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1. Introduction

Consider the problem
—Au+V(x)u —au = f, (1.1)

whereu € E = H?*(RY) andf € F = L*(R?), d € N, a is a constant, and the
function V' (z) converges td at infinity. Fora > 0, the essential spectrum of the
operatorA : F — F, which corresponds to the left side of problem (1.1) con-
tains the origin. Consequently, such operator fails satis¢ Fredholm property.
Its image is not closed, fat > 1 the dimension of its kernel and the codimension
of its image are not finite. In the present work we will studytam properties of
the operators of this kind. Note that elliptic equationdwibn-Fredholm operators
were treated extensively in recent years (see [15], [18]],[{20], [21], also [3])
along with their potential applications to the theory ofatéan-diffusion problems



(see [7], [8]). Inthe particular case when= 0, the operatorA satisfies the Fred-
holm property in some properly chosen weighted spaces 3eR], [3], [5], [6]).
However, the case af # 0 is significantly different and the approach developed in
these articles cannot be applied.

One of the important issues about equations with non-Filedbperators con-
cerns their solvability. We will address it in the followirggtting. Letf, be a
sequence of functions in the image of the operatpsuch thatf, — f in L?(R¢)
asn — oo. Denote byu, a sequence of functions frofi?(R¢) such that

Au, = fn, n € N.

Since the operatoA fails to satisfy the Fredholm property, the sequenganay
not be convergent. Let us call a sequengesuch thatdw,, — f a solution in the
sense of sequences of probletn = f (see [14]). If this sequence converges to
a functionu, in the norm of the spacé’, thenu, is a solution of this problem.
Solution in the sense of sequences is equivalent in thisederthe usual solution.
However, in the case of non-Fredholm operators this coevexgmay not hold or it
can occur in some weaker sense. In this case, the solutibe seinse of sequences
may not imply the existence of the usual solution. In the gmésvork we will find
sufficient conditions of equivalence of solutions in thessenf sequences and the
usual solutions. In the other words, the conditions on secgs,, under which the
corresponding sequences are strongly convergent.

In the first part of the article we study the problem with trensport term

d? \s du
wherea > 0 andb € R, b # 0 are constants and the right side belong&1@R).
2 \s
The operator{ — d—2 can be defined by means of the spectral calculus and is
X

extensively used, for instance in the studies of the anamsaddfusion and related
problems (see [22] and the references therein). Anomaldfusion can be de-
scribed as a random process of particle motion charactebyethe probability
density distribution of jump length. The moments of this slgndistribution are
finite in the case of normal diffusion, but this is not the csehe anomalous dif-
fusion. The asymptotic behavior at the infinity of the prabgbdensity function
determines the value of the power of the Laplace operater (43]). The form
boundedness criterion for the relativistic Schrodingsgrator was proved in [12].
The article [11] deals with establishing the embedding téexs and the studies of
the spectrum of a certain pseudodifferential operator. éh&tion with drift in the
context of the Darcy’s law describing the fluid motion in thergus medium was
treated in [20]. The transport term is significant when singyhe emergence and
propagation of patterns arising in the theory of speciafs@e [16]). Nonlinear
propagation phenomena for the reaction-diffusion typea#quos including the drift
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term was studied in [4]. Weak solutions of the Dirichlet anelulhann problems
with drift were considered in [10]. Apparently, the operdatwolved in the left side
of (1.2)

—b——a: HYR)—L*R), 0<s< (1.3)

DO | —

La,b,s::(_—

d® \ d 2 2 1
L= (—=5) —b——a: H*R) = L*R), ;<s<1 (14)

dz? d
is non-selfadjoint. By means of the standard Fourier ti@nsf
D 1 > —ipx
f(p) = E/ flz)e P*dz, peR (1.5)

it can be easily derived that the essential spectrum of tleeadprL, ;, s is given
by

Ao, b, s(D) == \p|2s —a—1ibp, peR.

Evidently, whena > 0 the operatotZ, , , is Fredholm, since the origin does not
belong to its essential spectrum. But whewanishes, the operatdy, , . does not
satisfy the Fredholm property because its essential spratontains the origin.
Note that in the absence of the transport term we are dealthdhve self-adjoint
operator
d? \s
(— @> —a: H¥*R)— LAR), a>0,
which fails to satisfy the Fredholm property (see [23]). ustwrite down the
corresponding sequence of approximate equationswithN as
d* \s Ay,
(——) um—de—aum:fm(x), reR, 0<s<l, (1.6)
xr
where the right sides tend to the right side of (1.2L#R) asm — oc. The inner
product of two functions

(f(2), 9(2)) ey = / " F@)g)de, 1.7)

with a slight abuse of notations when these functions aresguoare integrable.
Indeed, if f(x) € L'(R) andg(z) € L*>(R), then clearly the integral in the right
side of (1.7) makes sense, like for example in the case otifuminvolved in the
orthogonality conditions (1.10) and (1.11) of Theoremsand 1.2 below. For our
problems on the finite intervdl := [0, 27| with periodic boundary conditions, we
will use the inner product analogous to (1.7), replacingrds line with 7. In the
first part of the present work we will consider the spage$R) and H**(R), 0 <

s < 1 equipped with the norms

2
du

lull @y = lullZa@) + (1.8)

L2(R)



and
2

2
d s
(-2
L2(R)
respectively. When using the normi&' (1) and H%*(I), 0 < s < 1 in the second
part of the article, we will replac® with 7 in formulas (1.8) and (1.9) respectively.
Our first main proposition is as follows.

lullZr2s ) = IlullZa@) + (1.9)

Theorem 1.1.Let f(z) : R — R and f(z) € L*(R).

1 . . . .
a) Supposes > 0 and0 < s < 5" Then equation (1.2) admits a unique solution
u(z) € H'(R).

1 . .
b)Ifa >0 and§ < s < 1, then problem (1.2) possesses a unique solutian €
H?(R).

c) Suppose = 0 and0 < s < i Let in additionf(z) € L*(R). Then equation
(1.2) has a unique solutiom(z) € H'(R).

1 1
d) If a = 0 and ) <s< v we also assume thatf(r) € L'(R). Then prob-

lem (1.2) admits a unique solutiar{z) € H'(R) if and only if the orthogonality
condition

(f(x), 1) 2@y =0 (1.10)
holds.
e) Suppose = 0 and% < s < 1. Let in additionz f(z) € L'(R). Then equation
(1.2) possesses a unique solutiofr) € H?¢(R) if and only if the orthogonality
relation (1.10) holds.

Evidently, the expression in the left side of (1.10) is welfided by virtue of the
simple argument analogous to the proof of Fact 1 of [18]. W twr attention to
establishing the solvability in the sense of sequencesupbequation on the whole
real line.

Theorem 1.2. Letm € N, f,(z) : R — R and f,,(x) € L*(R). Moreover,
fm(x) — f(z)in L*(R) asm — oo.

a)lfa >0and0 < s < % then equations (1.2) and (1.6) have unique solutions
u(r) € HY(R) andu,,(x) € H'(R) respectively, such that,,(z) — u(z) in
H'(R) asm — oo.

b) Suppose > 0 and% < s < 1. Then problems (1.2) and (1.6) possess unique

solutionsu(z) € H*(R) andu,,(z) € H*(R) respectively, such that,,(z) —
u(z) in H*(R) asm — oo.



c)lIfa=0and0 < s < i let in additionf,,(z) € LY(R) and f,,(z) — f(z)in
L'(R) asm — oo. Then equations (1.2) and (1.6) admit unique solutiofs)
HY(R) and u,,(z) € H'(R) respectively, such that,,(z) — u(z) in H'(R) as
m — OQ.

d) Suppose that = 0 andi <s< % We also assume thatf,,(r) € L'(R) and
T fm(z) = xf(z) in LY(R) asm — oco. Furthermore,

(fm(2), Ve =0, meN (1.11)

holds. Then problems (1.2) and (1.6) have unique solutign$ € H'(R) and
un(z) € H'(R) respectively, such that,,(z) — u(z) in H(R) asm — oo.

1 . "
e) Suppose that = 0 and 5 <s< 1. Let in additionzf,,(x) € L'(R) and

rfm(z) — zf(z) in L'(R) asm — oo. Moreover, orthogonality relations (1.11)
hold. Then equations (1.2) and (1.6) possess unique sohitia) € H**(R) and
un(z) € H*(R) respectively, such that, (z) — u(z) in H*(R) asm — oo.

Note that in the parts a) and b) of Theorems 1.1 and 1.2 abewerthogonality
conditions are not used, as distinct from the situation eutha drift term consid-
ered in the parts e) of Theorems 1.1 and 1.2 of [23]. Anotlerddere is that in
Theorems 1.1 and 1.2 of the present article we establishothelslity of our equa-

: : 1 :
tions in H'(R) for 0 < s < 3 but in the cases a) and e) of Theorems 1.1 and 1.2 of

[23] we show the solvability of our problems without a traogponly in /% (R).
Finally, we observe that in the parts e) of Theorems 1.1 ah@dlove only a single
orthogonality condition is needed, as distinct from theesas) of Theorems 1.1

and 1.2 of [23], where the second orthogonality relatiorecuired fors € E, 1)

along with the assumption that f(x), 2%f,.(z) € L'(R), m € N. Hence, the
introduction of the transport term provides the reguldararafor the solutions of
our equations.

In the second part of the work we study our equation on theefinterval with
periodic boundary conditions, i.é.:= [0, 27|, namely

(—d—2>su—b%—au:f(:c), rel, (1.12)

wherea > 0 andb € R, b # 0 are constants and the right side of (1.12) is bounded
and periodic. Obviously,

||f||L1(I) S 27T||f||L°°(I) < 00, ||f||L2(I) S V 27T||f||L°°(I) < OQ. (113)
Thusf(z) € L*(I) N L*(I) as well. We use the Fourier transform

fn = \/% /O27r f(x)e ™ dx, n €7, (1.14)
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such that

Evidently, the non-selfadjoint operator involved in th& Bde of (1.12)

2N\ d 1 , 1
=(——=5] —b——a: <= _
Lovoi=(=75) —b——a: H)=IXD), 0<s<3, (115)
e d 2 2 1
£a,b,s._(—dx2> —b—a: BRI = LMD, j<s<1 (L16)

is Fredholm. By means of (1.14), it can be easily verified that spectrum of
L, b, s IS given by

Ao b, s(n) :==n]* —a—ibn, nezZ

inT

and the corresponding eigenfunctions are the Fourier hairmeQ—, n € Z. The
™

eigenvalues of the operatdl, , , are simple, as distinct from the situation with-
out the transport term, when the eigenvalues corresporiding# 0 are double-
degenerate. The appropriate function spaces Hété) and H2*(I) are

{u(z): I — R |u(z), u'(z) € L*(I), u(0) = u(27), u'(0) = v/(27)}.
and
d2 ) 2 / !

u(x) : I — R|u(x), 03 u(z) € L*(I), u(0) = u(27), u'(0) = u'(2m)
respectively. For the technical purposes, we introducédath@ving auxiliary con-
strained subspaces

Hy(I) = {u(z) € H'(I) | (u(x), 1) 12 = 0} (1.17)

and
HE* (1) = {u(w) € H*(I) | (u(x),1) 21y = 0} (1.18)

which are Hilbert spaces as well (see e.g. Chapter 2.1 of (®@parly, fora > 0,
the kernel of the operatdt, , ; is trivial. Whena = 0, we consider

£07b732 H&([)%LQ([), 0<s<

)

N —

1
;Co7 b, s Hgs(]) — Lz(]), 5 < s < 1.



Evidently, such operator has the trivial kernel as well. Waendown the corre-
sponding sequence of the approximate equationswithN, namely

(— 7>Sum —b—— —auy, = f(z), =z €1, (1.19)

where the right sides are bounded, periodic and converdgpe taght side of (1.12) in
L*>(I) asm — oo. The purpose of Theorems 1.3 and 1.4 below is to demonstrate
the formal similarity of the results on the finite intervaltlviperiodic boundary
conditions to the ones derived for the whole real line situsin Theorems 1.1 and

1.2 above.

Theorem 1.3.Let f(z) : I — R, such thatf(0) = f(2x) and f(x) € L>(I).

1 . . . .
a)lfa>0and0 <s < o then equation (1.12) admits a unique solutigr) €
HY(I).

1 . .
b) Suppose: > 0 and 3 < s < 1. Then problem (1.12) has a unique solution
u(x) € H*(I).

1 . .
c)Ifa=0and0 < s < 3 then equation (1.12) possesses a unique solutjon €
H}(I) if and only if the orthogonality condition

(f(2), )2y =0 (1.20)
holds.

d) Suppose = 0 and% < s < 1. Then problem (1.12) admits a unique solution
u(x) € HZ*(I) if and only if the orthogonality relation (1.20) holds.

Our final main statement deals with the solvability in thesseof sequences for
our problem on the finite intervdl

Theorem 1.4.Letm € N, f,.(z) : I — R, such thatf,,(0) = f,.(27). Further-
more, f,,(x) € L>(I) and f,,(z) — f(x)in L>(I) asm — oc.

a) Suppose > 0 and0 < s < % Then equations (1.12) and (1.19) possess unique
solutionsu(x) € H'(I) andu,,(x) € H'(I) respectively, such that, (z) — u(x)

in H(I) asm — oo.

b)Ifa >0 and% < s < 1, then problems (1.12) and (1.19) admit unique solutions

u(x) € H*(I) andu,,(z) € H*(I) respectively, such that,,(z) — u(z) in
H?*(I)asm — oo.



1
c) Supposethat=0, 0<s< 5 and

(fm(2), )2y =0, meN. (1.212)

Then equations (1.12) and (1.19) have unique solutidn$ € H} (1) andu,,(z) €
H(I) respectively, such that,, (z) — u(x) in H}(I) asm — oc.

1 . .
d)Ifa =0, 3 < s < 1 and orthogonality relations (1.21) hold. Then problems

(1.12) and (1.19) admit unique solution$zr) € HZ*(I) and u,,(z) € HZ*(I)
respectively, such that,,(x) — u(z) in H*(I) asm — oo,

Note that in the cases a) and b) of Theorems 1.3 and 1.4 ab®wettitogonality
relations are not needed. When there is no transport ternurirpblems, the
situation is more singular (see formulas (3.2) and (3.8)Wwelith a = n2*, ng €
N).

2. The whole real line case

Proof of Theorem 1.1Let us first demonstrate that it would be sufficient to solve ou
equation inL*(R). Indeed, ifu(z) is a square integrable solution of (1.2), directly
from this equation under the stated assumptions we obtain

(— dd—;>su - bj—;‘ € I2(R)

as well. By means of the standard Fourier transform (1.5),desve (|p|* —
ibp)u(p) € L*(R), such that

/ (Ipl* + Bp?)|a(p) Pdp < oo. (2.1)

[e.e]

o0

1 . ~
Let0 < s < 3 From (2.1) we easily deduce thj[t p?|u(p)Pdp < co. Hence,

oo

— ¢ L*(R) andu(z) € H'(R) as well.

Suppos% < s < 1. Then (2.1) yields

[ wlefat) Py < o

[e.9]

2

d s
Therefore,( — ﬁ) u € L*(R), such thatu(z) € H*(R) as well.
X



N —

Let us establish the uniqueness of solutions of (1.2) in#se evher) < s <

1 . o
For 5 <s< 1 the argument will be similar. Suppose thatz), us(z) € H'(R)

satisfy (1.2). Then their difference(x) := u;(x) — us(z) € H'(R) solves the
homogeneous problem

d? \s dw
(—@) —b%—aw—o
Since the operator,, ;, , defined in (1.3) does not possess any nontrivial zero
modes inH'(R), the functionw(x) = 0 identically onR.

We apply the standard Fourier transform (1.5) to both sidemqaation (1.2)
and arrive at

~ p
u(p) = Wk‘fi(—a)—ibp’ peR, 0<s<l1. (2.2)
Thus, ~
2 = |f(p)?
||U||L (R) /Oo (‘p|23 _ a)z —l—bsz p ( )

Let us first consider the cases a) and b) of the theorem. (B@)as that

1
[l 2y < 5||f||%2(R) <0

due to the one of our assumptions. Here and further downill denote a finite,
positive constant. By virtue of the argument above, in theasion whena > 0,

, . . , 1
equation (1.2) admits a unique solutiofr) € H'(R) for 0 < s < 5 andu(z) €

L 1
H?*(R) if 5 <8< L.
We conclude the argument by treating the cases when (0. Formula (2.2)
gives us

~ ~

u(p) = Mﬂif)pmpm ngf)xmm (2.4)

Here and throughout the articje, will denote the characteristic function of a set
A C R. Evidently, the second term in the right side of (2.4) can &texeated from

above in the absolute value b&L € L*(R) sincef(x) Is square inte rable as
e ( ) f( ) g

assumed. Clearly, the inequality

Hf(p)HLoo(R><\/—Hf( M) (2.5)
holds. Wher) < s < i we use (2.5) to derive
f(p) —— |f<p>|X ey < W@lve
[plPe —ibp DL e M = e X

9



This allows us to obtain the upper bound on the norm

H ) 2 - ”f(@”%l(u@)
Ip|? — r2®) — (1 —4s)

sincef(r) € L'(R) as assumed. By means of the argument above, in the case c) of
the theorem equation (1.2) possesses a unique solutione H'(R).
To establish the statements d) and e) of our theorem, we £xpre

Fio = oy + [* s

Hence, the first term in the right side of (2.4) can be written a

/\

X{\p\_ }

]/C\(O) fp dJZ(s) ds
p[2s — pX{|p|<1} + m?({\p\gl}- (2.6)
By virtue of definition (1.5) of the standard Fourier tranmsfiowe easily arrive at
df ( )
~||xf (@)l my

This enables us to estimate the second term in (2.6) fromeaibdirie absolute value

by
1 lzf(@)]z

X{pi<1y € L*(R)

V2r 10|
due to our assumptions. Let us analyze the first term in (Ridgigh is given by
£(0
|p|2{(—) X{lp|<1}- (2.7)

1
Clearly, |f— < s < —, expression (2.7) can be bounded below in the absolute value

2’
by R
o
|p|23\/1+—b2 {lpl<1}>
which does not belong t6?(R) unlessf(o) vanishes. This gives us orthogonality
relation (1.10). In the case d) of the theorem, accordinghéargument above,
the square integrability of the solutiariz) of equation (1.2) will be equivalent to
u(r) € H'(R).
Evidently, foré < s < 1, expression (2.7) can be estimated below in the abso-
lute value by

1£(0)]
|p‘\/1—|——b2X{‘p‘<1}’

10



which is not square integrable unless orthogonality comalif1.10) holds. In the
case e) of our theorem, by virtue of the argument above, tharsqntegrability of
the solutionu(z) of problem (1.2) will be equivalent to(z) € H*(R). |

Let us proceed to establishing the solvability in the serisequences for our
problem on the whole real line.

Proof of Theorem 1.Z-irst we suppose that equations (1.2) and (1.6) admit unique
solutionsu(z) € H'(R) andu,,(z) € H'(R), m € N respectively if0 < s < 3

_ 1
similarly u(z) € H*(R) andu,,(z) € H*(R), m € N for 5 <5< 1, such that
Um(r) — u(z) in L*(R) asm — oo. This will imply thatu,,(z) also converges
to u(z) in H*(R) asm — oo for 0 < s < B and analogously,,(x) — u(x)

: 1 .
in H*(R) asm — oo When§ < s < 1. Indeed, from (1.2) and (1.6) we easily
deduce

|| <_d_2>s(um_u)_bw

e T < =l tallum—ul L2w). (2.8)

L2(R)

The right side of upper bound (2.8) tends to zeroas> oo due to our assumptions.
Using the standard Fourier transform (1.5), we easily araitv

/ (1Pl 4 B0 [En(p) — Ap)Pdp = 0, m > oo, (2.9)

oo

1
Let0 < s < 7 By means of (2.9)

/ P2|tm(p) — u(p)|*dp — 0, m — oo,
d,y, du ., . 1

such that— — — in L*(R) asm — oo. Therefore, if0 < s < 5 e have

Um(7) — u(x) in HY(R) asm — oo as well.

1 :
Suppose2 < s < 1. By virtue of (2.9)

/ |p|4s|ﬂm(p) — ﬁ(p)|2dp — 0, m — oo.

2 (s d2 s
Hence( - —) Uy — (— ﬁ) w in L?(R) asm — oo. This implies that for
X

5 <s< 1, we obtainu,, (z) — u(x) in H**(R) asm — oo as well.

11



We apply the standard Fourier transform (1.5) to both sid€%.6), such that
_ ul)
p|** —a —ibp

Let us first discuss the cases a) and b) of the theorem. By noédns parts a) and
b) of Theorem 1.1, when the constant- 0 equations (1.2) and (1.6) admit unique

Um(p) ., meN, peR, 0<s<l. (2.10)

solutionsu(z) € H'(R) andu,,(z) € H'(R), m € N respectively if0 < s < 3

o 1
similarly u(z) € H*(R) andu,,(r) € H**(R), m € N for 5 <8< 1. Formulas
(2.10) and (2.2) give us

s [ 1) = T)P
[ tm — UHLQ(]R) = /Oo (Ip?* — a)? + b2p2dp.

Hence,

i — w28y < Gl fon = Fllzy 0, m = 00
via the one of our assumptions. Therefore, in the casesof) we haveu,,(z) —
u(x)in HY(R)asm — oo for( < s < % andu,,(z) — u(x) in H*(R) asm — oo

L1 .
If — < s < 1 by virtue of the argument above.

Let us finish the proof of the theorem by treating the situsiovhen the param-
etera = 0. By means of the result of the part a) of Lemma 3.3 of [17], urcde
assumptions

(f(@), V2w =0 (2.11)
holds in the cases d) and e). Then by virtue of the parts c)nd)ed of Theorem
1.1, problems (1.2) and (1.6) with= 0 have unique solutions(z) € H'(R) and

un(z) € H'(R), m € Nrespectively when iff < s < 3 similarly u(z) € H**(R)

1 .
andu,,(z) € H*(R), m € N for B < s < 1. Formulas (2.10) and (2.2) imply that

_ o ) = F) (D) = F(0)
Um(p) — u(p) = T iy X<y + TP iy X1 (2.12)

Apparently, the second term in the right side of (2.12) cabdended from above
in the L?*(R) norm by
1
Vit

. . 1 : . .
via the one of our assumptions. Let s < 1 Using the analog of inequality
(2.5), we derive

F(0) — ()
pP —ibp MY

||fm_f||L2(R) —>0, m — o0

| (D) — F(p)] 1 fm = e
X <1 S —X <1},
|p‘25 {|p|_} \/ﬂ‘pPS {|p|_}




such that

due to the one of the given assumptions. By means of the argwhevey,, (x) —
u(x) in HY(R) asm — oo in the situation when the constaatvanishes and

F0) — (D)

M= fllm
p|? — ibp

— 0, m— o
(1 —4s)

X{lp|<1}

L2(R)

0<s<—-.

To address the cases d) and e) of our theorem, we use the @ntiiig condi-
tions (2.11) and (1.11). Definition (1.5) of the standardr@uransform yields

F(0)=0, Fn(0)=0, meN.

flp) = /Op%j)ds, Fulp) = /Op%s(s)ds, m e N. (2.13)

Therefore, the first term in the right side of (2.12) in theesad) and e) of the
theorem can be written as

f dfm(s df 8)]d8

0

ds ds

|p|* — ibp

Thus

By means of the definition of the standard Fourier transfdrr)( we easily derive

dfm(p) ’ 1
_ < Timlz) —2f(T
‘ . e \/%H fm(z) = 2f ()|l m)
Hence
[P dnt) _ f)]dsx{ o< H:cfm(ﬂf)—ﬂff(ﬂf)HLl(R)X{ .
p[2s — ibp Ipl<1} = \/%W E
such that
| o dfms(s dj;(:)]dsX{l <1} < |2 fin(2) — 2 f (@) |1y 0
2s __ PI= B
P — b . vl

asm — oo by means of the one of our assumptions. Therefofgx) — u(z) in
L*(R) asm — oo. By virtue of the argument above in the situation whes: 0

we haveu,,(z) — u(z) in H'(R) asm — oo if i <s< % andu,,(z) — u(x) in

1
H*(R) aSm—>oof0r§<s<1. u
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3. The problem on the finite interval

Proof of Theorem 1.3.Let us first establish that it would be sufficient to solve
our problem inL?(I). Indeed, ifu(z) is a square integrable solution of (1.12),
periodic on/ along with its first derivative, directly from our equationder the
given conditions we derive

d* \s du 9
(1.14) implies(|n|* — ibn)u,, € I?, such that

> (Inf* + n®)|un* < oo (3.1)

n—=—oo

. Then by means of (3.1) we havg n?|u,|* < oo, which

(NN

Supposd) < s <

n=—oo

, d
yleldsﬁ € L*(I). Henceu(z) € H*(I) as well.

1 . e L
Let 5 < s < L. By virtue of (3.1) we obtain " |n|*|u,|* < oo, which gives

n=—oo

2

d s
us ( - @> u(w) € LA(I). Thusu(x) € H?(I) as well.
To show the uniqueness of solutions of (1.12), we discussithation when

1 1 L .
a>0and0 < s < 7 Ifa >0 andé < s < 1, the similar ideas can be exploited

, 1 1
in H*(I). Fora=0, 0 <s < 5 and whena = 0, 5 <s< 1 our argument can

be generalized using the constrained subspaiges) and H3* (1) respectively de-
fined above. Let us suppose thatz), us(x) € H(I) solve (1.12). Then their
differencew(z) := uy(z) — us(z) € H'(I) satifies the homogeneous equation

d? \s dw
Since the operatof,, ,  introduced in (1.15) does not have any nontrivigi(1)
zero modes, the function(z) = 0 on .

We apply the Fourier transform (1.14) to both sides of pnob{&.12), which
yields

In
= 7. 3.2
tn In|?* —a —ibn’ ne (3:2)
Hence
ul| 20y = Eoo Fnl” (3.3)
Ul = (|n|2s _ a)2 +p2n2 :

n=—0oo
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First we deal with the cases a) and b) of our theorem. By viofu8.3), we arrive
at

Jullny < &1 eqry < o0
via the one of our assumptions along with (1.13). By meane@&tgument above,
in the situation whem > 0, equation (1.12) admits a unique solutiofx) € H'(I)
if 0<s< % andu(z) € H*(I) for% <s <l
In order to conclude the proof of the theorem, we considesttuation when
a = 0. Then (3.2) yields

Jn

- |n|?s — ibn

, neEZ. (3.4)

Unp

Evidently, the right side of (3.4) belongs tbif and only if
Jo=0, (3.5)

such that

| fnl® 1
lulon = > s < Tl < .
neZ, n#0

due to the one of the given conditions and (1.13). By virtuthefargument above
in the cases c) and d) of the theoref) € H} (1) andu(x) € HZ*(I) respectively
as well. Obviously, (3.5) is equivalent to orthogonalitynddion (1.20). [ |

Let us proceed to establishing the solvability in the serisequences for our
problem on the interval with periodic boundary conditions.

Proof of Theorem 1.4Jnder the given assumptions, we obtain

[£(0) = f2m) < [F(0) = fn(O) + [fm(2m) = F2m)| < 2[[fn = fllLoery = O

asm — oo. Hence,f(0) = f(2x). By means of (1.13) fof,,(z), f(z) bounded
on the intervall, we obtainf,,(x), f(z) € L*(I)n L*(I), m € N. The analog of
(1.13) also implies

[fm(2) = @)1y < 2| fn(2) = f(@)l[poey = 0, m — o0 (3.6)
Hence,f,.(z) — f(z)in L*(I) asm — oo. Similarly, (1.13) yields
(@) = F@)llz2y < V27| fin(2) = f(@)|poory = 0, m =00, (3.7)

Hence,f,,(z) — f(x)in L*(I) asm — oo as well. We apply the Fourier transform
(1.14) to both sides of (1.19) and derive

fm,n

T nE —a—ibn’

meN, neZ. (3.8)

Um,n
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First we consider the cases a) and b) of our theorem. By votdlee parts a) and
b) of Theorem 1.3, when > 0 problems (1.12) and (1.19) have unique solutions

u(x) € HY(I) andu,,(x) € HY(I), m € N respectively if0 < s < % similarly

u(r) € H*(I) andu,,(x) € H**(I), m € N for % < s < 1. (3.8) along with (3.2)
and (3.7) imply that

HUm - u”%z(l) = Z (|n|23 — ) T b2n2 < Hfm f”%2(]) — 07 m — OQ.

n=—0oo

Thus,u,,(x) — u(z)in L*(I) asm — oo. By means of (1.12) and (1.19) we derive

’ d(ty, —u)
H( da:2> m—u)=b dx

The right side of this inequality converges to zeronas— oo due to (3.7). The
Fourier transform (1.14) gives us

< N fom = Fllzzay + allwm — ull 2y

L*(I)

> (™ + 00 [t — un|* =0, m — 0. (3.9)

n=—0oo

Suppose < s < % Then (3.9) yields

o0

Z N2 U — Un|® = 0,  m — 00.

iy, d T .
Therefore,—* . ﬁ in L2(I) asm — oo, which implies thatu,, (z) — u(z) in

H'(I') asm — oo as well in the case a) of our theorem.
1
Let ) < s < 1. By means of (3.9), we have

Z In|* [t — un|* = 0, m — o0,

n=—oo

2\ 2\
= e S

in L?(I) asm — oo. Thereforeu,,(z) — u(z) in H*(I) asm — oo as well in
the case b) of the theorem.

such that
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Finally, let us turn our attention to the situation when tlbastantz vanishes.
(1.21) along with (3.6) imply

|(f(2), Dzl = [(f(2) = fn(@), Dzl < N[ fm = fllorgy — 0, m — oo

Hence, the limiting orthogonality condition

(f(2), )2y =0 (3.10)

holds. By virtue of the parts c) and d) of Theorem 1.3, when 0 equations (1.12)
and (1.19) possess unique solutianis) € H{(I) andu,,(z) € H(I), m € N

respectively fof < s < 3 analogously:(z) € H2*(I) andu,,(z) € H¥*(I), m €

L1 :
N if 3 < s < 1. Formulas (3.2) and (3.8) yield

Uy — Uy = H meN, neczZ. (3.11)

Orthogonality relations (3.10) and (1.21) give us
f0:07 fm,O:07 meN

We obtain the upper bound on the norm

In|*s 4+ b0?n2 = /1+02

n=—o00, n#0

> _ f |2 —
|, — ul| L2(r) = J Z [ finn = Jnl < | fm = Fllzear —0, m— o0

via (3.7). Hencey,,(z) — u(x) in L*(I) asm — oo. Therefore, whem vanishes
and0 < s < % we haveu,,(z) — u(z) in Hi(I) asm — oo as well by means of
the argument analogous to the one above in the proof of thepaf the theorem.
Whena = 0 and1 < s < 1, we deriveu,,(z) — u(z) in H¥*(I) asm — oo as

well by virtue of the argument analogical to the one in theopif the case b) of
our theorem. [ |
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