1(0), ϕ ≥ 0,

∫
Rm

ϕ(x)dµx = 1.

Introduce a sequence of functions

δk(x) = kmϕ(kx), supp δk ⊂ B1/k(0), k ∈ N
and put

fk(t, x, y) =

∫
Rm

f(t, x, z)δk(z − y)dµz. (6.1)

Constructions of type (6.1) are usually employed in approximation
theory. Intuitively speaking, the sequence fk approximates the function
f in some sense. Nevertheless, in this section we do not use such an
argument and we do not refer any approximation theorems.

We use only one convolution property: fk(t, ·, ·) ∈ C2(M ×Rm,Rm).
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Observe that the following system

ẍ = fk(t, x, ẋ) (6.2)

satisfies all the conditions of theorem 4. Indeed, H2 follows from B;

|fk(t, x, y)| ≤
∫
Rm

cKδk(z − y)dµz ≤ cK ; (6.3)

and

dF (x)[fk(t, x, y)] =

∫
Rm

dF (x)[f(t, x, z)]δk(z − y)dµz > 0

provided (t, x) ∈ R× D̂c.
Thus theorem 4 supplies each system (6.2) with the solution xk(t).
From the properties of the Lebesgue integral for all t we have

ẍk(t) = fk(t, xk(t), ẋk(t))

∈
⋂
N

conv f
(
t, xk(t), B 1

k

(
ẋk(t)

)
\N
)
. (6.4)

Here the intersection is taken over all measure-null sets:

N ⊂ Rm, µ(N) = 0.

Indeed,

fk(t, xk(t), ẋk(t)) =

∫
Rm

f(t, xk(t), z)δk(z − ẋk(t))dµz

=

∫
Rm\N

f(t, xk(t), z)δk(z − ẋk(t))dµz

∈ conv f
(
t, xk(t), B 1

k

(
ẋk(t)

)
\N
)
.

Lemma 2. For any T > 0 the sequence {xk} is bounded in

H2([−T, T ],Rm),

that is

sup
k
‖xk‖H2[−T,T ] <∞.

Proof of lemma 2. First, notice that

{xk(t)} ⊂ Dc

for all t ∈ R and k. Thus by formula (6.3) we get

|ẍk(t)| ≤ c[−T,T ]×Dc
, t ∈ [−T, T ].

The lemma is proved.
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Lemma 3. The sequence {xk} contains a subsequence {xks} that is
convergent to a function

x∗ ∈ H2
loc(R,Rm)

in the following sense:
for any T > 0 one has

‖xks − x∗‖C1[−T,T ] → 0,

and xks → x∗ weakly in H2([−T, T ],Rm).

Proof of lemma 3. Recall a theorem.

Theorem 5 ([10]). A Banach space (Y, ‖ · ‖Y ) is reflexive iff any
bounded sequence in Y contains a weakly convergent subsequence.

Take an increasing sequence Tn →∞.
Since the embedding H2([−Tn, Tn],Rm) ⊂ C1([−Tn, Tn],Rm) is com-

pact and the space H2([−Tn, Tn],Rm) is reflexive, we can choose a

subsequence {x(1)kj } ⊂ {xk} that is convergent in C1([−T1, T1],Rm) and

weakly convergent in

H2([−T1, T1],Rm).

The sequence {x(1)kj } contains a subsequence {x(2)kj } that is convergent

in C1([−T2, T2],Rm) and weakly convergent in H2([−T2, T2],Rm) etc.
The diagonal sequence is convergent in the desired manner.

The lemma is proved.
Note that x∗(t) ∈ Dc, t ∈ R.
Choose a constant ρ > 0 such that for any x0 ∈ Dc it follows that

Br(x0) ⊂M, r ≤ ρ.
Introduce sets

U(t, r, r′) =
⋂

µ(N)=0

conv f
(
t, Br

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)
⊂ Rm, r < ρ.

By lemma 5 (see below) the sets U(t, r, r′) are nonvoid for almost all
t. The sets U(t, r, r′) are closed and convex as an intersection of closed
convex sets.

The sets U(t, r, r′) are uniformly bounded relative

t ∈ [−T, T ] , 0 < r ≤ ρ, r′ > 0.

Indded,

z ∈ U(t, r, r′) =⇒ |z| ≤ c[−T,T ]×Sr , Sr =
⋃
x∈Dc

Br(x) ⊂M. (6.5)
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Let W T (r, r′) ⊂ L2([−T, T ],Rm) stand for a set of functions u(t) ∈
L2([−T, T ],Rm) such that for almost all t ∈ [−T, T ] one has

u(t) ∈ U(t, r, r′).

Lemma 4. The sets W T (r, r′) are closed bounded and convex.

Proof of lemma 4. Convexity is evident. Prove that the sets are
closed. Indeed, let a sequence {wi} ⊂ W T (r, r′) converges to w in
L2([−T, T ],Rm). Then it contains a subsequence {wij} that is conver-
gent to w almost everywhere [9]. Thus w(t) ∈ U(t, r, r′) for almost all
t.

The boundedness follows from formula (6.5).
The lemma is proved.

Lemma 5. For any T, r′ > 0, r ∈ (0, ρ] there exists a number J such
that

ks > J =⇒ ẍks ∈ W T (r, r′).

Proof of lemma 5. Choose J such that
1) J > 2/r′;
2) ks > J =⇒ ‖xks − x∗‖C1[−T,T ] < min{r, r′/2}.
Take any ks > J it is clear

xks(t) ∈ Br(x∗(t)). (6.6)

The following inclusion holds for all t ∈ [−T, T ]

B 1
ks

(ẋks(t)) ⊂ Br′(ẋ∗(t)). (6.7)

Indeed, Let ξ ∈ B 1
ks

(ẋks(t)) then

|ξ − ẋ∗(t)| ≤ |ξ − ẋks(t)|+ |ẋks(t)− ẋ∗(t)| <
1

ks
+
r′

2
< r′.

The assertion of the lemma follows from formulas (6.6), (6.7), (6.4).
The lemma is proved.

Lemma 6. For any T, r′ > 0, r ∈ (0, ρ] one has

ẍ∗ ∈ W T (r, r′).

Indeed, by lemma 3 the sequence {ẍks} is weakly convergent to ẍ∗
in L2([−T, T ],Rm). The set W T (r, r′) is convex and closed thus it is
weakly closed [6]. This proves the lemma.

The result of lemma 6 can explicitly be formulated as follows. For
almost all t we have

ẍ∗(t) ∈
⋂
r>0

⋂
r′>0

⋂
µ(N)=0

conv f
(
t, Br

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)
. (6.8)
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According to C for any t we can choose sequences

δq, εq → 0, N 3 q →∞
and a set N , µ(N ) = 0 such that for all q and for all y ∈ Rm\N the
following inclusion holds

f
(
t, Bδq(x∗(t)), y

)
⊂ Bεq

(
f(t, x∗(t), y)

)
. (6.9)

Lemma 7. For any r′ > 0 and for any

N, N ⊂ N, µ(N) = 0 (6.10)

the following equality holds⋂
q∈N

conv f
(
t, Bδq

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)

= conv f
(
t, x∗(t), Br′

(
ẋ∗(t)

)
\N
)
. (6.11)

Obviously, formula (6.11) can be rewritten as follows⋂
r>0

conv f
(
t, Br

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)

= conv f
(
t, x∗(t), Br′

(
ẋ∗(t)

)
\N
)
. (6.12)

Moreover, observe that⋂
µ(N)=0

⋂
r>0

conv f
(
t, Br

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)

=
⋂̃ ⋂

r>0

conv f
(
t, Br

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)
,

and ⋂
µ(N)=0

conv f
(
t, x∗(t), Br′

(
ẋ∗(t)

)
\N
)

=
⋂̃

conv f
(
t, x∗(t), Br′

(
ẋ∗(t)

)
\N
)
,

where
⋂
µ(N)=0 means the intersection over all measure-null sets N

and
⋂̃

means the intersection over all N such that (6.10).
So that formula (6.12) implies⋂

µ(N)=0

⋂
r>0

conv f
(
t, Br

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)

=
⋂

µ(N)=0

conv f
(
t, x∗(t), Br′

(
ẋ∗(t)

)
\N
)
.
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Thus formula (6.8) takes the form

ẍ∗(t) ∈
⋂
r′>0

⋂
µ(N)=0

conv f
(
t, x∗(t), Br′

(
ẋ∗(t)

)
\N
)
.

This proves theorem 1.
Proof of lemma 7. From formula (6.9) for all y ∈ Br′

(
ẋ∗(t)

)
\N we

have

f
(
t, Bδq

(
x∗(t)

)
, y
)
⊂ Bεq

(
f
(
t, x∗(t), y

))
.

So that the set

f
(
t, Bδq

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)

=
⋃

y∈Br′

(
ẋ∗(t)
)
\N

f
(
t, Bδq

(
x∗(t)

)
, y
)

⊂
⋃

y∈Br′

(
ẋ∗(t)
)
\N

Bεq

(
f
(
t, x∗(t), y

))
is contained in an εq− neighbourhood of the set

f
(
t, x∗(t), Br′

(
ẋ∗(t)

)
\N
)
.

Thus we obtain⋂
q∈N

f
(
t, Bδq

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)

= f
(
t, x∗(t), Br′

(
ẋ∗(t)

)
\N
)
.

(6.13)
Observe that the closed convex hull of a set Q ⊂ Rm is the intersection
over all closed half-spaces that contain Q. That is

convQ =
⋂
ξ∈Rm

Pξ, Pξ = {u ∈ Rm | (u, ξ) ≤ sup
x∈Q

(x, ξ)}.

Observe also that

convQ = convQ. (6.14)

We have⋂
q∈N

conv f
(
t, Bδq

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)

=
⋂
q∈N

⋂
ξ∈Rm

Pqξ, (6.15)

where

Pqξ =
{
u ∈ Rm

∣∣∣(u, ξ)
≤ sup

{
(x, ξ) | x ∈ f

(
t, Bδq

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)}}

.
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Changing the order of intersections in the right-hand side of formula
(6.15) and by formula (6.13) we get⋂

q∈N

conv f
(
t, Bδq

(
x∗(t)

)
, Br′

(
ẋ∗(t)

)
\N
)

= conv f
(
t, x∗(t), Br′

(
ẋ∗(t)

)
\N
)
.

Now formula (6.11) follows from (6.14).
The lemma is proved.
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