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Abstract

We begin with the comprehensible review of the basics of the Lorentz,
(extended) Poincare Groups and O(3,2) and O(4,1). On the basis of the
Gelfand-Tsetlin-Sokolik-Silagadze research [1-3], we investigate the defi-
nitions of the discrete symmetry operators both on the classical level, and
in the secondary-quantization scheme. We studied the physical content
within several bases: light-front form formulation, helicity basis, angular
momentum basis, on several practical examples. The conclusion is that
we have ambiguities in the definitions of the the corresponding operators
P, C; T, which lead to different physical consequences.

1 The Standard Definitions.

The Lorentz Group conserves the interval ds2 = dxµdxµ in the Minkowski
space with respect to (pseudo)Euclidean rotations. The Poincaré Group in-
cludes translations in the Minkowski space. The extended Poincaré Group in-
cludes discrete transformations, the unitary C, P , and the antiunitary T in the
quantum field theory (QFT). The P is the space inversion: x0 → x0, x → −x.
The T is the time reversal: x0 → −x0, x → x. The C is the electric charge
conjugation. It is related to the PT operation: x0 → −x0, x → −x. The
interval is also conserved under these operations. In the QFT the eigenvalues
of the combined CPT are also invariants.

While [4] presented the derivation method to obtain the field operator ab
inition, we define the field operator [5, 6] in the pseudo-Euclidean metrics as
follows:

Ψ(x) =
1

(2π)3
∑

h

∫
d3p
2Ep

[
uh(p)ah(p)e−ip·x + vh(p)b†h(p)e+ip·x

]
. (1)
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Hence, the Dirac equation is:

[iγµ∂µ −m] Ψ(x) = 0 . (2)

At least, 3 methods of its derivation exist [7, 8, 9]:

• the Dirac one (the Hamiltonian should be linear in ∂/∂xi, and be com-
patible with E2

p − p2c2 = m2c4);

• the Sakurai one (based on the equation (Ep − σ ·p)(Ep + σ ·p)φ = m2φ);

• the Ryder one (the relation between 2-spinors at rest is φR(0) = ±φL(0)
and boosts).

It has solutions of the positive energies and the negative energies. The lat-
ter are reinterpreted as the antiparticles. Ep =

√
p2 +m2, c = h̄ = 1,

gµν = diag{1,−1,−1,−1}. The solutions in the momentum representation
are: uh(p) = column(φh

R(p) φh
L(p)). Next,

uh =
(

exp(+σ ·ϕ)φh
R(0)

exp(−σ ·ϕ)φh
L(0)

)
, vh(p) = γ5uh(p) , (3)

where cosh(ϕ) = Ep/m, sinh(ϕ) = |p|/m, ϕ̂ = p/|p| , h is the polarization
index. It is shown that the parity operator can be chosen as

P = eiαsγ0R , γ0 =
(

0 1
1 0

)
, (4)

because [
iγµ∂′µ −m

]
Ψ(xµ′

) = 0 , (change of variables) , (5)

where
Ψ(xµ′

) = AΨ(xµ) , (lineality) . (6)

These conditions can be satisfied by γ0 matrix in the Weyl basis. R can be
chosen R ≡ (θ → π − θ, φ→ π + φ, r → r). For fermions it is well known that
a particle and an antiparticle have opposite eigenvalues of the parity operator
in this (1/2, 0)⊕ (0, 1/2) representation of the Lorentz Group. In the QFT we
should have:

UPψ(x)U†
P = eiαsγ0ψ(x′) . (7)

So,
UPah(p)U†

P = e+iαsah(p′) , UP bh(p)U†
P = −e−iαsbh(p′) . (8)

The operator UP can be constructed in the usual way, see [5] and [6]. The
charge operator interchange the particle and the antiparticle. For example, in
the Dirac case on the classical level:

u↑ → −v↓, u↓ → +v↑, v↑ → +u↓, v↓ → −u↑, (9)
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Thus, we can write thanks to E. Wigner:

C1/2 = eiαc

(
0 iΘ

−iΘ 0

)
K, Θ =

(
0 −1
1 0

)
= −iσ2 . (10)

In the QFT we should have:

UCψ(x)U†
C = eiαcCψ†(x) . (11)

So,
UCah(p)U†

C = e+iαcbh(p) , UCbh(p)U†
C = e−iαcah(p) . (12)

See, however, Ref. [11], where two possibilities for the charge conjugation op-
erator have been proposed.

The time reversal operator is antiunitary (see Wigner and [4]). Let us remind
that the operator of hermitian conjugation does not act on c-numbers on the
left side of the equation (13). This fact is conected with the properties of an an-

tiunitary operator:
[
V

T

λA(V
T

)−1
]†

=
[
λ∗V

T

A(V
T

)−1
]†

= λ
[
V

T

A†(V
T

)−1
]
.

[
V

T

[1/2]Ψ(xµ)(V
T

[1/2])
−1

]†
= S(T )Ψ†(x′′

µ

) . (13)

We can see that C and P anticommutes in the Dirac case:

{C,P}+ = 0 , P 2 = 1, , C2 = 1 , (14)

and (CPT ) = ±1. However, we present the opposite case later, where (CPT ) =
±i, which is related to the commutation (anticommutation) of the C and P
operators.

The Table in p. 157 of Ref. [5] gives us the properties of the scalar, 4-vector,
tensor, axial-vector and pseudoscalar under these transformations in the case of
the ”Dirac-like-parity” definitions. However, see the next Section.

2 Anomalous Representations of the Inversion
Group.

The previous Section perfectly describes the CPT properties of the charged
fermions. Nevertheless, the authors of [1, 2, 10] proposed another class of repre-
sentations of the full Lorentz Group long ago . As it was shown recently, it may
be applied to the (anti)bosons of the opposite parities, and to the (anti)fermions
of undefined parities. The latter are not the eigenstates of the parity operator,
but they are the eigenstates of the charge-conjugate operator. Gelfand, Tsetlin
and Sokolik noted that there exist representations of the full Lorentz Group of
the anomalous parity. Originally, this concept was intended to be applied to
explanation of the decay of K− mesons.

Briefly, the examples are: one can note that in the (1/2, 1/2) representation
(or for xµ) the operators of the space inversion (t01), the time reversal (t10)
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and the combined space-time inversion (t11) are commutative. They form the
inversion group together with the unit element. Let us search the projective
representations of the Lorentz group combined with the discrete group. As
opposed to the usual case, t01t10 = t11, t10t11 = t01, t01t11 = t10, for instance,
one can drop the condition of the commutativity, and one can form the projective
rep. with T10T01 = −T11, or T11T11 = −1, see the full Table in [1]. They noted
that there are two normal-parity (in their notation) and two anomalous parity
reps. for (bi)spinors. Then, they extended the concept of the anomalous parity
to any rep. of the proper Lorentz Group characterized by the numbers (k0, k1)
and (−k0, k1)∗. When

[Ti′k′ , Ti′′k′′ ]+ = 0 , (15)

this is the case of the anomalous parity (later, this was confirmed by Nigam and
Foldy [12]). G. Sokolik noted that this concept is related to the concept of the
5-dim representations of the proper orthogonal group with pseudo-Euclidean
metrics. For example,

T10 ∼ H54 = exp(iπI54/2) , T11 ∼ H43H21 = exp(iπI43) exp(iπI21) ,
(16)

T01 = T11T10 . (17)

T10, T01, T11 leave invariant the extended 8-component Dirac equation only
(compare with [13] and [14]):

Γµ∂
µψ +mψ = 0 , Γµ =

(
γµ 0
0 −γµ

)
(18)

They claimed relations to the concepts (known in that time):

• Istopic Spin;

• Fusion Theory;

• the non-linear Heisenberg Theory

were mentioned. The corresponding matrix representations of the anomalous-
parity representations have been presented:

T01 =
(

0 I
I 0

)
, T10 =

(
0 −I
I 0

)
, T11 =

(
I 0
0 −I

)
, (19)

and

T01 =
(

0 −iI
iI 0

)
, T10 =

(
0 iI
iI 0

)
, T11 =

(
I 0
0 −I

)
. (20)

Later Wigner [10] repeated their results at the Istanbul School lectures (1962).
And Silagadze [3] rediscovered and applied this possibility in 1992. The conclu-
sion of these papers is: we noted that both new versions of the reps. of the full
Lorentz Group (commuting spinor and anticommuting boson representations )
lead to the doubling of the dimensionality of the ψ− function.
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3 The Self/Anti-self Charge Conjugate States.

The content of this Section contains the material of [11]. The conclusions are:
we have constructed another explicit example of the BWW-GTS theory. The
matter of physical dynamics connected with this mathematical construct should
be solved in future as depended on what gauge interactions with potential fields
do we introduce [14] and what experimental setup do we choose.
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