Traveling quasi-periodic water waves
with constant vorticity
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Abstract. We prove the first bifurcation result of time quasi-periodic traveling waves solutions
for space periodic water waves with vorticity. In particular we prove existence of small ampli-
tude time quasi-periodic solutions of the gravity-capillary water waves equations with constant
vorticity, for a bidimensional fluid over a flat bottom delimited by a space-periodic free inter-
face. These quasi-periodic solutions exist for all the values of depth, gravity and vorticity, and
restricting the surface tension to a Borel set of asymptotically full Lebesgue measure.
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1 Introduction and main result

The search for traveling surface waves in inviscid fluids is a very important problem in fluid
mechanics, widely studied since the pioneering work of Stokes [38] in 1847. The existence of
steady traveling waves, namely solutions which look stationary in a moving frame, either peri-
odic or localized in space, is nowadays well understood in many different situations, mainly for
bidimensional fluids.

On the other hand, the natural question regarding the existence of time quasi-periodic trav-
eling waves —which can not be reduced to steady solutions in a moving frame— has been not
answered so far. This is the goal of the present paper. We consider space periodic waves.
Major difficulties in this project concern the presence of ‘small divisors" and the quasi-linear
nature of the equations. Related difficulties appear in the search of time periodic standing waves
which have been constructed in the last years in a series of papers by Iooss, Plotnikov, Toland
[34, 25 22| 23] for pure gravity waves, by Alazard-Baldi [I] in presence of surface tension and
subsequently extended to time quasi-periodic standing waves solutions by Berti-Montalto [6] and
Baldi-Berti-Haus-Montalto [2]. Standing waves are not traveling as they are even in the space
variable. We also mention that all these last results concern irrotational fluids.

In this paper we prove the first existence result of time quasi-periodic traveling wave solutions
for the gravity-capillary water waves equations with constant vorticity for bidimensional fluids.
The small amplitude solutions that we construct exist for any value of the vorticity (so also for
irrotational fluids), any value of the gravity and depth of the fluid, and provided the surface ten-
sion is restricted to a Borel set of asymptotically full measure, see Theorem [I.5] For irrotational
fluids the traveling wave solutions that we construct do not clearly reduce to the standing wave
solutions in [6]. We remark that, in case of non zero vorticity, one can not expect the bifurcation
of standing waves since they are not allowed by the linear theory.

Before presenting in detail our main result, we introduce the water waves equations.

The water waves equations. We consider the Euler equations of hydrodynamics for a 2-
dimensional perfect, incompressible, inviscid fluid with constant vorticity -, under the action
of gravity and capillary forces at the free surface. The fluid fills an ocean with depth h > 0
(eventually infinite) and with space periodic boundary conditions, namely it occupies the region

Dyn={(z,y)eTxR : —h<y<n(t,z)}, T:=T,:=R/(21Z). (1.1)
The unknowns of the problem are the divergence free velocity field (u(t, > y)) which solves the

v(t, z,y)

Euler equation and the free surface y = 7(t, z) of the time dependent domain D, ,. In case of a



fluid with constant vorticity

Vg — Uy =7,

—Y
0
fluid, and an irrotational field, expressed as the gradient of a harmonic function ®, called the

generalized velocity potential.
Denoting by (¢, x) the evaluation of the generalized velocity potential at the free interface
Y(t,x) ;= ®(¢t,x,n(t,x)), one recovers P by solving the elliptic problem

the velocity field is the sum of the Couette flow >, which carries all the vorticity « of the

AP =0 inD,y, ®=v¢ aty=n(tz), P,—0 asy— —h. (1.2)
The third condition in (1.2) means the impermeability property of the bottom

®,(t,z,~—h) =0, if h < 0, lim ®,(¢t,z,y) =0, if h = 400.
Y—>—0
Imposing that the fluid particles at the free surface remain on it along the evolution (kinematic
boundary condition), and that the pressure of the fluid plus the capillary forces at the free surface
is equal to the constant atmospheric pressure (dynamic boundary condition), the time evolution
of the fluid is determined by the following system of equations (see [8] [42])

ne =Gy + ymme
"/}3; (N2the + G(ﬂ)¢)2 + H( Uz

(1.3)
= —gn— =+
Y=o 21+ 12) i

2) + s + 70, G0y
e

Here g is the gravity, & is the surface tension coefficient, which we assume to belong to an interval
[k1, k2] with k1 > 0, and G(n) is the Dirichlet-Neumann operator

G(n)w = G(??»h)@b =4/1+ 77325 (aﬁq>)|y=n(ac) = (—fl%mm + (I)y)|y=7l(a:) . (1-4)

The water waves equations (|1.3)) are a Hamiltonian system that we describe in Section and
enjoy two important symmetries. First, they are time reversible: we say that a solution of (L.3))
is reversible if

77(—757 _'T) = n(t’ x) ) '(/J(_t’ —J}) = _w(t’ .L“) . (15)

Second, since the bottom of the fluid domain is flat, the equations are invariant by space
translations. We refer to Section 2.I] for more details.

Let us comment shortly about the phase space of (1.3)). As G(n)v is a function with zero
average, the quantity Sqr n(z)dz is a prime integral of. Thus, with no loss of generality,
we restrict to interfaces with zero spatial average {,7(x)dz = 0. Moreover, since G(n)[1] = 0,
the vector field on the right hand side of depends only on n and ¢ — 5= { ¢ dz. As a

consequence, the variables (1, 1) of system (L.3) belong to some Sobolev space Hg(T) x H*(T)
for some s large. Here H§(T), s € R, denotes the Sobolev space of functions with zero average

HE(T) = {ueHS(T) : f

i u(z)dr = 0}

and H 5(T), s € R, the corresponding homogeneous Sobolev space, namely the quotient space
obtained by identifying all the H*(T) functions which differ only by a constant. For simplicity
of notation we shall denote the equivalent class [/] = {¢) + ¢,c € R}, just by .



Linear water waves. When looking to small amplitude solutions of ([1.3)), a fundamental role
is played by the system obtained linearizing (1.3]) at the equilibrium (7,v) = (0,0), namely

o = —(g— K02 +707 ' GO)Y.
The Dirichlet-Neumann operator at the flat surface n = 0 is the Fourier multiplier
D tanh(hD) if h 1
G(0) = G(0,n) = | P tanh(rD) ifh <o where D= 24, (1.7)
|D| if h =400, i
with symbol
jtanh(hj) ifh <o
G,;(0) := G;(0,h) = <" e (1.8)
71 ifh=+4oc0.
As we will show in Section [2.2] all reversible solutions (see ) of { . are
n(t,x)\ _ Z M, py cos(nz — Qyp,(K)t)
v(t,x)) =\ Papn sin(nz — Q,(k)t)
" 1.9
+Z< nPp—ncos(ne + Q_p(k )t)) (L.9)
R P_pp_psin(nz + Q_,(k)t) )’
where p, > 0 are arbitrary amplitudes and M,, and PL,, are the real coefficients
1
) Mn _
jyppey g— 0 ) B0 P WMy nen. )
kj2 4+ g+ I 2
Note that the map j — M, is even. The frequencies Q.+, () in (1.9) are
7* G;(0) 7 G;(0 ,
(k) := \/(m to+ s Z2)Gi0) + 5 = jeno). (L.11)

Note that the map j — €;(x) is not even due to the vorticity term vG;(0)/j, which is odd in j.
Note that ;(x) actually depends also on the depth h, the gravity ¢ and the vorticity v, but we
highlight in only its dependence with respect to the surface tension coefficient x, since in
this paper we shall move just k as a parameter to impose suitable non-resonance conditions, see
Theorem Other choices are possible.

All the linear solutions (1.9), depending on the irrationality properties of the frequencies
Q4+, (k) and the number of non zero amplitudes p+,, > 0, are either time periodic, quasi-periodic
or almost-periodic. Note that the functions are the linear superposition of plane waves
traveling either to the right or to the left.

Remark 1.1. Actually, contains also standing waves, for example when the vorticity v = 0
(which implies Q_,, (k) = Qn(k), P, = —P,) and p_,, = py,, giving solutions even in z. This is
the well known superposition effect of waves with the same amplitude, frequency and wavelength
traveling in opposite directions.



Main result. We first provide the notion of quasi-periodic traveling wave.

Definition 1.2. (Quasi-periodic traveling wave) We say that (n(¢, z),¥(t, z)) is a time quasi-

periodic traveling wave with irrational frequency vector w = (w1, ...,w,) € RV, v € N, i.e. w-f # 0,
V¢ e Z"\{0}, and “wave vectors” (ji,...,J,) € Z¥, if there exist functlons (i1, ) : TV — R? such
that . ) .
n(t, )\ _ (it —ja, .. wet = )
(" _ _ . (1.12)
P(t, ) P(wit — 1z, ... wt — jox)

Remark 1.3. If v = 1, such functions are time periodic and indeed stationary in a moving frame
with speed wi/j1. On the other hand, if the number of frequencies v is > 2, the waves (1.12))
cannot, be reduced to steady waves by any appropriate choice of the moving frame.

In this paper we shall construct traveling quasi-periodic solutions of (|1.3) with a diophantine
frequency vector w belonging to an open bounded subset Q in R”, namely, for some v € (0, 1),
T>v—1,

DC(v,T) = {wchR” w- ] =07, Ve Z\0}, (&)= max{1,|€|}}. (1.13)

Regarding regularity, we will prove the existence of quasi-periodic traveling waves (7}, 1[)) belonging
to some Sobolev space

H(TR) = {f(p) = ) foe™, freR® :|f|2:= Y IAPO> <o}, (119)

Lezv LeZv
Fixed finitely many arbitrary distinct natural numbers

St:={ny,....,n,}c N, 1<m<...<n,, (1.15)

and signs
Yi={o1,...,00}, o,€{-1,1}, a=1,...,v, (1.16)

consider the reversible quasi-periodic traveling wave solutions of the linear system (|1.6)) given by

(mam): 5 (Mm¢awwma— mm>
aefl

P(t,x) e ﬁa\/gsin(nax — Qn, (K)) i
I ()
a€{l,...,v: go=—1} N ~ e’V >7TNa a —Ta
where {15, >0, a =1,...,v. The frequency vector of is
O(r) = (7. (F))a=1,..0 € R”. (1.18)

Remark 1.4. If o, = +1, we select in a right traveling wave, whereas, if o, = —1, a left
traveling one. By (L.15), the linear solutions are genuinely traveling waves: superposition
of identical waves traveling in opposite direction, generating standing waves, does not happen.

The main result of this paper proves that the linear solutions can be continued to
quasi-periodic traveling wave solutions of the nonlinear water waves equations , for most
values of the surface tension € [k1, k2], with a frequency vector Q= (ﬁgaﬁa)a:17,,,,y, close to
Q(ﬁ) = (o7, (K))a=1,... - Here is the precise statement.



Theorem 1.5. (KAM for traveling gravity-capillary water waves with constant vor-
ticity) Consider finitely many tangential sites ST < N as in and signs ¥ as in .
Then there exist s > 0, g9 € (0,1) such that, for every |¢| < &3, € = ({57, )a=1,...v € RY, the
following hold:

1. there exists a Cantor-like set Ge C [k1, ko] with asymptotically full measure as § — 0, i.e.
lime 0 |Ge| = k2 — Ka1;

2. for any k € G¢, the gravity-capillary water waves equations (L.3) have a reversible quasi-
periodic traveling wave solution (according to Deﬁm’tion of the form

D)y My, /&, o = O, 1)

) P \/&r, sin(figx — Qg t)

ae{l,....v}: oa=+1 @ ¢ ‘ (]_ ].9)
Mz, \/€ 5, cos(Max + Q_n,t)

+ L ~ +r(t,x)
ae{l,...,yz}:: S (Pnaw/éna sin(fqz + Qnat)>

where

r(t,z) = #H(Qoum,t — ovmiz, ..., Qo m t —oymya), € H(TY,R?), lim I7lls

:O7
E—)O\/m

with a Diophantine frequency vector Q= (Qaam)azlw,y € RY, depending on k,&, and

satisfying lime_,o Q= ﬁ(n) In addition these quasi-periodic solutions are linearly stable.

Let us make some comments.

1) Theorem holds for any value of the vorticity 7, so in particular it guarantees existence
of quasi-periodic traveling waves also for irrotational fluids, i.e. v = 0. In this case the solutions
do not reduce to those in [6], which are standing, i.e. even in x. If the vorticity v # 0,
one does not expect the existence of standing wave solutions since the water waves vector field
does not leave invariant the subspace of functions even in x.

2) Theorem produces time quasi-periodic solutions of the Euler equation with a velocity

-y
0
(n(t, x),¥(t,z)) in (1.19), one recovers the generalized velocity potential ®(¢, x,y) by solving the

o - ut,z,y)\ _ (—y
elliptic problem (1.2)) and finally constructs the velocity field (v(t, - y)) = ( 0 +VO(t,x,y).

The time quasi-periodic potential ®(t, x,y) has size O(+/|€]), as n(t, ) and (¢, x).

field which is a small perturbation of the Couette flow Indeed, from the solution

3) In the case v = 1 the solutions constructed in Theorem reduce to steady periodic
traveling waves, which can be obtained by an application of the Crandall-Rabinowitz theorem,

see e.g. [30, 41, 43].

4) Theorem selects initial data giving raise to global in time solutions ([1.19) of the water
waves equations (|1.3). So far, no results about global existence for ([1.3) with periodic boundary
conditions are known. The available results concern local well posedness with a general vorticity,
see e.g. [10], and a 2 existence for initial data of size € in the case of constant vorticity [21].

5) With the choice (T.15)-(T.16) the unperturbed frequency vector (}(x) = (7, (K))a=1,...0
is diophantine for most values of the surface tension x and for all values of vorticity, gravity and
depth. It follows by the more general results of Sections ] and [5.2 This may not be true for



an arbitrary choice of the linear frequencies Q;(x), j € Z\{0}. For example, in the case h = +co,
the vector .
Q(’%) = (Q—ns (H)7 Q—nz ("Q)a Q—nl (’Q)v Qm (K‘)7 an (K:)? Qns (’%))

is resonant, for all the values of &, also taking into account the restrictions on the indexes for
the search of traveling waves, see Section Indeed, recalling (1.11) and that, for h = 40,
G,;(0,h) = [j|, we have, for £ = (= n,, —Lln,, —lny, lny s lny, Uny ) that the system

Q(H‘) ' Z: 7('6711 + g’ﬂz + E’ﬂg) = Oa nlenl + n2£n2 + n3£n3 = 07

has integer solutions. In this case the possible existence of quasi-periodic solutions of the water
waves system (|1.3)) depends on the frequency modulation induced by the nonlinear terms.

6) COMPARISON WITH [6]. There are significant differences with respect to [6], which proves
the existence of quasi-periodic standing waves for irrotational fluids, not only in the result —the
solutions of Theorem are traveling waves of fluids with constant vorticity— but also in the
techniques.

(1) The first difference —which is a novelty of this paper— is a new formulation of degenerate
KAM theory exploiting “momentum conservation”, namely the space invariance of the Hamilton
equations. The degenerate KAM theory approach for PDEs has been developed in [3], and then
[6], [2], in order to prove the non-trivial dependence of the linear frequencies with respect to
a parameter —in our case the surface tension x—, see the “Transversality" Proposition A
key assumption used in [3], [6], [2] is that the linear frequencies are simple (because of Dirichlet
boundary conditions in [3] and Neumann boundary conditions in [6], [2]). This is not true for
traveling waves (e.g. in case of zero vorticity one has Q;(x) = Q_;(k) identically in ). In order
to deal with these resonances we strongly exploit the invariance of the equations (1.3 under
space translations, which ultimately imply the restrictions to the indexes (4.8] . In this
way, assuming that the moduli of the tangential sites are all different as in , cfr. with
item 5), we can remove some otherwise possibly degenerate case. This requires to keep trace
along all the proof of the “momentum conservation property” that we characterize in different
ways in Section [3.:4 The momentum conservation law has been used in several KAM results for
semilinear PDEs since the works [16] [17], |28, [35], see also [31}, 20, [15] and references therein. The
present paper gives a new application in the context of degenerate KAM theory (with additional
difficulties arising by the quasi-linear nature of the water waves equations).

(2) Other significant differences with respect to [6] arise in the reduction in orders (Section
of the quasi-periodic linear operators obtained along the Nash-Moser iteration. In particular
we mention that we have to preserve the Hamiltonian nature of these operators (at least until
Section . Otherwise it would appear a time dependent operator at the order |D|1/2, of the
form ia(@)H|D|2, with a(p) € R independent of x, compatible with the reversible structure,
which can not be eliminated. Note that the operator ia(p)H|D|2 is not Hamiltonian (unless
a(yp) = 0). Note also that the above difficulty was not present in [6] dealing with standing waves,
because an operator of the form ia(p)H|D|2 does not map even functions into even functions.
In order to overcome this difficulty we have to perform always symplectic changes of variables
(at least until Section [7.4)), and not just reversible ones as in [6, 2]. We finally mention that we
perform as a first step in Section a quasi-periodic time reparametrization to avoid otherwise
a technical difficulty in the conjugation of the remainders obtained by the Egorov theorem in
Section This difficulty was not present in [6], since it arises conjugating the additional
pseudodifferential term due to vorticity, see Remark

7) Another novelty of our result is to exploit the momentum conservation also to prove that
the obtained quasi-periodic solutions are indeed quasi-periodic traveling waves, according to




Definition [1.2l This requires to check that the approximate solutions constructed along the
Nash-Moser iteration of Section |§| (and Section @ are indeed traveling waves. Actually this
approach shows that the preservation of the momentum condition along the Nash-Moser-KAM
iteration is equivalent to the construction of embedded invariant tori which support quasi-periodic
traveling waves, namely of the form u(p,x) = U(p — Jx) (see Definition , or equivalently,
in action-angle-normal variables, which satisfy (3.52)). We expect this method can be used to
obtain quasi-periodic traveling waves for other PDE’s which are translation invariant.

Literature. We now shortly describe the literature regarding the existence of time periodic
or quasi-periodic solutions of the water waves equations, focusing on the results more related to
Theorem [I.5] We describes only results concerning space periodic waves, that we divide in three
distinct groups:

(i) steady traveling solutions,
(#4) time periodic standing waves,
(#i7) time quasi-periodic standing waves.

This distinction takes into account not only the different shapes of the waves, but also the tech-
niques for their construction.

(i) Time and space periodic traveling waves which are steady in a moving frame. The literature
concerning steady traveling wave solutions is huge, and we refer to [7] for an extended presen-
tation. Here we only mention that, after the pioneering work of Stokes [38], the first rigorous
construction of small amplitude space periodic steady traveling waves goes back to the 1920’s
with the papers of Nekrasov [33], Levi-Civita [27] and Struik [39], in case of irrotational bidimen-
sional flows under the action of pure gravity. Later Zeidler [45] considered the effect of capillarity.
In the presence of vorticity, the first result is due to Gerstner [18] in 1802, who gave an explicit
example of periodic traveling wave, in infinite depth, and with a particular non-zero vorticity.
One has to wait the work of Dubreil-Jacotin [I4] in 1934 for the first existence results of small
amplitude, periodic traveling waves with general (Holder continuous, small) vorticity, and, later,
the works of Goyon [19] and Zeidler [46] in the case of large vorticity. More recently we point out
the works of Wahlén [41] for capillary-gravity waves and non-constant vorticity, and of Martin
[30] and Walhén [42] for constant vorticity. All these results deal with 2d water waves, and can
ultimately be deduced by the Crandall-Rabinowitz bifurcation theorem from a simple eigenvalue.

We also mention that these local bifurcation results can be extended to global branches of
steady traveling waves by applying the methods of global bifurcation theory. We refer to Keady-
Norbury [29], Toland [40], McLeod [32] for irrotational flows and Constantin-Strauss [9] for fluids
with non-constant vorticity.

In the case of three dimensional irrotational fluids, bifurcation of small amplitude traveling
waves periodic in space has been proved in Reeder-Shinbrot [36], Craig-Nicholls [11], 12] for both
gravity-capillary waves (by variational bifurcation arguments ta Weinstein-Moser) and by Tooss-
Plotnikov [23] 24] for gravity waves (this is a small divisor problem). These solutions, in a moving
frame, look steady bi-periodic waves.

(it) Time periodic standing waves. Bifurcation of time periodic standing water waves were
obtained in a series of pioneering papers by Iooss, Plotnikov and Toland [34] 25], 22| 23] for pure
gravity waves, and by Alazard-Baldi [I] for gravity-capillary fluids. Standing waves are even in
the space variable and so they do not travel in space. There is a huge difference with the results
of the first group: the construction of time periodic standing waves involves small divisors. Thus
the proof is based on Nash-Moser implicit function techniques and not only on the classical



implicit function theorem.

(#i1) Time quasi-periodic standing waves. The first results in this direction were obtained very
recently by Berti-Montalto [6] for the gravity-capillary system and by Baldi-Berti-Haus-Montalto
[2] for the gravity water waves. Both papers deal with irrotational fluids.

2 Hamiltonian structure and linearization at the origin

In this section we describe the Hamiltonian structure of the water waves equations (|1.3)), their
symmetries and the solutions of the linearized system (1.6 at the equilibrium.
2.1 Hamiltonian structure

The Hamiltonian formulation of the water waves equations with non-zero constant vorticity
was obtained by Constantin-Ivanov-Prodanov [§] and Wahlén [42] in the case of finite depth. For
irrotational flows it reduces to the classical Craig-Sulem-Zakharov formulation in [44], [13].

On the phase space HI(T) x H'(T), endowed with the non canonical Poisson tensor

= (G4 5h). 1)

we consider the Hamiltonian
1
H(n,v) = §f (vGm)Y + gn*) dx+ﬂf V1402 dz + 2f ( Yen” + ?7 ) dz.  (2.2)
T T

Such Hamiltonian is well defined on HX(T) x H(T) since G(n)[1] = 0 and §r G(n)ypdz = 0.
It turns out [8] [42] that equations (L.3) are the Hamiltonian system generated by H(n,)
with respect to the Poisson tensor Jys(7), namely

o (1) =m0 (37%) 23)

where (V, H,V,H) € L*(T) x LZ(T) denote the LQ—gradients

Remark 2.1. The non canonical Poisson tensor Jys () in . ) has to be regarded as an operator
from (subspaces of) (L2 x L2)* = L% x L2 to L2 x L2, that is

_ 0 Idpz 2
T = (_Idi2—>i2 705! > '

The operator 97 maps a dense subspace of L2 in L2. For sake of simplicity, throughout the
paper we may omit this detail. Above the dual space (L2 x L2) with respect to the scalar
product in L? is identified with L2 x L3.

The Hamiltonian enjoys several symmetries which we now describe.

Reversible structure. Defining on the phase space H(T) x H'(T) the involution

s(1)= () w @ =0, (2.4



the Hamiltonian is invariant under S, that is
HoS=H,
or, equivalently, the water waves vector field X defined in the right hand side on satisfies
XoS=-So0X. (2.5)
This property follows noting that the Dirichlet-Neumann operator satisfies
G )WY= (Gml¥D) ™ . (2.6)

Translation invariance. Since the bottom of the fluid domain (1.1)) is flat (or in case of infinite
depth there is no bottom), the water waves equations (1.3)) are invariant under space translations.
Specifically, defining the translation operator

7o u(x) - ulz +<), cER, (2.7)

the Hamiltonian (2.2)) satisfies H o 7. = H for any ¢ € R, or, equivalently, the water waves vector
field X defined in the right hand side on ([1.3)) satisfies

Xor,=71.0X, VseR. (2.8)
In order to verify this property, note that the Dirichlet-Neumann operator satisfies

TcoG(n) =G(ren) o7, VeeR. (2.9)

Wahlén coordinates. The variables (1,) are not Darboux coordinates, in the sense that the
Poisson tensor (2.1) is not the canonical one for values of the vorticity v # 0. Wahlén [42] noted
that in the variables (7, (), where ( is defined by

Ci=¢p— a7y, (2.10)

the symplectic form induced by Jy/(7y) becomes the canonical one. Indeed, under the linear
transformation of the phase space Hi x H'! into itself defined by

Id 0 _ 0
(Z) :W<Z> o W= (36;1 Id> , W= (—ga;l Id) ; (2.11)

the Poisson tensor Jj;(7y) is transformed into the canonical one,

W Iy(yYWH* =7, J:= (—201 I(;i) . (2.12)

Here W* and (W ~')* are the adjoints maps from (a dense subspace of ) L? x L2 into itself, and
the Poisson tensor .J acts from (subspaces of) L? x L3 to L2 x L?. Then the Hamiltonian (2.2)
becomes

H:=HoW, ie H(():= H(n,g + %a;ln) , (2.13)
and the Hamiltonian equations (i.e. (1.3)) are transformed into
m\ _ L V,H
o (1) = Xl X, = (100) (0. (214)

10



By (2.12)), the symplectic form of (2.14) is the standard one,

(2 2)- (0 (2 (@), -ames o, o

where J~! is the symplectic operator

J 1= (I% _gd) (2.16)

regarded as a map from L3 x L? into L2 x L3. Note that JJ 1 = IdLgXL2 and J 1J = Idprg.
The Hamiltonian vector field X4 (n, ) in (2.14) is characterized by the identity
n

dH(n. O8] = W(Xn(n,0).0), ¥ai = @ .

The transformation W defined in (2.11)) is reversibility preserving, namely it commutes with the

involution S in (2.4) (see Definition below), and thus also the Hamiltonian # in (2.13)) is

invariant under the involution S, as well as H in (2.2)). For this reason we look for solutions
3

(n(t,x),((t, z)) of (2.14) which are reversible, i.e. see (1.5),

(Z) (—t) =8 (Z—) t). (2.17)

The corresponding solutions (n(t, z),¥(t, z)) of induced by are reversible as well.

We finally note that the transformation W defined in commutes with the translation
operator 7., therefore the Hamiltonian # in is invariant under 7, as well as H in .
By Noether theorem, the horizontal momentum ST (n, dz is a prime integral of .

2.2 Linearization at the equilibrium

In this section we study the linear system ([1.6) and prove that its reversible solutions have the

form (|1.9).
In view of the Hamiltonian (2.2) of the water waves equations (1.3, also the linear system
(1.6) is Hamiltonian and it is generated by the quadratic Hamiltonian

Hi (%) = % JT (WG(O0)y + gi® + rrp?) du = % <”L (Z) ’ (Z))L '

Thus, recalling (2.3), the linear system (1.6]) is

2, (Z) = Jn(7)Qr (Z) Q= (“a(% N G(()O)) . (2.18)

The linear operator 27, acts from (a dense subspace) of L2 x L? to L? x L. In the Wahlén
coordinates (2.11)), the linear Hamiltonian system (1.6)), i.e. (2.18), transforms into the linear
Hamiltonian system

(¢) = (2).

(2.19)



generated by the quadratic Hamiltonian

Hi(n,C) := (Hp o W)(n,¢) = % (QW (Z) , (Z>>L2 . (2.20)

The linear operator Qy acts from (a dense subspace) of LZ x L% to L? x L3. The linear system
([2-19) is the Hamiltonian system obtained by linearizing at the equilibrium (7, ¢) = (0,0).
We want to transform in diagonal form by using a symmetrizer and then introducing
complex coordinates. We first conjugate (2.19) under the symplectic transformation (with respect
to the standard symplectic form W in of the phase space

(&) =(2)

where M is the diagonal matrix of self-adjoint Fourier multipliers

1/4
= (MD) 0 _ G(0)
M= ( 0 M(D)1> - M= <KD2 +9-— ”26;16‘(0)0_1) 7 220

4 T
with the real valued symbol M; defined in ([1.10). The map M is reversibility preserving.

Remark 2.2. In (2.21)) the Fourier multiplier M (D) acts in Hj. On the other hand, with a slight
abuse of notation, M (D)1 denotes the Fourier multiplier operator in H' defined as

M) Cl= [ ) M7 Ge ], () = Y e

j#0 JEZ

where [¢] is the element in H® with representant ¢(z).

By a direct computation, the Hamiltonian system (2.19) assumes the symmetric form

a(i)=sas (3) e weanns (G620 EREY) . e

where

w(k, D) i= \/nm G(0) + g G(0) — (%a;lc;(()))2 . (2.23)

Remark 2.3. To be precise, the Fourier multiplier operator w(x, D) in the top left position in
(2:22) maps Hj into H' and the one in the bottom right position maps H' into Hg. The operator
0, 1G(0) acts on H! and G(0)d, ! on H}.

Now we introduce complex coordinates by the transformation

(Z) =C (2) , Ci= % (I_dl Iid> , = % Gg _11> : (2.24)

In these variables, the Hamiltonian system becomes the diagonal system
z\ _ (-1 0 z s _ (Qk, D) 0
3, <Z) - <0 i) Qb (z) Q= C*0sC = ( 0 G (2.25)

Q(k, D) == w(k, D) + i %dle(O) (2.26)

where

12



is the Fourier multiplier with symbol Q;(x) defined in and Q(x, D) is defined by
Q(k, D)z :=Qk, D)z, Qk,D) =w(k,D)—i 76 1G(0).

Note that Q(x, D) is the Fourier multiplier with symbol {Q_;(x)} ez (0}-
Remark 2.4. We regard the system (2.25) in H' x H!.
The diagonal system ([2.25) amounts to the scalar equation

dz = —iQk, D)z, z(x)= D) zel", (2.27)
JEZ\{0}

and, writing (2.27) in the exponential Fourier basis, to the infinitely many decoupled harmonic
oscillators

zj = —iQ;(k)z;, je€Z\{0}. (2.28)
Note that, in these complex coordinates, the involution S defined in (2.4) reads as the map
— 2.2
Ca)- (S (229

that we may read just as the scalar map z(xz) — z(—z). Moreover, in the Fourier coordinates

introduced in ([2.27), it amounts to
zj = Z;, VjeZ\{0}. (2.30)

In view of (2.28) and (2.30) every reversible solution (which is characterized as in (2.17)) of

([2.27) has the form

z(t,x) = Z pje” (©(R)t=7 ) with pj eER. (2.31)

JEZ\{0}

1
V2
Let us see the form of these solutions back in the original variables (n,). First, by (2.21)), (2.24),

(D) =4e(2) = G5 (it wior) () = 3 ()it ) - e

and the solutions (2.31]) assume the form

(00) = 2 (i)
o3 (Dt £ 0ty

neN

Back to the variables (n,) with the change of coordinates (2.11)) one obtains formula ([1.9).

Decomposition of the phase space in Lagrangian subspaces invariant under (2.19).

We express the Fourier coefficients z; € C in (2.27) as

a; + iﬂj

Rj = \@ ) (O‘jvﬂj)ERQa jEZ\{O}'

13



In the new coordinates (a;, 3;) jez\(0}, We write (2.32) as (recall that M; = M_;)

<n(x>) -5 ( M; (o cos(jz) — B sin(j)) ) (2.33)

C() M; (B; cos(jz) + a sin(jz))
with 1
05 = o (M5 0 cos(G))s + My (Cosin(G)s2) @30
Bj = %(Mj(g,cos(jm))y — Mjil(%Sin(jx))Lz) .

The symplectic form ([2.15) then becomes

2 Z dOlj N dB] .
JeZ\{0}

Each 2-dimensional subspace in the sum (2.33), spanned by (o, 3;) € R? is therefore a symplectic
subspace. The quadratic Hamiltonian H, in (2.20) reads

Q(x)

2 4454,(a?_%ﬁ§). (2.35)
JEZN{0}
In view of ([2.33)), the involution S defined in (2.4) reads

(0, B5) = (e, —B5), VjeZ\{0}, (2.36)

and the translation operator 7¢ defined in (2.7)) as
(O‘J’) — (Cf’s(?g) _Sin(.jg)> (“ﬂ') Vj e Z\{0}. (2.37)

Bj sin(js)  cos(js) ) \f;/)

We may also enumerate the independent variables (v, 8;) ez (0} 85 (t—nsB—n,0n, Bn), n € N.
Thus the phase space § := L x L? of (2.14) decomposes as the direct sum

H=Y Vo @V,

neN

of 2-dimensional Lagrangian symplectic subspaces

tor= {() = (B e Yy e} s
= { () = (e ) e e} )

which are invariant for the linear Hamiltonian system (2.19), namely JQyw : V,, , — V,, » (for
a proof see e.g. remark [2.10). The symplectic projectors Ily, , o € {£}, on the symplectic

subspaces V,, , are explicitly provided by (2.33)) and (2.34) with j = no.
Note that the involution S defined in (2.4) and the translation operator 7¢ in (2.7) leave the
subspaces V,, », 0 € {%}, invariant.

14



2.3 Tangential and normal subspaces of the phase space

We decompose the phase space $ of (2.14) into a direct sum of tangential and normal Lagrangian
subspaces .6§+ 5, and 5§§+ s- Note that the main part of the solutions ([1.19) that we shall obtain

in Theorem |1.5[is the component in the tangential subspace S§§+ s, whereas the component in

the normal subspace §5; , is much smaller.
Recalling the definition of the sets ST and ¥ defined in ([1.15) respectively (1.16)), we split

S;J = ﬁ§+7z ®ﬁ§+,z (240)

where 57);_,_ 5, is the finite dimensional tangential subspace

9l o= Z Vito o (2.41)
a=1

and YJSL+ 5, is the normal subspace defined as its symplectic orthogonal
53SL+,2 = Z Vau—oa @ Z (Vn,+ ('BVn,f) . (2.42)
a=1 neN\S+

Both the subspaces 1, s, and g, y, are Lagrangian. We denote by III, , and IIZ; , the
symplectic projections on the subspaces YJ§+ 5, and .V)Sﬁ 5, respectively. Since ﬁgtz and fJSA_,_ 5
are symplectic orthogonal, the symplectic form W in (2.15) decomposes as

W(’Ul + wy, V2 + w2) = W(’Uh’l)z) + W(whwg), Yoy, vg € ﬁg‘*‘,E’ w1, Wy € 5":)544_72 .

The symplectic projections II{, |, and Hsﬁ 5, satisfy the following properties:

Lemma 2.5. We have that

Hgtz J= J(Hgtz)* J (Hgtx)* Jh=Jt Hgtx’ 2.43)
g o J=J (&), (&) T =7 " . (2.44)

Proof. Since the subspaces 97T := 5’J§+ 5 and N = ﬁsﬁ 5, are symplectic orthogonal, we have,

recalling (2.15)), that
(J7 Yo, w) 2 = (Jw,v) 2 = 0, YoeNnT, Ywe H”.

Thus, using the projectors II7 := I1I, .,

I1“ :=1Ig; , we have that
(J7HIT0, IT%w) 2 = (J7HI%w, 0T0) 2 =0, Yo,weS$H,

and, taking adjoints, ((II*)*J ' ITv,w) > = ((IT)*J 14w, v) 2 = 0 for any v,w € ), so that

(IT4)* J~HIT = 0 = (IIT)*J 111~ . (2.45)
Now inserting the identity I1¢ = Id — IIT in (2.45)), we get

JTHIT = (OT)*J~HIT = (I7)*J !
proving the second identity of . The first identity of follows applying J to the left
and to the right of the second identity. The identity follows in the same way. O
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Note that the restricted symplectic form W| 97, is represented by the symplectic structure
sT.2

t : ‘684"',2 - ‘?JSL'F,Z ) JZ . J|5~1 s (246)

s+ m
where TIL” is the L2-projector on the subspace 954 - Indeed
N -1 ~ -1 -~ ~ £
W|5§4+1Z(w7w) =(J 7w, W)z = (J  w, W)z, Yw,WE NG 5.
We also denote the associated (restricted) Poisson tensor

Tz 905 s = O s, Jo=Ug s ne (2.47)

In the next lemma we prove that JZl and J, are each other inverses.

Lemma 2.6. JZl J,=J, JZ =Idg2

st,x

Proof. Let v e ﬁ§+ - By (2.46) and ( -, for any h € ﬁsﬁ 5, one has
(J7 T 0 h) e = (J7 Iy Jo,TE h) e = _(Hg+ o Ju, Jh) e
—(Jo, (W ) * T h) e BE —(Jo, T I o) g = (0, ) o
The proof that JAJZl = Idfﬁr is similar. O
sT,%
Lemma 2.7. I1%, (JIL =114, . J.
Proof. For any u, h € §) we have, using Lemma [2.5]
(U I T, h) 2 = — (05w, J(E 5)*h) 2 = —(0E w, I, JR) 12
= —(u, 1§ g Jh) 2 = (J(U& 5)*u, h) g2 = (g g Ju,h) e
implying the lemma. O

Action-angle coordinates. Finally we introduce action-angle coordinates on the tangential
subspace 9!, ;. defined in (2.41). Given the sets S* and ¥ defined respectively in (L.15) and

(1.16), we define the set
S :{jl,,jU}CZ\{O}, ja 1= 0qNa (1=].,...,I/, (248)

and the action-angle coordinates (0;,1;),es, by the relations

1 .
aqu/;(fj +&;) cos(8;), q/ (I; +&)sin(;), & >0, || <&, VieS. (2.49)

In view of (2.40)-(2.42), we represent any function of the phase space ) as
A0, I,w) := UT(G I+w,

JZeSK MJ%SIH 0; — jx) )] M (2.50)

where 0 := (0;)jes € T, I := (I;)jes € RV and w € HZ, ..
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Remark 2.8. In these coordinates the solutions ([1.17) of the linear system ((1.6) simply read as
WouT(Q(k)t,0), where Q(k) := (Q;(k)),es is given in (1.18].

In view of (2.50)), the involution S in (2.4) reads
S:(0,1,w) — (—0,1,5w) , (2.51)

the translation operator 7 in (2.7) reads

Te: (0, I, w)— (0 -5, I, cw), VYseR, (2.52)
where
7:=0)jes = Grs---,7,) € Z"\{0}, (2.53)
and the symplectic 2-form (2.15) becomes
W= >1(d0; A dL;) @ Wise, |- (2.54)
JeES

We also note that W is exact, namely

W =dA, where Ao, 1) é f ZI 6, + J Lw w) (2.55)
JjeS

is the associated Liouville 1-form (the operator J;' is defined in (2.46)).
Finally, given a Hamiltonian K: T¥ x R x f_)Sﬁ 5; — R, the associated Hamiltonian vector
field (with respect to the symplectic form (2.54)) is

Xi = (01K, 00K, J,VuK) = (01K, —0g K, 1I§; 3 JV,K), (2.56)

where V,, K denotes the L? gradient of K with respect to w € ﬁSﬁ s- Indeed, the only nontrivial
component of the vector field Xk is the last one, which we denote by [X k], € ﬁSﬁ 5 It fulfills

(JZ [Xk]w, @) 12 = dpK[@] = (Vo K, D)2, Vi€ HGy, (2.57)

and (2.56) follows by Lemma 2.6 We remark that along the paper we only consider Hamilto-
nians such that the L2- gradlent V K defined by (2.57] , as well as the Hamiltonian vector field
H§+ 5J VK, maps spaces of Sobolev functions into Sobolev functions (not just distributions),
with possible loss of derivatives.

Tangential and normal subspaces in complex variables. FEach 2-dimensional symplectic
subspace V,, ,, n € N, 0 = £1, defined in (2.38))-(2.39) is isomorphic, through the linear map
MC defined in (2.32)), to the complex subspace

pljx
H; := { (zjeijl) , % € (C} with j=noce’Z.

zje

Denoting by II; the L2-projection on Hj, we have that Ily, , = MCII; (MC)™". Thus MC is
an isomorphism between the tangential subspace ${, ,, defined in (2.41)) and

H = { <z> 2(@) = ) e}

JES
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and between the normal subspace 55§+ 5, defined in (2.42)) and

HE = { (j) L2(z) = D) et e L2}, S¢S := Z\(S U {0}). (2.58)

JES§
Denoting by I1T, Ilg , the L*-orthogonal projections on the subspaces Hs and Hg, , we have that
I, y = MCII(MC)™", 15 5, = MCIlg, (MC)~". (2.59)
The following lemma, used in Section [5] is an easy corollary of the previous analysis.

Lemma 2.9. We have that (v7,Qww);» =0, for any v7 € HL, 5, and we ﬁsﬁ 5
Proof. Write vT = MCzT and MCz* with 2T € Hg and 2+ € HSLO. Then, by (2.22) and (2.25)),

(T, Quw) ;. = (MCZT,Q{/VMCZL)LQ = (ZT,QDZJ') =0,

LZ
since 2p preserves the subspace HSLO . O

Remark 2.10. The same proof of Lemma [2.9) actually shows that (vn,—o, Qwvn,o)r2 = 0 for any
Vn 4o € Vo 1o, for any n € N, o = £1. Thus W(vp,—0, JQwVn0) = (Vn—0, J L IQwvp o) 2 =0
which shows that JQy maps V;, , in itself.

Notation. For a <, b means that a < C(s)b for some positive constant C(s). We denote
N:={1,2,...} and Ny := {0} U N.

3 Functional setting

Along the paper we consider functions u(y,z) € L? (T***,C) depending on the space variable
z €T =T, and the angles ¢ € T” = T% (so that T"*' = T” x T,) which we expand in Fourier

series as
u(p,w) = Y ui(p)e ™ = N uge e (3.1)
JEZ LeZY JEL
We also consider real valued functions u(y, ) € R, as well as vector valued functions u(y, r) € C?
(or u(p, x) € R?). When no confusion appears, we denote simply by L?, L?(T**!), L2 := L?(T,),
L2 := L*(T") either the spaces of real/complex valued, scalar/vector valued, L?-functions.
In this paper a crucial role is played by the following subspace of functions of (¢, ).

Definition 3.1. (Quasi-periodic traveling waves) Let 7 := (7;,...,7,) € Z” be the vector
defined in (2.53)). A function u(yp,z) is called a quasi-periodic traveling wave if it has the form
u(p,z) = U(p — 7z) where U : T — CK| K € N, is a (27)”-periodic function.

Comparing with Definition [1.2] we find convenient to call quasi-periodic traveling wave both
the function u(p,z) = U(p — Jz) and the function of time u(wt, z) = U(wt — jx).
Quasi-periodic traveling waves are characterized by the relation

ulp =75, ) =1u VseR, (3.2)

where 7. is the translation operator in (2.7). Product and composition of quasi-periodic traveling
waves is a quasi-periodic traveling wave. Expanded in Fourier series as in (3.1), a quasi-periodic
traveling wave has the form

u(p, x) = D ug el eI (3.3)
Lelv jeZ,j+7-£=0
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namely, comparing with Definition [3.1]

u(p,x) =Ulp—Ju), U)= Y U™, Ur=us j. (3.4)
LeZv

The traveling waves u(yp, ) = U(p — 7z) where U(-) belongs to the Sobolev space H*(T", CK)
in (T.14) (with values in CX, K € N), form a subspace of the Sobolev space

Hs(rI[w+1) _ {’U, _ Z g elbptiz) . Hqu = Z |U£,j|2<€7j>25 < OO} (35)
(£,5)ezv+1 (£,5)ezv+t

where (¢, 7> := max{1, |¢|,|j|}. Note the equivalence of the norms (use (3.4))
lllzrs vy <1,y =5 [Ullg= o) -

For s > s := [“E] + 1 € N one has H*(T"*!) c C(T*!), and H*(T"*!) is an algebra. Along
the paper we denote by || |s both the Sobolev norms in (1.14) and (3.5).
For K > 1 we define the smoothing operator IIx on the traveling waves

i :u= Z u&jel(e'“”*”) — Mpu = Z umel((g"””) , (3.6)
tezv, jeSG, j+7:6=0 KK, GESE, j+7:4=0

and 11§ := Id — . Note that, writing a traveling wave as in ([3-4), the projector Il in (3.6)
is equal to 4
(Igu)(p,x) = Uk (o —Jr), Ug(®):= Z Upe't? .
LeZv , Uy<K

Whitney-Sobolev functions. Along the paper we consider families of Sobolev functions A —
uw(\) € H5(T"™!) and A — U(N) € H*(T") which are ko-times differentiable in the sense of
Whitney with respect to the parameter \ := (w,x) € F < RY x [k1, ko] where F < R**! is a
closed set. The case that we encounter is when w belongs to the closed set of Diophantine vectors
DC(v, 7) defined in (L.13). We refer to Definition 2.1 in [2], for the definition of a Whitney-Sobolev
function w : F — H*® where H® may be either the Hilbert space H*(T" x T) or H*(T"). Here we
mention that, given v € (0,1), we can identify a Whitney-Sobolev function v : FF — H* with kg
derivatives with the equivalence class of functions f € Wko-*v(R¥™1 H®)/ ~ with respect to the
equivalence relation f ~ g when &3 f(\) = &{g(}) for all A € F, |j] < ko — 1, with equivalence of
the norms
[l ~uko Tlyno o oss ey o= 3 V11050 ponqass ey -
|| <ko

The key result is the Whitney extension theorem, which associates to a Whitney-Sobolev function
u: F — H* with ko-derivatives a function 7 : R¥*! — H*, % in Wko.*(R¥*! H*) (independently
of the target Sobolev space H®) with an equivalent norm. For sake of simplicity in the notation
we often denote | |2 = | [k,

Thanks to this eduivalence, all the tame estimates which hold for Sobolev spaces carry over
for Whitney-Sobolev functions. For example the following classical tame estimate for the product
holds: (see e.g. Lemma 2.4 in [2]): for all s = so > (v +1)/2,

Juv]$ < Cs, ko) [ull £V 0] 5 + Cso, ko) [ul & o] 27 - (3.7)

Moreover the following estimates hold for the smoothing operators defined in (3.6)): for any
traveling wave u

IMrculfor < K*Juln, 0<a<s,  [Mgulf < K™uliy, a=0. (3-8)

s—a? s+a
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We also state a standard Moser tame estimate for the nonlinear composition operator, see e.g.
Lemma 2.6 in [2],

u(p,z) = £(u)(p, ) == flp, 2, u(p, ).
Since the variables (¢, ) =: y have the same role, we state it for a generic Sobolev space H*(T%).

Lemma 3.2. (Composition operator) Let f € C*(T¢ x R,R). If u(\) € H*(T?) is a family
of Sobolev functions satisfying ||u]** < 1, then, for all s > s := (d+1)/2,

[£(u)|5o < O(s, ko, £) (1 + [ulfov).

If f(p,2,0) = 0 then [[£(u) [ < C(s, ko, f)|u .

Diophantine equation. If w is a Diophantine vector in DC(v, 7), see (1.13)), then the equation
w - 0,v = u, where u(y, x) has zero average with respect to ¢, has the periodic solution

(@ 0 tum Y] e,
LeZ¥\{0},j€Z 1w

For all w € R”, we define its extension

3 Xw - 20T eprin) (3.9)

(w ’ a@)gxltu(Wax) = iw -l Ug,j€ y

(,5)ezv+1
where y € C*(R,R) is an even positive C* cut-off function such that

_fo i g <
x(é)—{ >

L e Oex(&) >0 VEe(5,2). (3.10)

WIN Wl

Note that (w - 0,)oau = (w - d,) 'u for all w € DC(v, 7). Moreover, if u(yp,z) is a quasi-periodic
traveling wave with zero average with respect to ¢, then, by ([3:3), we see that (w - d,)5 u(p, z)
is a quasi-periodic traveling wave. The following estimate holds

1, ko, 1y, ko,
(e - aﬁD)exltu”s’ORZ+l < C(ko)v 1HUHSO+::,RV+1 s pi=ko+7(ko +1). (3.11)

_1. ko, _ ko,
and, for F' € DC(v,7) x Ry, one has [[(w- 0,) " ull%" < Clko)v " |ul ) p-
Linear operators. Along the paper we consider ¢-dependent families of linear operators A :
T — L(L?*(T,)), ¢ — A(y), acting on subspaces of L?(T,), either real or complex valued. We
also regard A as an operator (which for simplicity we denote by A as well) that acts on functions
u(p, x) of space and time, that is

(Au)(p, z) := (Alp)ulp, ) (2). (3.12)
The action of an operator A as in (3.12)) on a scalar function u(p, z) € L? expanded as in (3.1)) is
Au(p,z) = Y A (Qup(p)ei® = D1 N AL (4= )up jelEetio) (3.13)

4,3'€L GG €T €T

We identify an operator A with its matrix (Agl(ﬁ — E')) BTy which is T6plitz with respect
to the index ¢. In this paper we always consider T6plitz operators as in (3.12)), (3.13).
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Real operators. A linear operator A is real if A = A, where A is defined by A(u) := A(u).
Equivalently A is real if it maps real valued functions into real valued functions. We represent a
real operator acting on (7, () belonging to (a subspace of) L?(T,,R?) by a matrix

R = (g‘ g) (3.14)

where A, B, C, D are real operators acting on the scalar valued components 7, € L?(T,,R).
The change of coordinates (2.24]) transforms the real operator R into a complex one acting
on the variables (z,%), given by the matrix

Ri m)

—ClRC =
R:=C RC—<R2 R,

(3.15)

R1 :=%{(A+D)—i(B—C)} v Rai=g5{(A=-D)+i(B+C)}.

— ol

A matrix operator acting on the complex variables (z,%) of the form (3.15)), we call it real. We
shall also consider real operators R of the form (3.15) acting on subspaces of L2.

Lie expansion. Let X(y) be a linear operator with associated flow ®7 () defined by

T €[0,1].

027 () = X(p)@7 (¢)
P(p) = Id,

Let ®(p) := ®7(¢)|,—1 denote the time-1 flow. Given a linear operator A(y), the conjugated
operator

At (@) == @) A(p)2(p)

admits the Lie expansion, for any M € Ny,

; > =D
A (p) = 3] T adiy (AW) + Ru(9),
m=0 " (3.16)
R ( _ (_1)M+1 fl _ M T —1_ iM+1 T
wle) = i | =M @7 e (AT () dr

where adx () (A()) = [X(¢), A()] = X(9)A(p) — A() X () and adk,,) := 1d.
In particular, for A = w - 0, since [X(¢),w - 0,] = —(w - 0,X)(p), we obtain

71 3D
D(p) " ow:0p0B(p) =w - 0y + Z TadX(w)(w 10X (9))
m=1 ' (3.17)

_\M 1
+ 0 [ =M@ () etk - 0,X ()2 ()

For matrices of operators X(p) and A(p) as in (3.15), the same formula (3.16] holds.

3.1 Pseudodifferential calculus

In this section we report fundamental notions of pseudodifferential calculus, following [6].
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Definition 3.3. (VDO) A pseudodifferential symbol a(z,j) of order m is the restriction to
R x Z of a function a(z, ) which is C*-smooth on R x R, 27r-periodic in x, and satisfies

10507 a(2,€)] < Cas©™ ", Vo, eNy.

We denote by S™ the class of symbols of order m and S~™% := n,,505™. To a symbol a(z,§) in
S™ we associate its quantization acting on a 2mw-periodic function u(z) = ZjeZ u; eV as

[Op(a)ul(z) := )] a(w, j)u; 7"
JEz

We denote by OPS™ the set of pseudodifferential operators of order m and OPS~" := (), OPS™.
For a matrix of pseudodifferential operators

(A A | .
A_<A3 A4), A; € OPS™, i=1,...,4 (3.18)

we say that A € OPS™.

When the symbol a(z) is independent of £, the operator Op(a) is the multiplication operator
by the function a(x), i.e. Op(a) : u(x) — a(x)u(x). In such a case we also denote Op(a) = a(z).
We shall use the following notation, used also in [IJ, 6] 2]. For any m € R\{0}, we set

[D|™ := Op(x(§)I]™)
where x is an even, positive C* cut-off satisfying . We also identify the Hilbert transform
‘H, acting on the 27-periodic functions, defined by
H(eV®) := —isign (j)e’® Vj#0, H(1):=0, (3.19)
with the Fourier multiplier Op(—isign (£)x(£)). Similarly we regard the operator
oy [€7*] = =i e Vji#0, 0;'[1]:=0, (3.20)

as the Fourier multiplier 8, ' = Op (—i X({)g’l) and the projector 7y, defined on the 27-periodic

functions as 1

2 )
with the Fourier multiplier Op(1 — x()). Finally we define, for any m € R\{0},

(DY™ :=m + [D|™ := Op((1 — x(&)) + x(&)IE]™) .

Along the paper we consider families of pseudodifferential operators with a symbol a(\; ¢, z, &)
which is ko-times differentiable with respect to a parameter A := (w, %) in an open subset Ag €
R” x [k1, k2]. Note that 0§ A = Op (d5a) for any ke Nj*'.

We recall the pseudodifferential norm introduced in Definition 2.11 in [6].

Definition 3.4. (Weighted YDO norm) Let A(\) := a(X\;¢,z, D) € OPS™ be a family of
pseudodifferential operators with symbol a(X; p,z,£) € S™, m € R, which are ko-times differen-
tiable with respect to A € Ag = R*™1. For v € (0,1), a € Ny, s = 0, we define

[y, = > o sup o5 AN,

|k‘§k0 AEAQ

ToU = u(z) dx, (3.21)

where | A(M)],,, ..o = MaXo<p<a SUDger ||6?a(/\, )|l (€)™™FA. For a matrix of pseudodiffer-
ential operators A € OPS™ as in (3.18), we define A = max;_y 4|4

m,s,x m,s,o *
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Given a function a(\;¢,2) € C* which is ko-times differentiable with respect to A, the
weighted norm of the corresponding multiplication operator is

[0p(@)22%, = Jal®*, Vo€ Np. (3.22)

Composition of pseudodifferentiall operators. If Op(a), Op(b) are pseudodifferential op-

erators with symbols a € S™, b € S™, m,m’ € R, then the compolsition operator Op(a)Op(b)

is a pseudodifferential operator Op(a#b) with symbol a#b € S™T™ . It admits the asymptotic
expansion: for any N > 1

N-1

(a#tb) (N, 7,€) = )

B=0

1

iBmafa(x 0, 2,6)0°b(\; @, 2, €) + (ry(a, b)) (A @, , €) (3.23)

where 7y (a,b) € St =N, The following result is proved in Lemma 2.13 in [6].

Lemma 3.5. (Composition) Let A = a(\;p,x,D), B = b(A\;¢,x,D) be pseudodifferential
operators with symbols a(X; o, x,£) € S™, b(\;p,z,£) € S™ , m,m’ € R. Then AoB e QPS™*™
satisfies, for any o € Ny, s = sq,

ko,v ko,v ko,v
IABI|,,, S C(s) Al s 1Bl

m+m’,s,a ~m,a,ko m,s,a m/,so+|m|+o,a

ko0 kov (3.24)
+ C(SO) HA”m,so,a ||B||m’,s+\m\+a,0£ :
Moreover, for any integer N = 1, the remainder Ry := Op(ry) in (3.23) satisfies
ko, ko, ko,
10D(rn (@, D))l — 3,50 SmuNoasko C(8) [ Al s na 1Bl s 4 fml 42N+ N (3.25)
ko, ko, :
+ C(s0) ||AHW(:,;),N+Q ”B”n;)’f;+|m|+2N+a7N+a :

Both (3.24)-(3.25) hold with the constant C(sg) interchanged with C(s).
Analogous estimates hold if A and B are matriz operators of the form (3.18).

The commutator between two pseudodifferential operators Op(a) € OPS™ and Op(b) €
OPS™ is a pseudodifferential operator in OPS™+™ ~! with symbol a x b € S™*™ ~1 namely
[Op(a), Op(b)] = Op (a * b), that admits, by (3.23)), the expansion

axb=—i{a,b} +73(a,b), 7(a,b) :=rs(a,b) —rao(b,a) € ST 2
where {a,b} := 0gadyb — 0,a0eh,
is the Poisson bracket between a(x, &) and b(x,€). As a corollary of Lemma [3.5| we have:

(3.26)

Lemma 3.6. (Commutator) Let A = Op(a) and B = Op(b) be pseudodifferential operators
with symbols a(X;p,x,£) € S™, b(\;p,x,8) € S™ m,m’ € R. Then the commutator [A, B] :=
AB — BA € OPS™t™ ~1 satisfies
ko,v ko,v ko,v
A Bl < O(s) AL IBIES

m4+m/—1,s,a0 ~m,m’,a,ko m,s+|m/|[+a+2,a+1 m’,so+|m|+a+2,a+1

ko,v ko,v
+ C(SO) HA||ng,so+|m’|+a+2,a+1 ||BHn(z)',s+\m\+a+2,a+1 ’

(3.27)

Finally we consider the exponential of a pseudodifferential operator of order 0. The following
lemma follows as in Lemma 2.12 of [5] (or Lemma 2.17 in [6]).

Lemma 3.7. (Exponential map) If A := Op(a()\; ¢, z,¢)) is in OPS°, then e is in OPS°

and for any s = so, a € Ny, there is a constant C(s,a) > 0 so that

ko, ko, ko,
e = 1A%, < IS o o exp(Cls, AN )

0,s,« 0,50+,

The same holds for a matriz A of the form (3.18) in OPSC.
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Egorov Theorem. Consider the family of p-dependent diffeomorphisms of T, defined by

y=z+pB(p,z) =  a=y+pBpy), (3.28)

where 8(p, x) is a small smooth function, and the induced operators

(Bu)(p,) :=u(p,z + Blp,2), (B u)(w,y) = ulp,y + Ble,y)). (3.29)
Lemma 3.8. (Composition) Let ||B”,2€2(7)1jrk0+2 < 0(s0, ko) small enough. Then the composition

operator B satisfies the tame estimates, for any s = sq,

Ko, R
1Bl Samo lullei, + 1818 Tulleg kg1

and the function j3 defined in (3.28) by the inverse diffeomorphism satisfies |35V < x, ||5||§5’r;:0

The following result is a small variation of Proposition 2.28 of [5].
Proposition 3.9. (Egorov) Let N € N, qy € Ny, S > s and assume that 053()\;-,-) are C*

for all |k| < ko. There exist constants on,on(q0) > 0, § = (S, N, qo, ko) € (0,1) such that,
if H,BHkO’U ) < 3, then the conjugated operator B=1 o 07 o B, m € Z, is a pseudodifferential

80+0'N(q0 ) ’
operator of order m with an expansion of the form

N
B o 0B = pm_i(Xe,9)0) " + Rn(p)
i=0
with the following properties:
1. The principal symbol of p,, is

Pm(Xp,y) = ([1 + Ba(X; w,w)]m) lomy+B00m)
where ﬂu()\; ©,y) has been introduced in (3.28)). For any s > sg andi=1,...,N,

I = LI Ipmill 0 S 181855 - (3.30)

2. For any q € N§ with |q| < qo, n1,n2 € Ng with n; + na + qo < N + 1 — kg — m, the operator
(DY 0ER N (p){D)"2 is D*o-tame with a tame constant satisfying, for any so < s < S,

ko,
My 08 R ()(Dym2 (8) Cs.Nao 181555 4 (q0) - (3.31)
8. Let sp < s1 and assume that |Bjls,4on(q) < 6, J = 1,2. Then [Aropm—ils, Ssi.N
1A128]ls, +0ns ¢ =0,..., N, and, for any |q| < qo, n1,n2 € Ng with n; + na + qo < N —m,

||<l)>n1 63A12RN(¢)<D>n2 ”B(Hsl) $317N7”17n2 HA126”51 +on(qo) *

Finally, if B(p, ) is a quasi-periodic traveling wave, then B is momentum preserving (we refer
to Definition and Lemma , as well as the conjugated operator B~ o 0 o B, and each
function pp—;, 1 =0,..., N, is a quasi-periodic traveling wave.
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Dirichlet-Neumann operator. We finally remind the following decomposition of the Dirichlet-
Neumann operator proved in [@], in the case of infinite depth, and in [2], for finite depth.

Lemma 3.10. (Dirichlet-Neumann) Assume that 05n(), -, ") is C*(T" x T,) for all |k| < k.
There emists 0(so, ko) > O such that, if ||77||I2€§(’:jr2k0+1 < §(so, ko), then the Dirichlet-Neumann
operator G(n) = G(n,h) may be written as

where Ra(n) := Ra(n,h) € OPS™% satisfies, for all m, s, o € Ny, the estimate

ko, ko,
IRG D Z50s0 < Csym, a; ko)lInllsS s, 4 oro4mtass - (3.33)

3.2 D*-tame and modulo-tame operators

We present the notion of tame and modulo tame operators introduced in [6]. Let A := A(\) be
a linear operator as in (3.12)), ko-times differentiable with respect to the parameter A in the open
set Ag  R¥*1,

Definition 3.11. (D*o-o-tame) Let o > 0. A linear operator A := A()) is D*o-o-tame if there
exists a non-decreasing function [sg,S] — [0,400), s — Ma(s), with possibly S = 400, such
that, for all sg < s <S5 and ue H57,

sup sup vl [[(BRAMN))u, < Ma(so) Jul, + Dals) u]
|k‘§ko AEAo

(3.34)

so+o °

We say that 9t4(s) is a tame constant of the operator A. The constant M 4(s) = M4 (ko, 0, s)
may also depend on kg, o but we shall often omit to write them. When the "loss of derivatives"
o is zero, we simply write D*0-tame instead of D*-0-tame. For a matrix operator as in (3.15),
we denote the tame constant Mg (s) := max {Mz, (s), Mz, (s)}.

Note that the tame constants 9 4 (s) are not uniquely determined. An immediate consequence
of (3.34) is that ||AHL(HSO+U Heoy S 29 4(s0). Also note that, representing the operator A by its

matrix elements (A;I (6 —10))peezv ez as in (3.13), we have for all |k| < ko, j' € Z, ¢' € 27,
25 i/ 2 2 N2(s+o n2(sg+o
VY 84T (= O < 2(MMals0))” 05T+ 2Ma ()2, 7Y L (335)
L,3
The class of D*o-g-tame operators is closed under composition.

Lemma 3.12. (Composition, Lemma 2.20 in [6]) Let A, B be respectively D0 -0 4-tame and
Dko_gp-tame operators with tame constants respectively Ma(s) and Mp(s). Then the composed
operator Ao B is DFo-(g 4 + og)-tame with tame constant

Map(s) < Clko) (Ma(s)Mp(so+0a) +Ma(s0)Mp(s+04)) .

It is proved in Lemma 2.22 in [6] that the action of a D*o-g-tame operator A()) on a Sobolev
function u = u(\) € H*7 is bounded by
| Aulf S Ma(so)ul sy +Mals)ulsgs - (3.36)

So+o

Pseudodifferential operators are tame operators. We use in particular the following lemma:
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Lemma 3.13. (Lemma 2.21 in [6]) Let A = a(\;p,z,D) € OPS® be a family of pseudodif-

ferential operators satisfying ||AHI(§0;% < o for s = sg. Then A is D*0-tame with a tame constant

MA(s) satisfying, for any s = so,
ko,v
Ma(s) < C()Allojso- (3.37)
The same statement holds for a matriz operator R as in (3.15)).

In view of the KAM reducibility scheme of Section [§] we also consider the stronger notion of
D*o_modulo-tame operator, that we need only for operators with loss of derivative ¢ = 0. We
first recall the notion of majorant operator: given a linear operator A acting as in (3.13)), we

define the majorant operator |A| by its matrix elements (|A§I(£ —U)\)ewezr ez

Definition 3.14. (D*°-modulo-tame) A linear operator A = A(\) is D*-modulo-tame if

there exists a non-decreasing function [sg, S] — [0, +0], s — 93?%(3), such that for all k € Ny,
|k| < ko, the majorant operator |05 A| satisfies, for all 59 < s < S and u € H*,

sup sup 0¥l [|03 Al < 9 (s0) Jull, + 2%, (5) [ul,, - (3.38)
|k|<ko A€Ao

The constant ima(s) is called a modulo-tame constant for the operator A. For a matrix of
operators as in (3.15]), we denote the modulo-tame constant S)ﬁﬁR(s) = max{fmg21 (s), 93?5%2(5)}

If A, B are D*o-modulo-tame operators with |A§/(Z)| < |B§I (0)|, then Dﬁﬁ‘(s) < imﬁB(s) A

D*o-modulo-tame operator is also D*o-tame and 904 (s) < 931?4(5).
In view of the next lemma, given a linear operator A acting as in (3.13)), we define the operator

(0,5° A, b € R, whose matrix elements are (£ — oy Agl (£ —12).

Lemma 3.15. (Sum and composition, Lemma 2.25 in [6]) Let A, B, <6¢>b A, <6¢>bB be
Do -modulo-tame operators. Then A+ B, Ao B and {(d,)" (AB) are D*-modulo-tame with
N, (5) < My (s) + M (5)
Ny 5 (5) < C(ho) (M4 ()W (50) + 0 (50) M (5))
Ml oy (5) < COICUh) (MG oy (5)ME (50) + MG s 4 (50) M (s)
+ D ()97, o 5 (50) + I (50)IMF, o (5)) -
The same statement holds for matriz operators A, B as in (3.15)).
By Lemma we deduce the following result, cfr. Lemma 2.20 in [5].

Lemma 3.16. (Exponential) Let A and (2,,)° A be D* -modulo-tame and assume that 93??4 (s0) <
1. Then the operators e —1d and <6¢>b et4 —1d are DFo-modulo-tame with modulo-tame con-
stants satisfying

M aq(8) Sko MEg(8), MYy osn 14(5) S My 4 () + MY ()M, . (s0)

Given a linear operator A acting as in (3.13)), we define the smoothed operator IIyA, N € N

whose matrix elements are

A(0—0) i {{—Uy<N

(LA (¢~ €)= {0 (3.39)

otherwise.
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We also denote I13; := Id — IIy. It is proved in Lemma 2.27 in [6] that
m? L al8) < N*bsmgwA(s) , mt L al8) < M, (s) . (3.40)

The same estimate holds with a matrix operator R as in (3.15).

3.3 Hamiltonian and Reversible operators

In this paper we shall exploit both the Hamiltonian and reversible structure along the reduction
of the linearized operators, that we now present.

Hamiltonian operators. A matrix operator R as in (3.14) is Hamiltonian if the matrix

15 _ (0 —=Id\ (A B\ (-C -D
JR_(Id o )\c p)=\4a B

is self-adjoint, namely B* = B, C* = C, A* = —D and A, B,C, D are real.
Correspondingly, a matrix operator as in (3.15) is Hamiltonian if

Rf=-Ri, RE¥=R,. (3.41)

Symplectic operators. A ¢-dependent family of linear operators R(p), ¢ € T¥, as in (3.14)
is symplectic if
W(R(p)u, R(p)v) = W(u,v)  Yu,v e L*(T,,R?), (3.42)

where the symplectic 2-form W is defined in (2.15)).

Reversible and reversibility preserving operators. Let S be an involution as in ([2.4)
acting on the real variables (1, () € R?, or as in (2.51)) acting on the action-angle-normal variables
(0,1,w), or as in (2.29) acting in the (z,%Z) complex variables introduced in (2.24]).

Definition 3.17. (Reversibility) A ¢-dependent family of operators R(p), ¢ € T?, is
o reversible if R(—p) oS = —S o R(yp) for all ¢ € T;
o reversibility preserving if R(—y) oS =S o R(p) for all p € T".

Since in the complex coordinates (z,%) the involution S defined in (2.4) reads as in (2.29),
an operator R(y) as in (3.15) is reversible, respectively anti-reversible, if, for any i = 1,2,

Ri(—p)oS =—-8SoRi(p), resp. Ri(—p)oS =8SoR;(p), (3.43)

where, with a small abuse of notation, we still denote (Su)(x) = u(—=z). Moreover, recalling that
in the Fourier coordinates such involution reads as in (2.30), we obtain the following lemma.

Lemma 3.18. A ¢-dependent family of operators R(p), ¢ € TV, as in (3.15) is

e reversible if, for any i =1,2,

(R)] (—¢) = —(R)] (9) VepeT”, ie (R (£)=—(R)) () Veer; (3.44)

(R)) (—¢) = (R)) (¢) YoeT’, ie (R)] ()= (Ry)) () YeeZ’.  (3.45)
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Note that the composition of a reversible operator with a reversibility preserving operator is
reversible. The flow generated by a reversibility preserving operator is reversibility preserving.
If R(¢p) is reversibility preserving, then (w - d,R)(yp) is reversible.

We shall say that a linear operator of the form w-d, + A(¢p) is reversible if A(¢y) is reversible.
Conjugating the linear operator w - 0, + A(y) by a family of invertible linear maps ®(p), we get
the transformed operator

D)o (w- 0y + A(p)) 0 ®(p) =w- 0y + Ay (),
A(p) =071 (p) (w- 0,P(0) + D () Al0) () -

The conjugation of a reversible operator with a reversibility preserving operator is reversible.

(3.46)

Lemma 3.19. A pseudodifferential operator Op(a(p, z,£)) is reversible, respectively reversibility
preserving, if and only if its symbol satisfies
a(_(P, -z, f) = _a((P7 Zz, g) ) Tesp. a/(_(P, -z, f) = a’((pa Zz, f) . (347)

Proof. If the symbols a satisfies (3.47), then, recalling the complex form of the involution S in
(2.29)-(2.30), we deduce that Op(a(p,x,€)) is reversible, respectively anti-reversible. The vice
versa follows using that a(y,,j) = e77*Op(a(p, z, £))[e*]. O

Remark 3.20. Let A(p) = R(p) + T'(¢) be a reversible operator. Then A(y) = Ry(p) + Ty (p)
where both operators

Ri(p) = 3(R(¢) = SR(=9)S),  Ti(p) == 5(T(p) = ST(=¢)S),
are reversible. If R(¢) = Op(r(p,x,§)) is pseudodifferential, then

R+(<p) = Op(r.,.((p,:l?,f)), T+((p,5€,§) = %(T(@vz7€) - T(i(pv 71‘75))

and the pseudodifferential norms of Op(r) and Op(ry) are equivalent. If T'(¢) is a tame operator
with a tame constant M (s), then T () is a tame operator as well with an equivalent tame
constant.

Definition 3.21. (Reversible and anti-reversible function) A function u(¢y, ) is called
Reversible if Su(p,-) =u(—yp,-) (cfr.(2.17)); Anti — reversible if — Su(yp,-) = u(—ep,-).

The same definition holds in the action-angle-normal variables (6, I,w) with the involution S
defined in (2.51) and in the (z,%) complex variables with the involution in (2.29).

A reversibility preserving operator maps reversible, respectively anti-reversible, functions into
reversible, respectively anti-reversible, functions.

Lemma 3.22. Let X be a reversible vector field, according to (2.5)), and u(p,x) be a reversible
quasi-periodic function. Then the linearized operator d, X (u(p,-)) is reversible, according to

Definition [3.17
Proof. Differentiating (2.5) we get (d, X )(Su)oS = —S(d,X)(u) and use Su(p, ) = u(—p,-). O

Finally we note the following lemma.

Lemma 3.23. The projections 11, ., Hgﬁ 5. defined in Section commute with the involu-
tion S defined in (2.4), i.e. are reversibility preserving. The orthogonal projectors s and Hé‘o
commute with the involution in (2.29), i.e. are reversibility preserving.

Proof. The involution S defined in (2.4) maps V,, 1 into itself, acting as in (2.36). Then, by the
decomposition (2.33)), each projector ITy, = commutes with S. O

n,o
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3.4 Momentum preserving operators

The following definition is crucial in the construction of traveling waves.

Definition 3.24. (Momentum preserving) A ¢-dependent family of linear operators A(yp),
p € T", is momentum preserving if

Alp—=K) ot =70 Alp), VpeT”, ceR, (3.48)

where the translation operator 7 is defined in (2.7). A linear matrix operator A(¢p) of the form
or is momentum preserving if each of its components is momentum preserving.
Momentum preserving operators are closed under several operations.

Lemma 3.25. Let A(p), B(yp) be momentum preserving operators. Then:

(i) (Composition): A(p) o B(y) is a momentum preserving operator.

(1) (Adjoint): the adjoint (A(p))* is momentum preserving.
(iii) (Inversion): If A(yp) is invertible then A(p)~! is momentum preserving.
(

(iv) (Flow): Assume that
02 (p) = A()2'(p), P°(p) =1d, (3.49)

has a unique propagator ®(p) for any t € [0,1]. Then ®'(p) is momentum preserving.

Proof. Ttem (i) follows directly by (3.48). Item (i7), respectively (iii), follows by taking the
adjoint, respectively the inverse, of (3.48) and using that 7* = 7_. = 77!, Finally, item (iv)
holds because 7 '®*(p — J5)7¢ solves the same Cauchy in (3.49). O

We shall say that a linear operator of the form w - d, + A(p) is momentum preserving if
A(y) is momentum preserving. In particular, conjugating a momentum preserving operator
w -0, + A(p) by a family of invertible linear momentum preserving maps ®(y), we obtain the
transformed operator w - d, + A4 (p) in which is momentum preserving.

Lemma 3.26. Let A(p) be a momentum preserving linear operator and u a quasi-periodic trav-
eling wave, according to Deﬁm’tion Then A(p)u is a quasi-periodic traveling wave.

Proof. 1t follows by Definition and by the characterization of traveling waves in (3.2). O

Lemma 3.27. Let X be a vector field translation invariant, according to (2.8). Let u be a quasi-
periodic traveling wave. Then the linearized operator d, X (u(p,-)) is momentum preserving.

Proof. Differentiating (2.8) we get (d,X)(7cu) o ¢ = 7(dX)(u), s € R. Then, apply (3.2). O
We now provide a characterization of the momentum preserving property in Fourier space.

Lemma 3.28. Let p-dependent family of operators A(y), ¢ € T¥, is momentum preserving if
and only if the matriz elements of A(p), defined by (3.13)), fulfill

A £0 = JU+j—j =0, YleZ’, jj€l. (3.50)
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Proof. By (3.13)) we have, for any function u(z),

Z ZAJ elisy, ,e(@vﬂﬂc)

7,J'€Z bel”
and o | |
Alp = F)lrau] = Y0 DT AL (0)e Tl Sy elleotin)
J,J'€L Le”
Therefore (3.48) is equivalent to (3.50)). -

We characterize the symbol of a pseudodifferential operator which is momentum preserving;:

Lemma 3.29. A pseudodifferential operator A(p,x, D) = Op(a(p,x,£)) is momentum preserv-
ing if and only if its symbol satisfies

alp — j5,z,§) = a(p,x +¢,§), VceR. (3.51)

Proof. If the symbol a satisfies (3.51)), then, for all ¢ € R,

7. 0 Op(a(p,,§)) = Op(a(p, z +¢,&)) o e = Op(a(p — J5, x,§)) o e,

proving that 7. o A(p, x, D) = A(p — J5, 2, D) o 7c. The vice versa follows using that a(p,z,§) =
e A(p, z, D)['¢*]. O

Note that, if a symbol a(yp, z,&) satisfies (3.51)), then (w - d,a)(p, x,§) satisfies (3.51) as well.

Lemma 3.30. If B(p,x) is a quasi-periodic traveling wave, then the operator B(y) defined in
(13.29) is momentum preserving.

Proof. We have B(p —J6)[rcu] = u(z+B(p—J5, ) +<) = u(@+s+B(p, z+<)) = 7 (B(p)u). O
We also note the following lemma.

Lemma 3.31. The symplectic projections HS+ Bt H§+ 5, the L?%-projections Hf and Ils, H§O
defined in Sectwnm commute with the translation operators 1. defined in (2.7), i.e. are mo-
mentum preserving.

Proof. Recall that the translation 7. maps V,, + into itself, acting as in (2.37). Consider the
L2—orthogonal decomposition $H = §, @5’)2‘, setting 9, := Sﬁsﬁ 5 for brevity:

L? L? L? L? 1
U=H54U+Hﬁtu, Hﬁéuefjé, Hﬁiuefjé.

Applying 7. we get T.u = Tgﬂgiu + Tgﬂg;u. As shown above, 7. maps $), into itself for all ¢.
Thus also the L2-orthogonal subspace £ is invariant under the action of 7 and we conclude, by
the uniqueness of the orthogonal decomposition, that 7115 u = 1% rou, 711X a1 Lu =I5 guTeu. O

The next lemma concerns the Dirichlet-Neumann operator.

Lemma 3.32. The Dirichlet-Neumann operator G(7,h), evaluated at a quasi-periodic traveling
wave T(p, x), is momentum preserving.

Proof. 1t follows by (2.9) and the characterization in (3.2)) of the quasi-periodic traveling wave
(e, ). =
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Quasi-periodic traveling waves in action-angle-normal coordinates. We now discuss
how the momentum preserving condition reads in the coordinates (6, I, w) introduced in (2.50).
Recalling , if u(p,x) is a quasi-periodic traveling wave with action-angle-normal compo-
nents (6(y), I(¢), w(p,x)), the condition Tcu = u(yp — 5, -) becomes

0(p) — 55 0(¢ — J5)
Il¢) = Il¢e—F) |, VseR. (3.52)
Tow(p, ) w(p =55, °)

As we look for 6(p) of the form 6(p) = p + O(p), with a (27)"-periodic function © : R¥ — R”,
© — O(p), the traveling wave condition becomes

O(p) Oy — J5)
I(p) |=| I¢—5%) |, VseR. (3.53)
Tw(ep, ) w(p — )

Definition 3.33. (Traveling wave variation) We call a traveling wave variation g(p) =
(91(0), 92(), g3(p,)) € R” x R x §%, , a function satisfying (3.53)), i.e.

91(0) = g1 = 15),  g2(p) = ga(p — J5), Teg3(w) = gs(p —J5), Vs eR,

or equivalently D7.g(¢) = g(@ — J) for any ¢ € R, where D7; is the differential of 7., namely

S} S}
DE|I|=| 1], VceR.
w ToW

According to Definition , a linear operator acting in R” xR” ><.6§+ 5; momentum preserving
if
A(p —55) o DT. = DT. 0 A(p), VseR. (3.54)
Similarly to Lemma [3.26] one proves the following result:

Lemma 3.34. Let A(p) be a momentum preserving linear operator acting on R” x RY x ﬁ§+ .

and g € RV x R” x %, &, be a traveling wave variation. Then A(p)g(p) is a traveling wave
variation. '

4 Transversality of linear frequencies

In this section we extend the KAM theory approach of [6], [3] in order to deal with the linear
frequencies () defined in ((1.11). The main novelty is the use of the momentum condition in the
proof of Proposition We shall also exploit that the tangential sites S := {7;,...,7, } € Z\{0}
defined in (2.48), have all distinct modulus |J,| = 724, see assumption (L.15).

We first introduce the following definition.

Definition 4.1. A function f = (fi,...,fn) : [K1,k2] — RY is non-degenerate if, for any
c € RV\{0}, the scalar function f - c is not identically zero on the whole interval [, k2].

From a geometric point of view, if f is non-degenerate it means that the image of the curve
f([k1, K2]) € RY is not contained in any hyperplane of RY.
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We shall use in the sequel that the maps x — Q;(k) are analytic in [k, k2]. We decompose

‘ ‘ 2
() = oy0) + 2D () o= \/maj<o>j2+gcj<o>+ (GE) . a

Note that the dependence on « of Q;(x) enters only through w;(x), because GjT,(()) is independent

of k. Note also that j — w;(k) is even in j, whereas the component due to the vorticity
G;(0)

Joy—h— s odd. Moreover this term is, in view of , uniformly bounded in j.

Lemma 4.2. (Non-degeneracy-I) The following frequency vectors are non-degenerate:
1. (k) = (2(K))es € RY;

(Q(r), k) € RVF1;

3. (), Q;(k)) € RV*1, for any j € Z\ ({0} US U (=S));

4. (Q(k), Q;(k), Qe (k) € R¥2, for any j,j' € Z\ ({0} US U (=S)) and |j| # |5'|.

Proof. Let

o

NG for j =0, VE for j=0.

Recalling (4.1]), we have that, for any j € Z,

ﬁj(ﬂ) — {Qj(n) for j #0 (k) = {Wj(li) for j #0 (4.2)

- G;(0)5® ERORE for j #0
25 (8) = M ()3, A(w) = { 0G0 (552 (43)
= for j =0
oreover 0y\i(k) = —2\;(k)“, for any j € Z, and therefore, for any n € N,
M e 2 ()2, fi j € Z, and therefore, f N
wi(k) =cpAi(kK)"Wi(K), Chi=cC1+..."Cn, Cp:=3—2n. .
0L (R) = 2y ()T () @ 3-2 (44)

We now prove items 2 and 3, i.e. the non-degeneracy of the vector (ﬁ(n),ﬁj(ﬁ)) e RV for

any j € Z\(S u (=S)), where (NZj(n) is defined in (4.2)). Items 1 and 4 follow similarly. For this
purpose, by analyticity, it is sufficient to find one value of k € [k1, k2] so that the determinant
of the (v + 1) x (v + 1) matrix

0y, (k) e A () ()
A= |1 5
ot (k) oo OUMIQy (k) 0,’2“?23‘("0)

is not zero. We actually show that det A(k) # 0 for any k € [k1,k2]. By (4.2)-(4.4) and the
multilinearity of the determinant function, we get

1 . 1 1
det A(k) = C(k) det /\jlz(ﬂ) )\ju:(ﬁ) Aj:(n) =: C(k) det B(k)
A (R)7 e Ag (R)Y A(R)Y



where
v+1

C(k) := H Cy - H Mp(R)Wp(K) #0, Yk E [K1,ke].
q=1

PE{T1:--T0,7}

Since B(k) is a Vandermorde matrix, we conclude that

det A(k) = C(k) H (Ap(k) = Ay (K)) .
pp'€{T1, 7,55} <P’
Now, the fact that det A(k) # 0 for any x € [K1, k2] is a consequence from the following
Claim: For any p,p' € {J1,---,Ju,J}, D # D, one has A\p(k) # Ay (k) for any k € [K1, k2]
Proor ofF THE CraM: If p’ = 0 and p # 0, the claim follows because, by (4.3)),

A (k) = ! < o).

2o(n+ %+ 5 Ll) 2

Consider now the case p, p’ # 0. We now prove that the map p — A,(k) is strictly monotone on
(0, +00). In case of finite depth, G),(0) = ptanh(hp), and

1 {2g 4% 3tanh(hp) — (1 — tanh? (hp))hp}
213 T 4 4 '
2(o+ g+ ogel) W ’

OpAp(K) =

The function f(y) := 3tanh(y)—(1—tanh?(y))y is positive for any y > 0. Indeed f(y) — 0 asy —
0, and it is strictly monotone increasing for y > 0, since f'(y) = 2(1—tanh®(y))(1+ytanh(y)) > 0.
We deduce that d,A,(k) > 0, also if the depth h = +00. Since the function p — A, (k) is even we
have proved that that it is strictly monotone decreasing on (—o0,0) and increasing in (0, +o0).
Thus, if A,(k) = Ay (k) then p = —p’. But this case is excluded by the assumption and
the condition j ¢ S U (—S), which together imply [p| # |p’|. O

Note that in items 3 and 4 of Lemma we require that j and j' do not belong to {0} U
S U (=S). In order to deal in Proposition when j and j’ are in S U (—S), we need also the
following lemma. It is actually a direct consequence of the proof of Lemma noting that
Q;(k) —w,;(k) is independent of x.

Lemma 4.3. (Non-degeneracy-1II) Let &(k) := (w;,(k),...,w; (k). The following vectors
are non-degenerate:

1. (@(k),1) e RV,
2. (&(k),wj(k),1) e R"*2, for any j € Z\ ({0} U S U (=8)).
For later use, we provide the following asymptotic estimate of the linear frequencies.

Lemma 4.4. (Asymptotics) For any j € Z\{0}, we have

12 ci(k)
wj(k) = VKlj* + =7, (4.5)
NGV
where, for any n € Ny, there exists a constant Cy, n > 0 such that
¢;(K)
sup |on-2 ‘SCm . 4.6
P! VE " (4.6)

relry,r2]
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Proof. By (4.1) we deduce (4.5) with
Rl31(G5 )LD+ 42 (1+(3)* 22

¢j(x) = Lo 12 1Ol 965 (N2 G0N
Wt —mm—t e (+(5) g|j|2)

2G,;(0)

Then (4.6) follows exploiting that (both for finite and infinite depth) the quantities |7]|(G;(0)—|j|)
and G;(0)/|j| are uniformly bounded in j, see (1.8). O

The next proposition is the key of the argument. We remind that 7= (7;,...,7,) denotes the
vector in Z" of tangential sites introduced in ([2.53)).

Proposition 4.5. (Transversality) There exist mo € N and py > 0 such that, for any x €
[k1, ka], the following hold:

JJnax |0RQ(k) 4] > podty VL e ZM\{0}; (4.7)
omax [0 (k) - £+ 2(k)] = po<6) s
Jl+j=0, LeZ', jeS§;

pnax |07 (k) - £ + (k) = Qe ()] = po (&) (o)
Jil+j—j =0, (eZ’, jjeS§, (£j.j)#(0,5,5);

0<n<mo (4.10)

max [ (Q(k) - £ + Q;(k) + Qe (k)] = po L)
T l+i+5=0,0eZ", j,j€S§.

We call py the amount of non-degeneracy and mg the index of non-degeneracy.

Proof. We prove separately (4.7)-(4.10). In this proof we set for brevity & := [k1, k2]
Proof of (4.7)). By contradiction, assume that for any m € N there exist x,, € R and ¢,,, € Z\{0}
such that

ko

L 1
)-7‘<—, Yo<n<m. (4.11)
Uyl (my
The sequences (K )men € 8 and (€, / m))men < R¥\{0} are both bounded. By compactness,
up to subsequences K, — & € R and /,,,/ £,y = € # 0. Therefore, in the limit for m — +oo,

by (4.11) we get 62@(%) .¢ =0 for any n € Ng. By the analyticity of O(x), we deduce that the
function k — Q(x) - € is identically zero on 8, which contradicts Lemma 1.

Proof of (4.8). We divide the proof in 4 steps.
STEP 1. Recalling (4.1) and Lemma we have that, for any k € ],

[6(k) - €+ Q(R)] = [95(6)] — [() - €] = R |§]* — CC = <0

whenever | j|% = Col), for some Cy > 0. In this cases (4.8) is already fulfilled with n = 0. Hence
we restrict in the sequel to indexes ¢ € Z" and j € S§ satisfying

31 < Colt). (4.12)

STEP 2. By contradiction, we assume that, for any m € N, there exist «,, € R, ¢, € Z” and
3
Jm € S§, with |jm|2 < Collm), such that, for any n € Ny with n < m,

(S [ 1 _ 1
{|0K (Q(KJ) - <Zm> + WQJM (K/))lnzfim| < <m> (413)

j'£m+jm20~
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Up to subsequences k., — & € 8 and £,,,/{{;,) —> ¢ € R.

STEP 3. We consider first the case when the sequence (£,,)men € Z" is bounded. Up to subse-
quences, we have definitively that ¢,, = ¢ € Z". Moreover, since j,, and /,, satisfy (4.12)), also
the sequence (jm)men is bounded and, up to subsequences, definitively j,, =7 € S§. Therefore,
in the limit m — o0, from we obtain

62(@(,{)24_9?(/{)) =0, YneNp, j’?—i—j:O

k=R
By analyticity this implies

Qr) L+ 05(k) =0, Vee R, J-0+7=0. (4.14)
We distinguish two cases:

e Let 7¢ —S. By (4.14) the vector (ﬁ(n), Qj(m&is degenerate according to Definition

with ¢ := (£,1) # 0. This contradicts Lemma 3.

e Let 7€ —S. With no loss of generality suppose 7 = —7;. Then, denoting £ = ({1, ...,4,),
system (4.14) reads, for any k € R,

7 v > G5, (0 v 57 G (0
{wl + Dy, (1) + Xy Tatws, () + 3 (B - ) 30, 720) — o
(o =17 + 2g=nlada = 0.

By Lemma [4.3] the vector (&(k), 1) is non-degenerate, which is a contradiction for v # 0.
If v = 0 we only deduce ¢4 = —1 and ¢5 = ... = ¢, = 0. Inserting these values in the

momentum condition in (4.15), we get 27, = 0. This is a contradiction with 7; # 0.

(4.15)

STEP 4. We consider now the case when the sequence (¢, )men is unbounded. Up to subsequences
|| — 00 as m — o0 and limy,—yo €/ Lmy =: T # 0. By (4.1)) and (4.5)), for any n € Ny,

EERN Pt Cjn (1) v G, (0)
<Zm>f|]m| ! <£m>\/E|jm|% " 2<£m> jm )|"€=Km

8(6:\/5)‘,.@:@, for m — o0,

n 1 _ Aan
% . Qo i) = 02

with d := lim,, |jm|% /{m> € R. Note that d is finite because j,, and ¢, satisfy (4.12).
Therefore (4.13) becomes, in the limit m — oo,

o (Q(k) T dVk), =0, VneNp.

By analyticity, this implies that ﬁ(n) €+ dy/rk = 0 for any x € & This contradicts the non-
degeneracy of the vector (Q(k), /s) in Lemma 2, since (¢, d) # 0.

Proof of (4.9). We split again the proof into 4 steps.
StTEP 1. By Lemma [£4] for any x € &,

(k) - €+ 9(r) = Q)] = 1925(8) = ()] = |F(w) - €] = ] ]2 = 1713 | = <0y = <O

whenever | |j|% —15|2] = C1{£) for some C; > 0. In this case ([&.9) is already fulfilled with n = 0.
Thus we restrict to indexes £ € Z¥ and j, j' € S§, such that

1515 = 1512 ] < 1y (4.16)

35



Furthermore we may assume j,, # j;, because the case j,, = j/, is included in (4.7)).

STEP 2. By contradiction, we assume that, for any m € N, there exist «,, € R, ¢, € Z” and
Jms Jo, € S§, satisfying (4.16)), such that, for any 0 < n < m,

{laz () - 25 + 755 (i (8) = Qi (1)) oo | <

. o (4.17)
]'gm +]m_]7/11 =0.

Up to subsequences k,, — & € & and £,,,/{{;,) — ¢ € R".
StEP 3. We start with the case when ({,,)men © Z" is bounded. Up to subsequences, we have
definitively that £, = £ € Z". Moreover, if |j,| # |j,,|, there is ¢ > 0 such that

. 1 . 1 . 3 . 3
c(lim|Z + 170l2) < |lml? = |2 < C1llmy < C,  ¥meN,

If j, = —j,, we deduce by the momentum relation that |j,,| = |7),] < CUp) < C, and we
conclude that in any case the sequences (j,,)men and (j7,)men are bounded. Up to subsequences,
we have definitively that j,, =7 and j/, =7, with 7,7 € S§ and such that

7#7. (4.18)
Therefore (4.17) becomes, in the limit m — oo,
ar (k) - 0+ (k) = (k). =0, ¥neNy, J-C+7-7 =0.

|k
By analyticity, we obtain that

Q) T+ (k) = Qy(k) =0, Yee R, T-1+7-7 =0. (4.19)
We distinguish several cases:

e Let 7,7 ¢ —S and [j] # [|. By (4.19) the vector (ﬁ(ﬁ}),Qj(H)7Qj’(K/)) is degenerate with
c:=(¢,1,—1) # 0, contradicting Lemma 4.

o Let 7,7 ¢ —S and 7 = —7. In view of (4.1, system (4.19) becomes

Ja J

{w(n) T3 (3 T ® 1 280) —0,  Vaes, w20
2

By Lemma [£.3] the vector (&(k), 1) is non-degenerate, which is a contradiction for v # 0.
If v = 0 the first equation in (4.20) implies ¢ = 0. Then the momentum condition implies
27 = 0, which is a contradiction with 7 # 0.

e Let 7 ¢ —S and 7€ —S. With no loss of generality suppose 7 = —7,. In view of (4.1)), the
first equation in (4.19) implies that, for any x € &

o v Y - Gj1 (O
(01 + Dw;, (k) + ;eaa@ (k) — wy (k) + 2 ((zl -b it a=2 Ja

=/

GO _ G0y

+
D1+
S
I'|e
|

By Lemma {4.3| the vector (W(k),ws(k),1) is non-degenerate, which is a contradiction.
7 g
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e Last, let 7,7 € —S and 7 # 7, by (4.18). With no loss of generality suppose 7 = —7; and
7 = —J,. Then (4.19) reads
(€1 + Doy, () + (2 — 1) wy, + ZZ 3 law, (K)
+7 ((E—l)cﬁ—f) (T + 1) 4 3 7l )))=o, Vi€ R, (4.21)
(E_ D7 + (62 +1)7, +Za:3 a]a =0.
By Lemma [4.3] the vector (& ( ) 1) is non-degenerate, which is a contradiction for v # 0. If

v = 0 the first equation in 1) implies that £; = —1, f5 = 1, {3 = ... = {,, = 0. Inserting
these values in the momentum condition we obtain 2]1 +27, =0. This contradicts 7 # 7.

STEP 4. We finally consider the case when (¢,,)men is unbounded. Up to subsequences |£,,| — o0
as m — oo and limy, o £/ {€my =: € # 0. In addition, by (4.16)), up to subsequences

By (4.1) and (4.5) we have, for any n,

A IR AL IS LACAICARTAD

(k) Cit, (K) i G (0) _
" <€mix/ﬁ( |jm(|§) IRTAE ) + 2<Zm>(Gjm(0) T )‘H:Hm) — 107 (V) | k=

using (4.22) and {¥£,,,» — oo. Therefore (4.17) becomes, in the limit m — oo,
62(@(/{) -E+El\/E)m:E =0, VYneNp.

By analyticity this implies Q(k)-c4dy/r = 0, for all x € R Thus (Q(k), \/r) is degenerate with
¢ = (¢,dy) # 0, contradicting Lemma 2
Proof of (4.10). The proof is similar to that for (4.9) and we omit it. O

5 Nash-Moser theorem and measure estimates

Under the rescaling (1, () + (en, e(), the Hamiltonian system (2.14) transforms into the Hamil-
tonian system generated by

HE (777 C) = 572%(6777 EC) = HL (777 C) + €P€ (na C) I (5]‘)
where H is the water waves Hamiltonian (2.13)) expressed in the Wahlén coordinates (2.11)), H,
is defined in (2.20) and

P16 = 5 [ (¢ 320) (Glem = 610) (¢+ 305 M) da

e%n3 ol v v
il Viterg—1-"T) gp 4 2 (—( ffl) 3>d.
+ f( +e2n2 — 2) x—i—2fT C+26177 77—1—37) T

We now study the Hamiltonian system generated by the Hamiltonian H. (7, (), in the action-
angle and normal coordinates (6, I, w) defined in Section Thus we consider the Hamiltonian
H_(0,1,w) defined by

H.:=H.oA=ec"2HocA (5.2)
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where A is the map defined in (2.50). The associated symplectic form is given in (2.54)).
By Lemma [2.9] (see also (2.35), (2.49)), in the variables (6, I,w) the quadratic Hamiltonian

H, defined in (| ) simply reads, up to a constant,

Ni=HpoA=0(r) T+ 3 (Quww,w),.
where ((k) € R is defined in and Qy in ([2.19). Thus the Hamiltonian H. in is

H.=N+¢eP with P:=P.oA. (5.3)
We look for an embedded invariant torus

i: T >R xR x 9% 5, @ = ilp) = (0(9), 1(0), w(®)
of the Hamiltonian vector field Xy, := (0;H,, —69HE,H§+7ZJVMH5) filled by quasi-periodic
solutions with Diophantine frequency vector w € R” (which satisfies also first and second order
Melnikov non-resonance conditions, see (5.14)-(5.16)).
5.1 Nash-Moser theorem of hypothetical conjugation
For o € R”, we consider the family of modified Hamiltonians
H,:=N,+eP, N, :=a-I+%(w,QWw)L2 , (5.4)

and the nonlinear operator

F(i,a) := Fw, K, &8, a) :=w - 0,i(p) — X, (i(¢))

w - 0,0(¢p) —a —e0rP(i(p))
= | w-d,I(p) +edo P(i(p)) (5.5)
w - dpw(p) —Tg o J(Qww(p) +eVauP(i(y)))

If F(i,a) = 0, then the embedding ¢ — i(y) is an invariant torus for the Hamiltonian vector
field Xy, filled with quasi-periodic solutions with frequency w.

Each Hamiltonian H, in (5.4)) is invariant under the involution S and the translations T,
¢ € R, defined respectively in and in :

H,oS=H,, H,o7 =H,, VceR. (5.6)

We look for a reversible traveling torus embedding ¢ — i(¢) = (8(p), I(v),w(p)), namely
satisfying .
Si(p) =i(=¢),  Tilp) =ilp—-F), VeeR. (5.7)

Lemma 5.1. The operator F(-,a) maps a reversible, respectively traveling, wave into an anti-
reversible, respectively traveling, wave variation, according to Definition|3.53,

Proof. Tt follows directly by and . O
The norm of the periodic components of the embedded torus
3(p) = i(p) = ($,0,0) := (O(0), (), w(p)) ,  Olp) :=0(p) =, (5.8)
is 350 = O3 + 11552 + ], where

ko :=mqg + 2 (59)
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and mgy € N is the index of non-degeneracy provided by Proposition which only depends
on the linear unperturbed frequencies. Thus, kg is considered as an absolute constant and we
will often omit to write the dependence of the various constants with respect to kg. We look for
quasi-periodic solutions of frequency w belonging to a d-neighbourhood (independent of ¢)

Q:= {weR" : dist(w,ﬁ[m,f-ig]) <5}, 6>0,

of the curve ([x1, k2] defined by (T.18).

Theorem 5.2. (Nash-Moser) There exist positive constants ag,eg,C depending on S, ko and
7 2 1 such that, for all v =¢*, a€ (0,a9) and for all € € (0,eq), there exist

1. a ko-times differentiable function
Qo 12 X [R1, ko] — RY,

A (W, k) = w+re(w, k) with  |r|Fov < Cev™! (5.10)

2. a family of embedded reversible traveling tori i () (cfr. (5.7)), defined for all (w,rk) €
Q X [k1, k2], satisfying

i () = (.0,0) 5" < Cev™" (5.11)

3. a sequence of ko-times differentiable functions uf : R” x [k1, k2] — R, j € S§ = Z\ (Su{0}),
of the form

(0, ) = 1 (w0, R (0) + )+ mf () [+ wr), (5.12)

with (k) defined in ([L.11), satisfying

m% — 1]%00, jmf|Fo-v | jm¥ [*ov < Ce,  sup |t§°|k°’“ <Cev?t, (5.13)
2 2 JESE
such that, for all (w, k) in the Cantor-like set

co :z{(w,/@) €Qx [k1, k2] ¢ |w-€] =80T, VieZ\{0}; (5.14)
|w - ¢ + 1 (w, k)| = 4v |j|% ™" NLeZV, jeS; with - L+ j=0; (5.15)

; P N
- € 4 1 () — 1 s )| 2 A0 iE = 17150 (5.16)

VieZ”, j,j €Sg, (4,4,5') # (0,4,§) withj-£+j—j =0,

; - I N

w4 1 () + 1 o)| = v (11F + 11E) O (5.17)

VeeZ, j,j €SS, withj-€+j+j’=0},

the function iy (@) = ixn(w, K, &5 9) is a solution of F(w,k, €0y, 0n(w, k) = 0. As a conse-
quence, the embedded torus ¢ — i,.(p) is invariant for the Hamiltonian vector field Xy
as it is filled by quasi-periodic reversible traveling wave solutions with frequency w.

aop(w,k)

We remind that the conditions on the indexes in (5.15))-(5.16) (where j € Z" is the vector
in (2.53))) are due to the fact that we look for traveling wave solutions. These restrictions are
essential to prove the measure estimates of the next section.
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5.2 Measure estimates

By (5.10), the function a.. (-, ) from Q into its image .. (Q, ) is invertible and
B =ax(wk) =w+r(wr) <

W=z (B.k) = B+ (B R), [ < Cv (519

Then, for any 8 € a,(CY%), Theorem proves the existence of an embedded invariant torus
filled by quasi-periodic solutions with Diophantine frequency w = a ;! (8, k) for the Hamiltonian

Hjy =ﬁ-l+%(w,wa)Lz +eP.

Consider the curve of the unperturbed tangential frequency vector (k) in (T.18). In Theo-
rem below we prove that for "most" values of k € [k1, k2] the vector (o '(k), k), k) is
in CY,, obtaining an embedded torus for the Hamiltonian H. in , filled by quasi-periodic
solutions with Diophantine frequency vector w = ozo’ol(ﬁ(n), k), denoted Q) in Theorem Thus
£ A(i (Q)), where A is defined in (2:50), is a quasi-periodic traveling wave solution of the water
waves equations (2.14) written in the Wahlén variables. Finally, going back to the original Za-
kharov variables we obtain solutions of . This proves Theorem together with
the following measure estimate.

Theorem 5.3. (Measure estimates) Let
v=e¢", 0<a<min{ag,1/(1+ko)}, 7>mo(v+4), (5.19)

where mg is the index of non-degeneracy given in Proposition [[-5 and ko := mo + 2. Then, for
€ € (0,e9) small enough, the measure of the set

G = {r € [ri,n] : (aZ (G(k),K),K) eCL} (5.20)
satisfies |G| = k2 — k1 as e — 0.
The rest of this section is devoted to prove Theorem [5.3] By (5.18) we have
O.(k) := a7 (k). k) = Q(k) + 7, (5.21)
where 7. (k) := 7. (((k), k) satisfies
|0k (k)| < Cev™ M |V |k| < ko, uniformly on [k, k2] . (5.22)

We also denote, with a small abuse of notation, for all j € S§,

where m‘%’v‘(m) = m‘g(ﬁe(m),m), n? (k) := n®(Q(k), k), m‘;(m) m;(ﬁ (k), k) and v7(k) =

tf (Qe(r), ).
By (5.13) and (5.22)) we have

|oF (mogo(/ﬁ) — 1), |0km? (k)|, |Okm OO(H)| < Cev ™", (5.24)
sup |a]£tj/“(li)| <Cev™'7F, VO<k<k. (5.25)
JES§
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Recalling ([5.14)-(5.16]), the Cantor set in ([5.20) becomes
G. ::{m € [k ko] © |9(k) - €] = 8007, YVle Z\{0}:
(G (k) - €+ pP (k)] = 40lj13 0T, VLeZ, jeSy, with J- £+ =0;
[9c(5) - €+ i (1) = i ()] = A0 lj]7 = 71300,
VeeZ, j,j' €SG, (£,4,5") # (0,4,§) with J- £+ j —j' = 0;
(G (k) - £+ p (k) + pF ()] = 4o (1% +15713) 077,
VeeZ”, j,j €S with 7- €+ j + 5 =o}.

We estimate the measure of the complementary set

G¢ = [K1, k2]\G:

0 1 11 17
(U)ol U m)ol U el U e em
£#£0 LeLv, jesh (€,5,3")#(0,5,3),d#3" LeZV ,j,j'€Sf

7-e+3=0 Je+j—j'=0 Je+j+3'=0

where the “nearly-resonant sets"

R :={k € [k, k] ¢ |9-(k) - £] <80}, (5.27)
Ryl) i={r e [m ko] o I0:(r) - €+ uf ()] < d0ljl2 07T (5.28)
VD ={m e [nn,ma] ¢ 1Ge(k) L4 pf (k) — p (0] < 402 = 71307}, (5.29)
VD =k e [hr, ko] ¢ 9e(m) - 0+ pF(8) + pf (0)] < 4o (G1F +1513)0 T} (5.30)

Note that in the third union in (5.26]) we may require j # j’ because REIJI; c REO). In the sequel
we shall always suppose the momentum conditions on the indexes ¢, j, 7* written in (5.26]). Some

of the above sets are empty.
Lemma 5.4. Consider the sets in (5.26))-(5.30). For € € (0,e9) small enough, we have that
1. If RY) # @ then |j]2 < C{0);

2. If R{'D, # @ then ||j13 — |5|3] < C{0);

J
3. I QY] # @ then |j|3 + 15’2 < C 0.

Proof. We provide the proof for jo{;,. If jo{;, # & then there exists k € [k1, k2] such that

4o |52 = )%

1 () =i (R < — = 10 A <l - E[+ OO (B3D)
By (5.23) we have

1P (R) = 1fi (k) = 3 ()(Q (k) = Qe () + 7 (8)(G = ') + 0T (R)(1512 = 15712) + 7 (8) = ¢/ () -

vl 8
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Then, by (5.24)-(5.25 Wlth k= O (@.5)- (4.6 the momentum condition j — j' = —7- £, and the

elementary 1nequahty 112 = 15'|2] = ||]|2 — |] 2|, we deduce the lower bound

1f ()= 15 ()] > (1= C) (||j|%—|j'|%|— €)= O=ly ) = Cellj|¥ ~1j'|¥| - 0=

> [l7]2 — 15| = el = &' — O=u™ (5.32)
Combining (5.31) and (5.32), we deduce ||j|2 — |j’|%| < C ), for € small enough. O

In order to estimate the measure of the sets (5.27)-(5.30) that are nonempty, the key point
is to prove that the perturbed frequencies satisfy estlrnates similar to (4.7)-(4.10).

Lemma 5.5. (Perturbed transversality) For e € (0,g9) small enough and for all s € [K1, k2],

p v

omax [ne(s) 4] = (0, YEeZN\{0}; (5.33)
MaXo<n<mo [07(Qe (k) - £ + 17 (k)| = 2 () (5.34)
JAl+j=0, (eZ', jeSE; '
maxo<n<m, |08 (e (k) - € + pT (k) — 1% (k)| = 2 {0 (5.35)
Jl+j—j =0, LeZ, jj€S§, (¢,7.5) #(0,4,5);
maxo<n<m, |08 (e (k) - €+ p7 (k) + 1% (r))| = 22 {0 (5.36)
Jl+i+4 =0, LeZ, jj €S§. '

We recall that po is the amount of non-degeneracy that has been defined in Proposition [{.5

Proof. We prove (5.35). The proofs of (5.33), (5.34) and ( are similar. By (5.23) we have
Qo(r) - £+ pf (k) = pfi (k) = Q(k) - £ + 7L (r) - £+ Q;(r) — Qi (x) (5.37)
+ (@F (k) = 1) (k) = yr(R)) +mf ())(F = 5) +mE (0) (]2 = 13']2) + ] (%) = i ().
By Lemma [4.4] we get that, for any n € {0,...,mo},
107 (2 () — Qs ()] < C|I3IZ = 15|+ C < C'(8) 0 (5.38)

because, by Lemma (2), we can restrict to indexes £, j,j’ such that ||j|2 — |5/|2]| < C ().
Furthermore

gL NTES 3 213
i1z =112 < |32 = 112 < OO0 (5.39)
Therefore, by (5.37), (5.24)), (5.25), (5.22), (5.38)), (5.39), and the momentum condition j — j' =
—7+ £, we have that, for any n € {0,...,mg},

—

|05 (G (k) - £+ 1] (1) = pfi (1)) = 107 (Qr) - £+ Q(K) — Qs ()] — Cev™ ™) (0)
Since (k) - £ + Q;j (k) — Qi (x) satisfies ([:9), we deduce that

max 02 (e (8) - £ 4+ 17 (1) = 1% (1)] = po () — Cev™05m0) (0 > 8240

0s<n<mo
for € > 0 small enough. O

As an application of Riissmann Theorem 17.1 in [37], we deduce the following result:
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Lemma 5.6. (Estimates of the resonant sets) The measure of the sets — satisfy
BO| < (0@ ), RO < @l o),
BED < Al = 17150 0™ QU S (o (U1 +171E) o )
and, recalling Lemma[5.7,
BOL IR QS (0 )
Proof. We estimate Rég{;, defined in (5.29). The other cases follow similarly. Defining f; ; ;s (k) :=

(Qe(r) - £+ pZ (k) — p2 (K)) <L), we write

R, = {ke[m,re] ¢ fegp(®)] < dvdjl3 = 713"}

By Lemma we restrict to indexes satisfying ||]|% — |j’|%| < C{). By (5.35),

max |a fejj( )|>p0/27 VHE[K’M’{’Q]'

os<n<m

In addition, by (5.21)-(5-25)), Lemma [4.4] the momentum condition |j — j/| = |7*¢|, and (5.39), we

deduce that maxg<n<k, |07 fe.j.+(k)| < C for all & € [k1, k2], provided ev~(1*+%0) is small enough,
namely, by (5.19) and ¢ small enough. In particular, fe; ;i is of class Cko=1 = ¢mo+1  Thus
Theorem 17.1 in [37] applies. O

Proof of Theorem completed. We estimate the measure of all the sets in (5.26). By Lemma
54l and Lemma [5.6] we have that

‘URe ‘ MU EDY (@;H)mloa (5.40)

£#0 ££0 £#0
L a1
(n v \mo vmo
U rjl< X I®BIs ¥ ()" =2 == (5.41)
£, 7e<c 3 <Cdr % < > Lev <£>m0 g
724070 \17\<f7<f>0 ll<C<6
a1 a1
(II v mo V™o
U QLM < Z [IENARS Z O S 2 =7 (542)
£,5.5'€5§ , 2 , 2 Lezv <E>m0 K
St 0 15" 1<C<eys lil,15'1<CLe3
We are left with estimating the measure of
an _ (11) (I1)
Rep=| U Rl |v U & (5.43)
(03,31 #0,3,3),#3’ ¢,5es§ 25,35 131#15"]
Fl+ji—j'=0 JL4+25=0 Jltj—j'=0

By the momentum condition 7- ¢ + 25 = 0 we get |j| < C{¢), and, by Lemma [5.6]

1

U wlls 3 mils © (@) sSge 6w

£,j€SG,7-6+25=0 li|<Cey lil<cdey Lezv
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Finally we estimate the measure of the second union in (5.43)). By Lemma we can restrict to
indexes satisfying ||7|>2 — |§'|*/?| < C'{£) . Now, for any |j| # |j’|, we have

. " ALl 1 11
e R = LR — 113 (1 17 1133 s ML=l 1
1312 = 1312 ] = (1317 = 1712 (1] + 15 + 13121571 7) = I R

implying the upper bounds |j|, |j/| < C (0Y*. Hence

1 1

U ®ils 3 whis 5 () sSgaa 60

€’ 112 31,1371 <C<ey? li].137| <C<ey? cezv (™0
Fl+j—3'=0

As ;= —4 > v by (5.19), all the series in (5.40), (5.41), (5.42), (5.44), (5.45) are convergent, and
we deduce

G| < Cuma

For v = &* asin (5.19)), we get |G| = Ko—k1—Ce®™0 The proof of Theoremis concluded. O

6 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of F(i,a) = 0,
where F(i,a) is the nonlinear operator defined in (5.5), we construct an almost approximate
right inverse of the linearized operator

di,oF (i, a0)[2, &] =w - 0,7 — di X, (io(9)) [2] — (&,0,0) .

Note that d; oF(io, ) = dioF (i) is independent of ap. We assume that the torus io(¢) =
(Bo(), Io(v), wo(p)) is reversible and traveling, according to (5.7).
In the sequel we shall assume the smallness condition, for some k := k(7,v) > 0,

ev T« 1.
We closely follow the strategy presented in [4] and implemented for the water waves equations in
[6, 2]. The main novelty is to check that this construction preserves the momentum preserving
properties needed for the search of traveling waves. Therefore, along this section we shall focus
on this verification. The estimates are very similar to those in [6], 2].

First of all, we state tame estimates for the composition operator induced by the Hamiltonian
vector field Xp = (0; P, —0p P, Hsﬁ sJVwP) in (5.5).

Lemma 6.1. (Estimates of the perturbation P) Let J(p) in (5.8)) satisfy ||3H§2(’)12k0+5 < 1.
Then, for any s = so, |Xp (i) <o 1+ ||j‘|ls€1’550+2ko+3’ and, for all 7 := (0,1,D),
4 11ko, ~iko, ko, ~1ko,
I Xp @[ <5 BllEY + 13055 200 420044 [0t »
e ko ko ykos ko, ko
|aEXp @], S Tl 1y + 1915525 s2m 45 (TElsg 1) -

Proof. The proof goes as in Lemma 5.1 of [6], using also the estimates of the Dirichlet-Neumann
operator in Lemma (3.10 O

Along this section, we assume the following hypothesis, which is verified by the approximate
solutions obtained at each step of the Nash-Moser Theorem [9.2
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e ANSATZ. The map (w,k) — Jo(w, k) = io(p;w, k) — (,0,0) is ko-times differentiable

with respect to the parameters (w,k) € R” x [k1, k2] and, for some p := u(r,v) > 0,
€ (0,1),
13020, + log — w]*" < Cev . (6.1)

As in [4] 6] 2], we first modify the approximate torus ip(¢) to obtain a nearby isotropic torus
i5(¢), namely such that the pull-back 1-form i} A is closed, where A is the Liouville 1-form defined
in (2.55). We first consider the pull-back 1-form

igh = Zy: ©)dr,  ar(@) = —([0,00(2)] " Lo(9)), + 5 (JZ w0 (9), w0 (9)) 1o, (6:2)

and its exterior differential

BW=digh = Y Ayder adg;,  Ai(9) = 0p,a;(p) — 0, an(p) .-

1<k<j<sv

By the formula given in Lemma 5 in [4], we deduce, if w belongs to DC(v, 7), the estimate

ko, ko, ko, ko,
||Akj||so : (”ZHSO+T (ko+1)+ko+1 + HZ”ng ”30”517 k0+1)+k0+1)

where Z(¢p) is the “error function”

Z(p) := Flio, 20) () = w - 0plo(#) = X, (i0(9)) -

Note that if Z(¢) = 0, the torus io(¢p) is invariant for Xy, ~and the 1-form ’LOA is closed, namely
the torus ip(¢) is isotropic. We denote below the Laplacian Ay :=31_,02,

Lemma 6.2. (Isotropic torus) The torus is(p) := (0o(v), Is(¢), wo()), defined by
Ii(¢) == Io() + [2,00(D)] T o(0) s P = (pj)i=t,ws  pi(9) i= A Z O Akj (@), (6.3)
k=1

is isotropic. Moreover, there is o := o(v,T) such that, for all s = s,

115 = Tols" <« 301557, (6.4)
115 — |5 <o v (121552 + 12150, 130leyy ) (6.5)
| F s, 00) |20 o |1Z]252 + 1215050, [130]1 550 (6.6)
i (i), Sor 74,41 » (6.7)

for s1 < so+ u (cfr. (6.1)). Furthermore is(p) is a reversible and traveling torus, cfr. (5.7).

Proof. Since ig(p) is a traveling torus (see (3.52)), in order to prove that is(¢) is a traveling
torus it is sufficient to prove that Is(¢ — J5) = Is(¢), for any ¢ € R. In view of (6.3), this follows
by checking that d,600(¢ — J5) = 0,80(¢) and p(p — J5) = p(¢) for any ¢ € R. The first identity
is a trivial consequence of the fact that 6y(p — 55) = 6p() — J5 for any ¢ € R, whereas the second
one follows once we prove that the functions ay(y) defined in satisfy

ar(p— %) =ap(p) VeeR, Vk=1,...,v. (6.8)
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Using that ig(¢) is a traveling torus, we get, for any ¢ € R,

(Ogrwolp = 75), I wo (0 — J5)) o = (Op Tewo (), I mcwo () 1o = (Op,wol), T wo(#)) 1

and, recalling (6.2, we deduce . Moreover, since () is reversible, in order to prove that
i5(ip) is reversible as well, it is sufficient to show that I5(y) is even. This follows by (6.2), Lemma
and SJ~! = —J~1S. Finally, the estimates (6.4)-(6.7) follow e.g. asin Lemma 5.3 in [2]. O

In the sequel we denote by o = o(v, 7) constants, which may increase from lemma to lemma,
which represent "loss of derivatives".

In order to find an approximate inverse of the linearized operator d; F (i5), we introduce the
symplectic diffeomorphism G : (¢, y,w) — (0, I, w) of the phase space T x R” x ﬁ§+72,

9 @ 0o(9)
1)i=Gs (v )= | 1506) + b0y + (o) o) T |, (69)
w W wo (@) +w

where @o(0) := wo(f, '(#)). Tt is proved in Lemma 2 of [4] that G5 is symplectic, because
the torus is is isotropic (Lemma [6.2). In the new coordinates, is is the trivial embedded torus

(¢,y,w) = (,0,0).

Lemma 6.3. The diffeomorphism Gs in is reversibility and momentum preserving, in the
sense that . .
SOG5=G5OS, 7?<OG5=G507?§, VgER, (610)

where S and 7. are defined respectively in ([2.51)), [2.52).
Proof. We prove the second identity in (6.10), which, in view of (6.9), (2.52) amounts to

00(¢) = 5 = bo(¢ — J5), V< €R, (6.11)

I5(¢) + [0900(&)] "y + [(00) (Bo(¢))]" J'w (6.12)
= Is(¢ — J) + [2600(6 — 7)1y + [(Boo) (Bo(¢ — F))] T T 7w,

Tewo (@) + Tew = wo(P — J5) + 7w (6.13)

Identities (6.11)) and (6.13) follow because is(¢) is a traveling torus (Lemmal[6.2). For the same
reason Is(¢) = I5(¢ — 55) and 0480(¢) = 0400(¢ — J5) for any < € R. Hence, for verifying (6.12)
it is sufficient to check that [(9p@0)(60(¢))]" = [(PeWo)(0o(¢ — J5))]T 7 (we have used that J,
and 7. commute by Lemma |3.31)), which in turn follows by

70 (200)(00(0)) = (2a0)(0u(é— ), Vs e R, (6.19)
by taking the transpose and using that 7] = 7_. = 77!. We claim that (6.14) is implied by @
being a traveling wave, i.e.

TeWo(0,-) = Wo(# — j5), VseR. (6.15)

Indeed, taking the differential of (6.15) with respect to 6, evaluating at 6 = 0y(p), and using
that 0g(¢) — 75 = 6o(p — 75) one deduces (6.14). It remains to prove (6.15). By the definition of
Wy, and since wy is a traveling wave, we have

Wo(0 — J6) = wo(0 ' (0 = &) = wo(0y ' (0) — &) = mewo (65 (9)) = 7o,

using also that 65" (6 — ) = 65 () — j, which follows by inverting (6.11). The proof of the first
identity in (6.10) follows by (6.9), (2:5I)), the fact that is is reversible, Lemma and since

J~! and S anti-commute. O
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Under the symplectic diffeomorphism G, the Hamiltonian vector field Xz, changes into
Xk, = (DGs) " Xy, 0G5 where K, :=Hyo0Gs. (6.16)
By and we deduce that K, is reversible and momentum preserving, in the sense that
KooS=K,, Kyo7.=K,, VceR. (6.17)
The Taylor expansion of K, at the trivial torus (¢,0,0) is

Ko(¢,y,w) = Koo(¢, @) + K10(¢, ) - y + (Ko1(, @), w) 2 + 5 Kao(d)y - y
+ (K11(¢)yaw)L2 + %(K02(¢)W7W)L2 + K>3(¢7y7w) 5

where K>3 collects all terms at least cubic in the variables (y,w). By (5.4) and (6.9), the only
Taylor coefficients that depend on « are Koo € R, K19 € R” and Ko € ¢, y,, whereas the v x v

(6.18)

symmetric matrix Kog, K11 € E(R",Y)Sﬁr 5;) and the linear self-adjoint operator Koz, acting on
f’)Sﬁ 5, are independent of it.

Differentiating the identities in (6.17) at (¢,0,0), we have (recalling (2.51)))

Koo(=0) = Koo(¢), Kio(—¢) = Ki0(¢), Ka(—¢) = K20(¢),

6.19
SoKoi(—=9¢) = Koi(¢), SoKii(—9¢)=Kii(¢), Koa(—¢)oS=350Kp(¢), (6.19)
and, recalling and using that 7] =7_ = 771, for any ¢ € R,
Koo(¢ — J5) = Koo(¢), Kio(¢ —J5) = Kio(¢), Kao(p —J5) = Ka0(0), (6.20)
Koi(¢p — J5) = 7cKo1(9), Ku(op—J5) =71K11(¢), Ko2(p—JF)or =1 0Kp(d).
The Hamilton equations associated to (6.18) are
¢ = K10(¢, @) + K20(9)y + [K11(0)] 7w + 0, K=3(9, y, w)
y = —0sKo0(¢, ) — [05K10(0, )] "y — [0pKo1(¢, )] 'w (6.21)

=04 (5K20(0)y -y + (K11(9)y,w) 12 + 5 (Koz(@)w,w) 2 + Kas(¢,y,w)
w=Js (Koi(¢, ) + K11(¢)y + Koz2(d)w + Vi K=3(h,y,w))

where dy K is the v x v transposed matrix and dyK;, K{; : 95 » — R” are defined by the

~

duality relation (0p Ko1[¢], w)r2 = (;AS [0 Ko1] " w for any (;Aﬁe R¥, we Sﬁsﬁj. The transpose K, (¢)
is defined similarly.

On an exact solution (that is Z = 0), the terms Kyp, Ko1 in the Taylor expansion ([6.18])
vanish and K39 = w. More precisely, arguing as in Lemma 5.4 in [2], we have

Lemma 6.4. There is 0 := o(v,7) > 0, such that, for all s = sq,

106 Koo (- a0) 5" + [ K10 (- a0) = wle” + [ Kor (- a0) [0 <6 121535 + 1205035 13005y

s s+o Sop+o s+o ?

100 Koo £ + |00k 10 — 1A[E" + |00 K01 |22 <5 [To] 202

s+o ?
ko, ko,
K20l <5 €(1 + [3oll335)

kg,’U

ko, Ko, ko 1~ (kos
[ Kyl <o eyl + Myl ™ [30l555) K]

S0 s+o

30l%5)-

ko, ko,
Ss (Wl + wllse® 130l

0

S
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Under the linear change of variables

$ p00(0) 0 0 ¢
DGs(,0,0) | § | = | dols(e) [0s80(2)]™ T [(@oii)(Bo(eN] ™" || 7 ]
w 6¢w0(ap) 0 Id w

the linearized operator d; o F(i5) is approximately transformed into the one obtained when one
linearizes the Hamiltonian system (6.21) at (¢,y,w) = (¢,0,0), differentiating also in « at ag
and changing 0; v~ w - 0, namely

W 0,0 — 05K10()[0] = 0aK10()[8] = Ka0(9)7 — [K11(9)] @
= w0, + 050 Koo (9)[0] + 0a0sKoo(2)[8] + [06K10(9)] TG + [0 Kor ()] T4 |- (6.22)
w - 0% — J, (0 Ko1(0)[0] + 0aKor(p)[a] + K11(9)J + Koz()W)

Q) ;R Q)

In order to construct an “almost approximate" inverse of (6.22), we need that

Lo =Wy -0y — TKn(9)) |, | (6.23)
is "almost invertible" (on traveling waves) up to remainders of size O(N, ?,), where, for n € Ny

N,:=KP!, K, =K} K6 x=3/2. (6.24)

The (K,)n>0 is the scale used in the nonlinear Nash-Moser iteration of Section [0 and (N, )n>0
is the one in the reducibility scheme of Sectlon I Let HS (T 1) := H(T"*1) n 538+ o

(AI) Almost invertibility of L,: There exist positive real numbers o, u(b), a, p, Ko and
a subset N, < DC(v,T) X [k1,ke] such that, for all (w,k) € A,, the operator L, may be
decomposed as

L,=LS+Ru+RE, (6.25)
where, for every traveling wave function g € H5" 7 (T** R?) and for every (w, ) € A,, there

is a traveling wave solution h € H5(TY ™1 R?) of LSh = g satisfying, for all sp < s < S,

_ ko, _ ko, ko, ko,
1£5) 7 g)" <5 07 (lgliy + gl e, 1301550 ) o) - (6.26)

In addition, if g is anti-reversible, then h is reversible. Moreover, for any s < s < S, for
any traveling wave h € f)Sﬁ 5., the operators R, R satisfy the estimates

k 1 a— ko, ko, k
IRGAI™ S5 v N2 (IRl g3y + 11y 13005 )10 ) »

s+o so+o 5+M
ko,v ko, ko,
HRLh” ’ <S (”hHsgbero' + ”hHS(?J:)a' ||JO||50+H(b)+g+b) ’ Vo> Oa
k v ko, ko, K
[RSA" s IBIELE + IR15, 196155

s+o so+o s+;¢

This assumption shall be verified by Theorem [8.10]at each n-th step of the Nash-Moser nonlinear
iteration.

In order to find an almost approximate inverse of the linear operator in (and so of
di o F(is)), it is sufficient to invert the operator

R w - 0¢¢A5 — 0aK10(p)[0] — Ka0(p)y — KlTl(SD)‘A’
D[¢,9,%, @] := w - 0,7 + 0a0sKoo(9)[] (6.27)
L5w—Js (0aKoi(p)[a] + Ki1(9)Y)
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obtained neglecting in (6.22) the terms 03 K10, ¢ Koo, 05 Koo, 0pKo1 (they vanish at an exact
solution by Lemma and the small remainders R,,, R} appearing in (6.25). We look for an
inverse of D by solving the system

ID)I:¢7 :;/\7 ‘{’\'77 a] =192, (628)
93

where (g1, g2, g3) is an anti-reversible traveling wave variation (cfr. Definition [3.33)), i.e.

91(0) =q1(=¢),  g2(9) = —g2(=¥),  Sgs(p) = —gs(—¥), (6.29)
91(0) =g1(e —5),  92(0) = g2(p =), 7egs(p) = gs(p — JK), Vs € R. (6.30)
We first consider the second equation in (6.27)-(6.28), that is w - 0,7 = g2 — 0a0sKoo(@)[Q].

By (6-29) and (6.19), the right hand side of this equation is odd in ¢. In particular it has zero
average and so

§:=(w-0,) " (92 — 0alyKoo(p)[a]) - (6.31)

Since g2(p) = g2(¢p — 55) for any Vs € R by (6.30) and 0,0,Ko0(¢)[&] satisfies the same property
by (6.20), we deduce also that

Yl —J5) =(p), VseR. (6.32)

Next we consider the third equation L5 = g3 + J, (0o Ko1(9)[&] + K11(¢)y). The right hand
side of this equation is a traveling wave by (6.30)), (6.20), (6.32) and since J, = H§+ 5 J|54+
’ sST,2

commutes with 7. (by Lemma|3.31). Thus, by assumption (AI), there is a traveling wave solution

W= (L£5) (g5 + J2(0aKor(0)[a] + K11(#)7)) - (6.33)
Finally, we solve the first equation in (6.28)), which, inserting (6.31) and (6.33)), becomes
w00 = g1+ Mi(£)[A] + Ma()g> + Ms ()95, (6.34)

where

My () := 0aK10(0) — Ma2(9)0a04Koo(p) + Ms(0)J 200 Ko1 (),
Mo () 1= Kao(@)(w - 0) ™" + Ky (0) (£5) ! T K1 (@) (w - 0,)7,
M;(p) == K\ () (£5)7" .

In order to solve (6.34), we choose & such that the average in ¢ of the right hand side is zero.
By Lemma and (6.1), the p-average of the matrix M satisfies (M), = Id + O(ev™!). Then,

for ev~! small enough, (M), is invertible and <M1>;1 =Id + O(ev™1). Thus we define

a:= —<M1>;1 (<g1>¢ +{Mag2), + <M393>¢) ) (6.35)

and the solution of equation ([6.34)
¢:=(w- 05) " (91 + Mi(@)[a] + Ma(p) g2 + Ms()gs) - (6.36)

Finally the property (%((p - K%)= <$(<p) for any ¢ € R follows by (6.20), (6.32) and the fact that
win (6.33)) is a traveling wave. This proves that (¢, 7, w) is a traveling wave variation, i.e. (6.30)
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holds. Moreover, using (6.29), (6.19), Lemma [.23] the fact that J and S anti-commutes and
(AI), one checks that (¢, g, W) is rever51ble, ie.

~

d(p) = —d(—p),  G@)=0(—p),  Siu(p) =u(—y). (6.37)

In conclusion, we have obtained a solution ((E, y,w,a) of the linear system (6.28), and, denoting
the norm | (¢,y,w, @)|%* := max {]|(¢, y,w)[5*, |a|*" }, we have:

Proposition 6.5. Assume (6.1) (with n = p(b) + o) and (AL). Then, for all (w,k) € A,, for
any anti-reversible tmvelmg wave variation g = (gl,gg,gg) (i.e. satisfying (6.29)-(6-30)), system

- ) has a solution D™1g := (¢7y,w Q), with (qﬁ y,w,a) defined in (6.36)),(6.31)),(6.33),(6.35),

where (d),y, W) is a reversible traveling wave variation, satisfying, for any so < s S S

- S Row o A Fos ko,
D~ gle <5 07 (lglshs + 130l ) +0 195 3s) - (6.38)

Proof. The estlmate ) follows by the explicit expression of the solution in (6.31)), (6.33] ,

(6-35), (6:36), and Lemma. ©-26), @1

Finally we prove that the operator
T := To(io) := (DGs)(¢,0,0) oD~ 0 (DG5)(,0,0) ™" (6.39)

is an almost approximate right inverse for d; o (ig), where ég(gb,y,w, a) = (Gs(d,y,w),a) is
the identity on the a-component.

Theorem 6.6. (Almost approximate inverse) Assume (AI). Then there is & := (7, v, ko) >
0 such that, if (6.1) holds with u = u(b) + 7, then, for all (w,k) € A, and for any anti-reversible

tmveling wave variation g := (g1, go, g3) (i-e. satisfying (6.29)-(6.30) ), the operator To defined
in 9)) satisfies, for all so < s < S,

IToglleo <s v~ (lgll5%5 + [0l i) (6.40)

5+M +5Hg”so+a

Moreover, the first three components of Tog form a reversible traveling wave variation (i.e. satisfy
(6-37) and (6.30)). Finally, Ty is an almost approzimate right inverse of d; oF (ig), namely

dj.oF(ig) © Ty — Id = P(io) + Pu(io) + P (io) ,

where, for any traveling wave variation g, for all s < s < .5,

[Pglie <5 v (1F (o, ao) 5o lgl22 (6.41)
+ (I (o, a0) [£5 + 1 F o, a0 &35 1301522 ) 10 191055 )

[Pugls” <5 0™ N2 (lgliss + 190155 ) olallerin) (6.42)

P2l Sso v K (Il + 1301800y 5 laliy) s ¥ >0, (6.43)

IPSale” S5 v (lgles + 130l alolie i) - (6.44)

Proof. We claim that the first three components of Tog form a reversible traveling wave variation.
Indeed, differentiating (6.10) it follows that DGs(p,0,0), thus (DGs(p,0,0)) 1, is reversibility
and momentum preserving (cfr. (3.54))). In particular these operators map an (anti)-reversible,
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respectively traveling, waves variation into a (anti)-reversible traveling waves variation (cfr.
Lemma . Moreover, by Proposition the operator D! maps an anti-reversible trav-
eling wave into a vector whose first three components form a reversible traveling wave. This
proves the claim.

We now prove that the operators P, P, and P2 are defined on traveling waves. They are
computed e.g. in Theorem 5.6 of [2]. To define them, introduce first the linear operators

A~

- =0 K10(p, a0)[¢]
Rz[9,9,%,0] := | dpsKoo(p, @0)[0] + [05K10(p, a0)] "G + [0 K01 (9, a0)] T
— J20sKo1(p, a0)|[4]

and
~ 0 ~ 0
R. [0, 7, %, 4] := 0 , Ri[p,7,%, d] = 0 . (6.45)
R[] R5[W]

Next, we denote by II the projection (7, &) — 7, by us(p) = (¢,0,0) the trivial torus, and by &,
., £ the linear operators

& 1= d;,oF(io) — di,aF(is) + D*Gs(us)[DGs(us) ' F(is, ap), DGs(us) I[-]]
+ DGs(us)RzDGs(us) ",
Ew = DGs(us)R,DGs(us) 1, EF 1= DGs(us)REDG(us) " (6.46)
It is then proved in Theorem 5.6 of [2] that P := £0 Ty, P, := &, 0Ty, PL := EL 0Ty, A direct
inspection of these formulas shows that P, P, and PL are defined on traveling wave variations.

In particular, note that the operators R,,, R} in (6.45) are defined only if @ is a traveling wave,
because the operators R,,, R} defined in (AI) act only on a traveling wave. However, note that,

if ¢ is a traveling wave variation, the third component of DG(us)~ Tog is a traveling wave and
therefore the operators &,, &L in (6.46) are well defined.
The estimates (6.41)-(6.44) are proved as in Theorem 5.6 of [2], using Lemma O

7 The linearized operator in the normal subspace

We now write an explicit expression of the linear operator £, defined in (6.23]).
Lemma 7.1. The Hamiltonian operator L, defined in (6.23)), acting on the normal subspace

5§+,2’ has the form
Lo=T5 5(L=cR)szs, (7.1)
where :
1. L is the Hamiltonian operator

Li=w-d, — JONVH(Ts(p)), (7.2)

where H is the water waves Hamiltonian in the Wahlén variables defined in (2.13), evaluated
at

T5(¢) := A(is(9)) = €A (60(9), I5(¢), wo(9)) = vT (00(0), I5(9)) + ewo(9),  (7.3)

the torus is(p) = (00(), Is(¢), wo(y)) is defined in Lemmal[6.9 and A(6,1,w), v7(6,1) in
(2.50);
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2. R(®) has the finite rank form

Z h,gi)peXi, YheHi s, (7.4)
for functions g;, x; € f)Sﬁ s which satisfy, for some 0 := o(7,v,ko) >0, forallj=1,...,v,
for all s = sg,

ko,v ko,v ~ 11k,
sl + Dl o 1+ 1360825 5
Idag; [l + Idaxs [2ll s s [2llsqo + 12540 150510 -
The operator L, is reversible and momentum preserving.
Proof. In view of (6.18)), (6.16) and (5.4) we have
K02(¢) = awvaa(d)v 0, 0) = 04Vy (Ha o Gé) (d)v 0, 0)
— 15 Qs +20,Vy (PoGs)(6,0,0), (7.6)
st.n

where Qyy is defined in and G in (6.9). Differentiating with respect to w the Hamiltonian
(P oGs)(9,y,w) = P(00(¢), I5(¢) + L1(d)y + La(d)w, wo(9) +w) ,
where Li(6) := [2400(¢)]~T and Lo (@) := [04ii0(60(6))] 7T, " (see 63)), we get
0aVu(P 0 G5)(,0,0) = 0w VuP(is(¢)) + R(¢) , (7.7)
where R(¢) := R1(¢) + R2(¢) + R3(¢) and
Ry := La(9) 07 P(is(9)) L2(9),  Ro:= La(¢)"0u0rP(is(9)), Rs:= 0rVuP(is(9))La(6).

Each operator Ry, R2, R3 has the finite rank form . because it is the composition of at least
one operator with finite rank R” in the space variable (for more details see e. g Lemma 6.1 in

[6]) and the estimates . ) follow by Lemmaﬂ 6.1 By (7.6 ., ., ., ., , We obtain
2 .
Koa(6) = 15 0,V H(Ali5(0))s, _ +<R(6). (78)

In conclusion, by (7.8), Lemma [2.7, and since Ts5(¢) = A(is(¢)), we deduce that the operator
L, in (6.23) has the form (7.1)-(7.2). Finally the operator HSﬁ’EJKog(go) is reversible and

momentum preserving, by (6.19), (6.20), Lemmata |3.23} [3.31] and the fact that J commutes
with 7. and anti-commutes with S. O

We remark that £ in (7.2) is obtained by linearizing the water waves Hamiltonian system

[2-13), ([.14) in the Wahlén variables defined in at the torus u = (n,¢) = Ts(p) defined
in (7.3) and changing 0; v~ w - 0,. This is equal to

L=w:0,—W HdX)WTs(p)W, (7.9)

where X is the water waves vector field on the right hand side of . The operator £ acts on
(a dense subspace) of the phase space L2 x L2,
In order to compute dX we use the ' shape derivative" formula, see e.g. [26],

G' (ALY := lim 2 (G(n + ey — G)y) = =G(n)(BA) — 0(V), (7.10)
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where

G T YT
By 0) = CEL

It turns out that (V, B) = (®,,®,) is the gradient of the generalized velocity potential defined
in (1.2), evaluated at the free surface y = n(x).

Using (7.9), (1.3), (7.10), (7.11), the operator L is

2,V +G(n)B ~G(n)
L=w-0 it -
Wl (g — Kk0ycdy + BV, + BG(n)B Vo, — BG(n)

, V(n,v) =Y — B(n,¥)n. - (7.11)

(7.12)
el ( —G(n)og? 0 )
2 \0;'G(n)B — BG(n)o;* — 307 'G(n)o;t —d;'G(n))
where N X
Vi=V—mn, cn):=01+n)"2, (7.13)

and the functions B := B(n,¢), V := V(n,9), ¢ := ¢(n) in (7.12)) are evaluated at the reversible
traveling wave (1, ) := WTs(p) where T5(p) is defined in ([7.3).

Remark 7.2. From now on we consider the operator £ in acting on (a dense subspace of)
the whole L?(T) x L*(T). In particular we extend the operator d,' to act on the whole L?(T)
as in . In Sections we are going to make several transformations, whose aim is to
conjugate L to a constant coefficients Fourier multiplier, up to a pseudodifferential operator of
order zero plus a remainder that satisfies tame estimates, both small in size, see Ly in (7.168).
Finally, in Section [7.7] we shall conjugate the restricted operator £,, in (7.1).

Notation. In (7.12) and hereafter any function a is identified with the corresponding mul-
tiplication operators h +— ah, and, where there is no parenthesis, composition of operators is
understood. For example, d,¢0, means: h — 0, (cd,h).

Lemma 7.3. The functions (n,¢) = Ts(p) and B,V , ¢ defined in (711), are quasi-periodic
traveling waves. The functions (n,¢) = Ts(y) are (even(p,z),0dd(p,z)), B is odd(yp,z), V
is even(p,z) and c is even(p,x). The Hamiltonian operator L is reversible and momentum
preserving.

Proof. The function (n,¢) = Ts(p) is a quasi-periodic traveling wave and, using also Lemmata
and [3.26] we deduce that B,V ¢ are quasi-periodic traveling waves. Since (1, ¢) = Ts(¢p) is

reversible, we have that (7, () is (even(y, z),odd (¢, z)). Therefore, using also (2.6), we deduce
that B is odd(p, z), V is even(p, z) and c is even(i, ). By Lemmata and the operator
L in evaluated at the reversible quasi-periodic traveling wave WTs(p) is reversible and
momentum preserving. O

For the sequel we will always assume the following ansatz (satisfied by the approximate
solutions obtained along the nonlinear Nash-Moser iteration of Section E[): for some constants

po = pio(T,v) >0, v e (0,1), (cfr. Lemma [6.2)

ko, ko,
1Tolleery » 135, < 1- (7.14)

In order to estimate the variation of the eigenvalues with respect to the approximate invariant
torus, we need also to estimate the variation with respect to the torus i(p) in another low norm
I lly, for all Sobolev indexes s; such that

s1+ 00 <8+ o, forsome og:=op(r,v)>0. (7.15)
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Thus, by (7.14), we have

k‘o,U
s1+oo ?

13505050, < 1.

H/JOH s1+00

The constants pg and og represent the loss of derivatives accumulated along the reduction pro-
cedure of the next sections. What is important is that they are independent of the Sobolev index
s. In the following sections we shall denote by ¢ := o(7,v, ko) > 0, on(qo) := on(qo, T, v, ko),
on = op(ko, 7, v) > 0, Nyr(a) constants (which possibly increase from lemma to lemma) rep-

resenting losses of derivatives along the finitely many steps of the reduction procedure.

Remark 7.4. In the next sections g := po(7, v, M, @) > 0 will depend also on indexes M, «, whose
maximal values will be fixed depending only on 7 and v (and k¢ which is however considered an
absolute constant along the paper). In particular M is fixed in , whereas the maximal value
of o depends on M, as explained in Remark

As a consequence of Moser composition Lemma and (6.4)), the Sobolev norm of the
function u = T5(yp) defined in (7.3)) satisfies for all s > s

ko,v ko,v ko,v ko,v
Jul ™ = Il + 1€ < eC () (1 + 30[ ) (7.16)
(the map A defined in (2.50) is smooth). Similarly, using (6.7,
[Arul,, <s; €lia —drlly, , where Ajgu:=u(iz) —u(i1).

We finally recall that Jg = Jo(w, ) is defined for all (w, k) € R x [k1, k2] and that the functions
B,V and c appearing in £ in (7.12) are C* in (¢, ), as u = (1,() = Ts(p) is.

7.1 Quasi-periodic reparametrization of time

We conjugate the operator £ in (7.12) by the change of variables induced by the quasi-periodic
reparametrization of time

d:=p+wplp) < p=9+wp), (7.17)

where p(p) is the real T"-periodic function defined in (7.87). Since n(y,x) is a quasi-periodic
traveling wave, even in (¢, z) (cfr. Lemma [7.3), it results that

ple—3) =plp), YseR, pisodd(y). (7.18)
Moreover, by (7.87), (3.11)), Lemma[3.2] (7.16) and (7.14) and Lemma 2.30 in [6], both p and

satisfy, for some o := o(7,v, ko) > 0, the tame estimates, for s > s,
[pl5e” + [Bl5Y s €07 (1 4+ |To[15%) - (7.19)

Remark 7.5. We perform as a first step the time reparametrization of £, with a function
p() which will be fixed only later in Step 4 of Section to avoid otherwise a technical difficulty
in the conjugation of the remainders obtained by the Egorov theorem in Step 1 of Section[7.3] We
need indeed to apply the Egorov Proposition 3.9 for conjugating the additional pseudodifferential

term in (7.12)) due to vorticity.
Denoting by

(Ph)(p,x) == h(p +wp(p),z),  (PTTh)(0,2) := h(J +wp(V), ) ,
the induced diffeomorphism of functions h(yp,z) € C2, we have

Plow-0, 0P = p(W)w-0y, p(9) i= P H(1+w-dpp). (7.20)
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Therefore, for any w € DC(v, 7), we get

1 1 %V +G(n)B ~G(n)
Lo=-P 'LP=w 0y + - ~ -
0i= PTULP =w O+ <g — kycdy + BV, + BG()B Vo, — BG(1)
+ ll _G(n)azzl 0
p2 \0;'G(n)B~BG(n)d, " - 30,'G(n)o, " —0,'G(n))

(7.21)

where V, B, ¢,V and G(n) are evaluated at (1, 1,) := P~ (n, ). For simplicity in the notation
we do not report in ((7.21) the explicit dependence on p, writing for example (cfr. (7.13))

3 3

c=1+P i) =P (1+n)) *. (7.22)
Lemma 7.6. The maps P, P~! are D*-(ko + 1)-tame, the maps P — Id and P~! — Id are
DFo (ko + 2)-tame, with tame constants satisfying, for some o := o(1,v,kg) > 0 and for any
sp<s< S,
Mper(s) S5 1+ [Tol8%0 s Mpes_1qls) < 20 (1+ ol 42) (7.2
The function p defined in (7.20) satisfies
piseven(d) and p(—73%)=p0), YseR. (7.24)

The operator Ly is Hamiltonian, reversible and momentum preserving.

Proof. Estimates (7.23)) follow by (7.19) and Lemma 2.30 in [6], writing (P — Id)h = pgé Prw-
0,h) dr, where (Ph)(p, x) := h(o+Twp(p), ). We deduce (7.24) by (7.18) and (7.20). Denoting
L = w-0,+A(p) the operator L in ([7.12), then the operator Lo in (7.21)) is Lo = w-0y+A4 () with
AL (9) = p L) AW + p(I)w). Tt follows that A, (p) is Hamiltonian, reversible and momentum
preserving as A(y) (Lemma [7.3). O

Remark 7.7. The map P is not reversibility and momentum preserving according to Definitions
respectively but maps (anti)-reversible, respectively traveling, waves, into (anti)-
reversible, respectively traveling, waves. Note that the multiplication operator for the function
p(V), which satisfies (7.24), is reversibility and momentum preserving according to Definitions
and .24

7.2 Linearized good unknown of Alinhac

We conjugate the linear operator Ly in (7.21), where we rename ¢ with ¢, by the multiplication
matrix operator

_(Id 0 -1 _(I1d 0
2= n) =15 1)
obtaining (in view of (3.46))
L1:=Z1L2
oo 0.V G\ _1v( Gmo,* 0 (7.25)
Y p\g+a—rkoyco, Vo, p2 %0;16?(17)0;1 0,'G(n)) "
where a is the function N
a:=VBy+p(w-0,B). (7.26)

The matrix Z amounts to introduce, as in [26] and [6, 2], a linearized version of the “good
unknown of Alinhac".
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Lemma 7.8. The maps Z*' — Id are D*o-tame with tame constants satisfying, for some o :=
o(t,v, ko) > 0, for all s = so,

mzil_ld(s) 5 M(gil_Id)*(S) SS 5(1 + Hjonmv) . (727)

s+o

The function a is a quasi-periodic traveling wave even(p,x). There is 0 := o(1,v, ko) > 0 such
that, for all s = sg,

ko, ~ ko, ko, ko, ko, ~ ko,
lal + VI + B Ss e (L4 Tols55) 11—l S €2 (14 [Tols5s) - (7.28)
Moreover, for any s1 as in (7.15)),
[Avzal,, + [A12V]s, + |Aw2Bll,, <5, €llin —i2l,, 40 > (7.29)
|Av2elly, o0 €?in —idally, 40 » (7.30)
|A12(Z=)Ass [A12(ZE)*hllsy <oy € llin =2l 40 10, - (7.31)

The operator L1 is Hamiltonian, reversible and momentum preserving.

Proof. The estimates ([7.28) follow by the expressions of a, V,B,c in (7.26), (7.11), (7.13),
(reparametrized by P! as in (7.22)), Lemmata and (7.23), (3.7), (3.33), (3.37) and (3.36).

The estimate (7.27)) follows by (3.37)), (3.22), (7.28) and since the adjoint Z* = (I(;i fi) The

estimates (7.29)-(7.31) follow similarly. Since B is a odd(p,x) quasi-periodic traveling wave,
then the operators Z* are reversibility and momentum preserving. O

7.3 Symmetrization and reduction of the highest order

The aim of this long section is to conjugate the Hamiltonian operator £ in to the Hamilto-
nian operator L5 in whose coefficient ms of the highest order is constant. This is achieved
in several steps. All the transformations of this section are symplectic.

Recalling the expansion of the Dirichlet-Neumann operator, we first write

1 —21G(0)o1! —G(0 1 V
£1=w-6¢+p< 3G (0)0; (0) >+<axv 0>+R17

—k0,c0p +9— (3)20,1G(0)0;1 —20,1G(0)) T p\ @ Vo,
(7.32)
where ) (o ) .
1 TRa(n)0y Ra(n )
Ry = —— b ° 7.33
S ((;) 05 Ra(moy! 305 "Ra(n) (7.33)

is a small remainder in OPS™%.
Step 1: We first conjugate £, with the symplectic change of variable (cfr. (3.42))

(Eu)(p,2) i= V1 + Ba(p,2) (Bu)(p,2),  (Bu)(p,z) i=ulp,z + B, @) (7.34)

induced by a family of p-dependent diffeomorphisms of the torus y = x + 5(p,x) , where 8(¢, x)
is a small function to be determined, see ([7.68). We denote the inverse diffeomorphism by
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z =1y + B(p,y). By direct computation we have that

ETW0,E = {BTH(V(1+62))}0, + 3{B V(1 + 5.)7'}, (7.35)

ETV0,VE={BH V(1L +8.))}0y + {B7HV, + 1V B (1 + B2) 7Y}, (7.36)

£ € = {B 'a}, (7.37)
gflazcazg =B '(1+8,) BB '0,BB BB '0,BB (1+8,)2B

= {B71(1+ B,)7} 0, {B (1 + B2))} 8, {B 11+ B.)7}, (7.38)

ET'w 0,8 =w 0, +{B7 (w-0,8)} 0y + 2{B7 ((w-0,8:)(1 + B2)"")}. (7.39)

Then we write the Dirichlet-Neumann operator G(0) in (1.7) as
G(0) = G(0,h) = 9, HT (n), (7.40)
where H is the Hilbert transform in (3.19) and

T(n) = tanh(h|D|) = Id + Op(ry) ?f h < +o0, (€)= —71%%2'5‘)((5) €S~ (7.41)
Id ifh=o00
We have the conjugation formula (see formula (7.42) in [2])
B'G(0)B={B'(1+8,)} G(0) + Ry, (7.42)

where
Ry = {B"'(1+B:)} 0, (H (B~'Op(rs)B—Op(rn)) + (B~'HB —H) (B~'T(h)B)) . (7.43)
The operator Ry is in OPS~* because both B~1Op(ry,) B—Op(ry) and B~'HB—H are in OPS~*

and there is ¢ > 0 such that, for any m € N, s > 59, and a € Ny,
k ko,
”B 1HB H” Onfs a ~m s,a,ko ||5”58r::1+a+a )
k ko,
”B 1Op(rh)6 Op(rh)” On;jb «a ~m s,a,ko HﬂHbOﬁ-'gz-&-a-&-o .
The first estimate is given in Lemmata 2.36 and 2.32 in [6], whereas the second one follows by

that fact that r, € S=% (see (7.41))), Lemma 2.18 in [2] and Lemmata 2.34 and 2.32 in [6].
Therefore by ([7.42)) we obtain

(7.44)

ETIG(0)E = {B711+B.) 2} G(0) {B71(1+B.)2} + Ry, (7.45)

where ) )
Ri:={B7'(1+8:) 2} Ri{B7'(1 + B,)7}. (7.46)
Next we transform G(0)0;'. By (7.40) and using the identities Hd,0;! = H and HT(h) =
G(0)d, " on the periodic functions, we have that
£1G(0)0; 1€ = £ 10, HT(0)0; '€ = G(0)0, " + Ra, (7.47)

where

= {B7Y(1+ B,) F}HT(h), (B 11+ 8.)%} — 1]+ {B 11 +B.) %}o

) 7.48
o ((8_17-[5 —H)(B~'T(n)B) + H(B‘lop(rh)B — Op(m))) {B7Y(1 + B,)2}. (7.48)
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The operator Ry is in OPS~% by (7.44), (7.41) and because the commutator of # with any
smooth function a is in OPS~*, in partlcular (see Lemma 2.35 of [6]) there is o > 0 such that,
for any me N, s > sg, and a € No,

ko, ko,v
IIHT (), all ™0 Smsiako lallsSmrato - (7.49)
Finally we conjugate d;'G(0)d;*. By the Egorov Proposition we have that, for any N € N,

elote = {B7(

1 W
1+Bx)}a + P9 (¢, D) + Ry, (7.50)

where P£12)7N(<p7m, D)e OPS~2is

P8 w2, D) i= (B (1+ B) " {[p-10 " BT (1 + B)F] + Zp 10 BT (U 8 1

with functions p_1_;(A\;p,y), j = 0,..., N, satisfying (3.30) and Ry is a regularizing operator
satisfying the estimate (3.31). So, using (7.50) and (7.47)), we obtain

£710,1G(0)0, 1€ = (£710,1€) (£71G(0)0,1€) = 0,1 G(0)0, ' + Py +Ray,  (7.51)

where
1 Ba _ _
PR = (— {B 1(1 wr)}a + PY v (oom, D))G( )o; ! e OPS™! (7.52)
and Rp n is the regularizing operator
o (e—=1p—1 -1
Ro.v = (g 6w g)Rg + RNG(O)ay . (753)
The smoothing order N € N will be chosen in Section 8| during the KAM iteration (see also
Remark [7.11)).
In conclusion, by (7.35)-(7.39), (7.45)), (7.47) and ([7.51) we obtain
1 -1G(0)0,! —a2G(0)asg
Lo:=EL1E=w-0,+- 2 Y
? 16wl <—mgayagaya2 +9-(2)% 0,1 G(0)d;" —gay—lc:(o)> _
1 ala +a4 0 o '
+= +RY + Ty,
P <a5 - (2) (21)N a10y + ab’) ? o
where
ar(,y) 1= 1((1 +B)V + (- 9,6)) (7.55)
az ( ) =B Vit ), as(p,y) == B (c(1+ B2)) . (7.56)
_ -1 (w-0pB2) | & -1
ay =B~ ( 1 A + Vz) , as(p,y) =B "a, (7.57)
_ -1 ®
as(p,y) == B ( 2(1 A ) : (7.58)
the operator P )N € OPS™! is defined in (7.52) and
1 /IRy, R , L/\2/ 0 0
v._ L[z 1 1 (T
RY p( A gR2)+5 RiE, Ton: p(2) fox 0) (7.59)

with Ry, Ry, Ro, v defined in (7.46), (7.48), (7-53) and R, in (7.33).
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Step 2: We now conjugate the operator £ in ([7.54) with the multiplication matrix operator

_{a O . (ct o
Q'_<O Q‘l)’ < '_<0 Q>’

where ¢(¢, y) is a real function, close to 1, to be determined. The maps Q and Q! are symplectic
(cfr. (3.42)). We have that

B 1/A B _
L3:=Q 1£2Q=w-0¢+p<c D) + QM RY + T2n)Q, (7.60)
where
A= g (= 3600, + a1y +a)g+pg (w-0,4), (7.61)
B = —q 'asG(0)azq ", (7.62)
C:= q( — Kag0yasz0yas + g — (%)2 6y_1G(O)0y_1 +as — (%)2 szl),N)q, (7.63)
D := q( - %ay_lG(O) + a0y + ae)q_l —pg H(w- 00q) - (7.64)

We choose the function ¢ so that the coefficients of the highest order terms of the off-diagonal

operators B and C satisfy

a3 = ¢*aas = ms(p). (7.65)

with mz (o) independent of . This is achieved choosing
1\ 4
= — 7.66
0= () (7.66)

and, recalling (7.56)), the function § so that

(1+ Bal,2)) (e, 2) = m(p), (7.67)
with m(¢p) independent of z (the function c is defined in (7.22)). The solution of (7.67) is
_ (L1 -1/3 -3 a1 () /3 _
me) = (52 [ e a) " s = ((155) 1) e

In such a way, by (7.56), we obtain (7.65) with mz (¢) := +/m(y). By (7.68) and (7.22) we have

_3
2

ms () = P*l(% L \/de) . (7.69)

Note that, since by (7.65) the function ¢~ las is independent of x, we have
B = —qtayG(0)asq™! = —¢%a3G(0) . (7.70)
Moreover we have the expansion
_ 2.2 A2 2 2
qaz0,a30,a2q = q~a3a30, + (q%a3a3)y0y + qaz(az(qaz)y)y

7.71)
7.65) (
Fe mg(@)af, +ar, az = qaz(az(qaz)y)y -
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In conclusion, the operator L3 in (7.60) is, in view of (7.61)-(7.64) and (7.70), (7.71)),

L0120 oyl —-3G(0)o;* —ms (9)G(0)
= =w- - 2
s 2 T \my(e) (=re2 49— ()70, GO)5;1)  =30;G(0) .
1 a10y + ag 0 \I/
- R T
" p <a9 + P£31),N a0y + CL10> T Hs LN,
where
ag = alq_lqy +pq Hw- 0pq) +as, ag:= asq® + g(q® — m%) — Kkar , (7.73)
a19 = —a1q gy — pq (W pq) + ac (7.74)
2 _ _ _
P® =~ (3) (qPE?,Nq +(¢% = m3)G(0)3;% + q[G(0)0; %, ¢ — 1]) eOPS~!,  (7.75)
and RY, T3 v are the smoothing remainders
1 (—=2¢ ' [HT(h),q — 1] 0 ) _ .
RY .= - 21 : _ +Q 'RYQeOPS™, (776
5 ( 0 —34[HT(n),q~" — 1] ¢ R0 (7.76)
Tsny =0 'Ton0. (7.77)

Step 3: We now conjugate L3 in (7.72), where we rename the space variable y by z, by the
symplectic transformation (cfr. (3.42]

"’._ A 0 -1 L A_l 0
fe (30w (80), 79

where A € OPS~1 is the Fourier multiplier

~—

A= Lmo+ M(D), withinverse A~ :i=\/gm + M(D) ' e OPS, (7.79)

with 7y defined in (3.21) and M (D) in (2.21). We have the identity
A=k +g—(2)%07'C(0)a; A = AT G(0)A™! + 1 = w(k, D) + 7, (7.80)

where w(k, D) is defined in (2.23). In (7.79) and (7.80) we mean that the symbols of M (D), M (D) ™!
and w(k, D) are extended to 0 at j = 0, multiplying them by the cut-off function x defined in
(3.10). Thus we obtain

comsiesi- (0 G5 )
1 (018, + P0(41) 0 (7.81)
( PUY a0, Po(44)) T
where
P = A"'[a10,, A] + A agA € OPSO 7.82
Pf‘?N = Aagh + APY) (A e OPS~= (7.83)
B = Aa1d,, A7) + AagoA~" € OPS°, (7.89)
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and R}, Ty y are the smoothing remainders

0 0\ ~ ~ ;
v, —1lpv —C
RY = <(p1mg ) 0) + M 'RYM e OPS ™,

(7.85)

2
Tyn = M'T =T .
an = MTTanM=—p (AqRQ,NqA 0)

Step 4: We finally move in complex coordinates, conjugating the operator £, in via
the transformation C defined in . We use the transformation formula . We choose
the function p(p) in in order to obtain a constant coefficient at the highest order. More
precisely we choose the periodic function p(p) such that

= ms (7.86)

2

3
1 -2
" G Pl((zw Jo v/ T+ . )iz )
p 14w-0dyp

is a real constant independent of . Thus, recalling (3.9), we define the periodic function

o) = (w20t (o (o [ VIFEemias) - 1) (7.587)

and the real constant

_3
2

mg = ﬁﬁr (% L de) dy. (7.88)

Note that (7.86) holds for w € DC(v, 7). Moreover, by Lemmata and (7.16), p satisfies
(7.19) and it is odd in ¢. Let

s —1 0 O _ 1 ™0 ™o
HO = —iC (’ﬂ'o 0) C = 2 \—m —mo .

Lemma 7.9. Let N € N, qg € Ng. For all w € DC(v, 7), we have that

Ls = (EQMC) ™' L1 (£QMC)

(7.89)
=wd, +imsQ(r, D) + A1y +illy + ROY + RO 415y,

where:

1. The operators EX' are D¥o-(ko + 1)-tame, the operators Xt —1d, (X1 — 1d)* are Dko-
(ko + 2)-tame and the operators Q*', Q! —1d, (Qt! — Id)* are D*-tame with tame
constants satisfying, for some o := o(7,v, ko) > 0 and for all so < s <85,

Mes1(s) S5 1+ [JolELy,  Masi(s) <1+ |TolEy, (7.90)
Mes1_1a(s) + Mexr 1q¢(5) Ss &7 (1+[Toli22) (7.91)
Mos1_1a(s) + Mger_ayx(s) S5 €2 (1+ [To[$55); (7.92)

2. the constant ms € R defined in (7.88) satisfies [ms — 1kov < e2;
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3. Q(k, D) is the Fourier multiplier (see (2.25), (2.26))

Q(x, D) = (Q(“O’D) m(i,p))’ (s, D) = (s, D) +120,'G(0);  (799)

(d)

a 0

A =["1 , 7.94
! ( 0 agd)> ( )

for a real function agd)(cp, x) which is a quasi-periodic traveling wave, even(p, x), satisfying,
for some o := o(ko,T,v) > 0 and for all s = so,

4. the matriz of functions A, is

ol b Sq e (1 + [30]553) (7.95)
5. Réo’d) and Réo’o) are pseudodifferential operators in OPS® of the form
(d) (0)
0,d rs (¢, , D) 0 0,0 0 rs (@, z, D)
R = (75 0 @, ) R = 5 , (7.96)
Ts ((107$7D) Ts ((p7$7D) 0

reversibility and momentum preserving, satisfying, for some oy := o(r,v, N) > 0, for all
s = sg, a € Ny,

0,d) ko, (0,0) ko, ko, )
IR fow 4+ IR0, <onva (L + [Tol552, 100) s (7.97)

6. For any q € N§ with |q] < qo, n1,n2 € Ng with ny + no < N — (ko + qo) + 3, the
operator (DY 03 T5 n(p){D)Y"? is DFo-tame with a tame constant satisfying, for some
on(qo) := on(qo, ko, 7,v) > 0 and for any sg < s < 5,

DM Dym1 28T (o)(DY2 (5) S8,N,q0 (1 + Hjolei’aN qo)) ; (7.98)

7. Moreover, for any s1 as in , a € Ny, q € N§, with |q] < qo, and ny,ny € Ny, with
ni+ny <N —qo+3,

| At (A)hlls, So, € i =izl pg Bl 4y A€ {EFL (EFD*, Q1 = (QF)*},  (7.99)

18120\ 0, S, ellis —inllyy 1y + |A12mg] € €2 i — a4 (7.100)
d o . .

1815RE 0,610+ [A12RE 0,610 Sorma € i1 =2, 4y 20 (7.101)

H<D>nl 63T5,N(¢) <D>n2 HE(HSI) Ssl,N,qg £ ||7/1 - i2H31+0'N (qo) . (7102)

The real operator Ls is Hamiltonian, reversible and momentum preserving.

Proof. By the expression of £4 in (7.81), using (3.15), and (7.86)), we obtain that L5 has the
form (7.89). The functions § and ¢, defined respectively in (7.68)) and (7.66) with a3 defined in

(7.56) , satisfy, by Lemmata and (7.28)), for some o := o(ko, 7,v) > 0 and for all s > s,
HﬁHf”’” Ss U+ [T0152) s gt =150 S (1 + [Tol55) - (7.103)

The estimates (7.90)-(7.92) follow by Lemmata [3.12] .13} 3.8] (7.103) and writing

1

(B—1d)h = BB, [h.], B.[h](p) = f B, + (i, 2)) dr, (7.104)
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B*h(p,y) = (1 + Ble,y)h(p,y + B, y)), and similar expressions for B~! —Id, (B~!)*. The
estimate for ms follows by (7.88), Lemmaand (7.16)). The real function agd) in (7.94) is

d _
af(p,2) = plo) tar(p. ).
where p and a; are defined respectively in and ( - Recalling Lemmata [7.3] E and [7.6 -
(d) -

the function a; ’ is a quasi-periodic travehng wave, even in (p,x). Moreover, ) follows by

Lemma [3.2] and (7.16), (7.19), (7.28), (7.103). By direct computations, we have

1
W, D)= o (A + B +iPY) 4 (omy — 16002 |
1p (7.105)
a1 44) | . (43
D) L (R R i)
where P{* £4f)N, P are defined in (7-82), (7-83), (7-84) and pms = my (p) with m% @) de-
ﬁned in ( cfr ) Therefore, the estimate (7.97) follows by (7.73) (] 71 , (7-56)),
, D 52), (7.79), (2.21), applying Lem ata [3.5] - Propos1t10n 3.9)
7 16)), (7. 7.28)), (7.103]). (7.98)

and estlrnates The estimate where

Tsn:=C '(RY + Tyn)C,

follows by (7.85), (7.77), (7.76), (7.59), (7.53), (7.50), (7.48), (7.46), (7.43), Lemmata [3.12]
m estlmates (7.44), (7.49), Prop051t10n and (7.90), (7.103)), Lemma and Lemmata
2.34, 2.32 in [6]. The estimates (7.99), (7.100), (7.101)), (7.102) are proved in the same fashion.

Since the transformations £, Q, M are symplectic, the operator £4 is Hamiltonian. Hence the

operator L5 obtained conjugating with C is Hamiltonian according to (3.41). By Lemma|[7.3] the
functions 3(p, x) and ¢(¢, x), defined in (7.68)), (7.66) (with as defined in (7.56))), are both quasi-

periodic traveling waves, respectively odd(y, z) and even(p,x). Therefore, the transformations

&€ and Q are momentum and reversibility preserving. Moreover, also M and C are momentum
and reversibility preserving (writing the involution in complex variables as in (2.29)). Hence,
since £; is momentum preserving and reversible (Lemma , the operator L5 is momentum
preserving and reversible as well, in particular the operators Rgo’d) and Réo’o) in (e.g.
check the definition in , see also Remark . O

7.4 Symmetrization up to smoothing remainders

The goal of this section is to transform the operator L in into the operator Lg in ([7.108))
which is block diagonal up to a regularizing remainder. From this step we do not preserve any
further the Hamiltonian structure, but only the reversible and momentum preserving one (it is
now sufficient for proving Theorem [5.2)).

Lemma 7.10. Fiz M, N € N, qp € Ng. There exist real, reversibility and momentum preserving
operator matrices {X,,}M_, of the form

X ( 0 xm(%wyD)>
" Xm(p;x, D) 0 ’

such that, conjugating the operator Ly in (7.89) via the map

Xm(p,2,6) € §727™, (7.106)

By =Ko 0eXM (7.107)
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we obtain the real, reversible and momentum preserving operator

£6 = ﬁéM) = (I)]T/[l £5 (PM

B (7.108)
= w0, +imQ(k, D) + Ard, +illy + R + REM + T v,
with a block-diagonal operator
(d)
0,d 0,d re (¢, 2, D) 0
ROV .- RO = (7 0 Veors,
O T6 (‘pv xZ, D)
and a smoothing off diagonal remainder
(o)
—M,o —M,0 0 2, D _
RV =R = (() o (0 )> e OPS M (7.109)
T6 (QD,.’B,D) 0

both reversibility and momentum preserving, which satisfy for all « € Ny, for some on =
on(ko,7,v,N) >0, Xps(a) > 0, for all s = s,

0,d) ko, —M, ko, ~ ko,
IRE D6, + RGN0 Senrnva (113057 o) - (7.110)

For any q € N§ with |q] < o, n1,n2 € Ng with ny +ny < N — (ko + qo) + %, the opera-

tor (DY 03T n(0){DY"? is DFo-tame with a tame constant satisfying, for some on(qo) :=
on(ko,T,v,q0), for any so < s < S,

M Dy 2 T x (DY () S50, V.00 €1+ 1T0l00 (o) amns (@) (7.111)

The conjugation map Py in (7.107) satisfies, for all s > s,

ko,v + * ko0 ~ 11ko,v
1@57 —1d]o% + 1 (237 — 1) 0% Searw (14 1T0[5%0 4 0) - (7.112)

Furthermore, for any s1 as in (7.15), o € No, q € Ny, with |q| < qo, and ny,ny € Ny, with
n1 + ng SN—qO—i-%, we have
d -M, .
JALRE V0,00 + 18R o da Sooave £ lit = i2ly, consnnge » (7-113)

I<DY™ 03 A12T6,n {DY™ | 2(mrer)y Ss1,M,N,00 € i1 = 82]l5, 4oy (go) 801 (0) - (7.114)
[212® 57 0,510 + [ A12(R3)*|

0,51,0 Ss1,M,N € i1 — 2], o 1w 0) - (7.115)

Proof. The proof is inductive on the index M. The operator Eéo) := Ly satisfy (7.110))-(7.111)
with Ro(a) := 2a, by Lemma Suppose we have done already M steps obtaining an operator

£éM) asin (|7.108]) with a remainder <I>]\_/[1T57N<I'M, instead of T . We now show how to perform
the (M + 1)-th step. Define the symbol

Xar1(9,2,€) 1= = (2imsw(s, €) N (0.2, Ox(€) e STEM (7.116)

where x is the cut-off function defined in (3.10) and w(k, £) is the symbol (cfr. (2.23))

, X(§)[€] tanh(h[¢]), b < +o0
)esé’ G(0:€) := 4 x(9)IEl, h =+

5.

w(k,§) = \/G(O;é) (HSQ +g+ TG(SQ; o
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Note that xas41 in (7.116) is well defined because w(k, £) is positive on the support of x(£). We
conjugate the operator £6M) in 1|7.108' by the flow generated by X1 of the form (7.106) with
Xar41(p, z,€) defined in (7.116). By (7.110) and Lemma 2 for any s > sg and o € Ny,

ko,v

ko,v
Xaral ™ e Sette 204 13010 ) (7.117)

Therefore, by Lemmata [3.7, 3.5 and the induction assumption (7.112) for ®,,, the conjugation
map ®yr4q 1= PpeXM+1 is well defined and satisfies estimate 7.112) with M + 1. By the Lie

expansion (3.16]) we have

LMY = e X g Xarn = - 0, + imy Q(k, D) + Ay, +iTly + RY5) (7.118)

— [XM+1,im§Q(I€,D)] +Ré’ ) +‘I’M+1T5,N(I)M+l

1
J’ e_"XMJrl XM+1,w Oy +A [7’ -i—11'[0—i-R((3 M)] XM dr (7.119)

0

1
f e~ [Xog i, R [ e ar (7.120)

0
+f (1— r)e X1 [XM+1, [XM_H,im%Q(n, D)H emXu+ dr | (7.121)

0

In view of (7.106), (7.93) and (7.109), we have that

. o 0 Z
_[XMJrl;lméQ(K/,D)] +R( o) — M = ZMt1s,
2 ZM+1 0

where, denoting for brevity xar+1 := xar+1(p, 2, £), it results
Zm+1 =img (Op(Xa+1)w(k, D) + w(k, D)OP(Xar+1))

+m3 3 [xar41, 05 G(0)] + Op(rih,) - (7.122)

By (3.23), Lemmaand since xar4+1(p, x, &) € §—3-M by (7.116)), we have that
Op(xm+1)w(r, D) 4+ w(k, D)Op(xar41) = Op(2w(r, )xnr41(: 2, €)) + Tarsa,
where rj/4q is in OPS~™~1. By (7.116) and (7.122)
Zym+1 =msTari +m3 L [xm+1,0;"G(0)] + Op(ré?])w(l —x(§)) eoPs—M-1,

The remaining pseudodifferential operators in ) have order OPS—M =% Therefore
the operator £ in (7.118) has the form (i at M + 1 with

R+ RGNV = RO + Zog + (T119) + (T120) + (7121) (7.123)

and a remainder ]T/}+1T5 N®Pyi1- By Lemmata p the induction assumption (7.110)),
M+1),

m, -, we conclude that RéOMH and R, 6M+1 satisfy (7.110) at order M + 1 for
suitable constants Njsy1 () > Ny (a ) Moreover the operator tI>M+1T5 N(I)M-H satisfies ([7.112))

(with M + 1) by Lemmata [3.12] [3.13| and estimates (7.98), (7.112)). Estimates (7.113)), (7.114),
(7.115)) follow similarly. By 7.116, 3.43), Lemmata [3.19] [3.29] and the induction assumption
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that Ré;\y ) is reversible and momentum preserving, we conclude that X ;41 is reversibility

iXM+1_

. . . . M) . .
and momentum preserving, and so are e By the induction assumption L’é ) is reversible

. M+1) . . . .
and momentum preserving, and so Lg ) is reversible and momentum preserving as well, in

particular the terms Rg’)}\%ﬂ + Réjﬂ(/lﬂifl)’o) in ((7.123]). O

Remark 7.11. The number of regularizing iterations M € N will be fixed by the KAM reduction
scheme in Section [8] see (8.5). Note that it is independent of the Sobolev index s.

So far the operator Lg of Lemmal[7.10|depends on two indexes M, N which provide respectively
the order of the regularizing off-diagonal remainder Ré_M’O) and of the smoothing tame operator
T, v. From now on we fix

N=M. (7.124)

7.5 Reduction of the order 1

The goal of this section is to transform the operator Lg in (7.108), with N = M (cfr. (7.124))),
into the operator Lg in (|7.146)) whose coefficient in front of 0, is a constant. We first eliminate
the xz-dependence and then the p-dependence.

Space reduction. First we rewrite the operator Lg in (7.108)), with N = M, as

P 0 . —M,o
Lo=w-0,+ (06 Pﬁ) il + RT™M + Tgar,
having denoted
Ps := Ps(ip,x, D) := m3 Q(x, D) + o\ (p,2)0, + 1" (p,, D). (7.125)

We conjugate L through the real operator

D(p) 0 )
] = — 7.126
() ( 0 B(p) ( )
where ®(p) := ®7(¢p)|,=1 is the time 1-flow of the PDE

0- 7 () = 1A(9)27(¢) , _ s
{@0(@) — I, A(p) := b, )| D|?, (7.127)

and b(p,x) is a real, smooth, odd (¢, ), periodic function chosen later, see (7.133)), (7.135)),

(7.141). Usual energy estimates imply that the flow ®7(¢) of (7.127) is a bounded operator is
1B1+15]

H3. The operator 0’;65@ loses |D| 2 derivatives, which are compensated by (D) ™! on the left

hand side and (D)™™ on the right hand side, with my, ms € R satisfying m, +ms = 3 (|8] + |k|),

according to the tame estimates in the Sobolev spaces H¢ , of Proposition 2.37 in [2]. Moreover,

since b(p,z) is odd(y, z), then b(y, x)|D|2 is reversibility preserving as well as ®(¢). Finally,
note that ®my = my = ®~'mg, which implies

& I® =11,®. (7.128)
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By the Lie expansion ([3.16)) we have

1 2M +2 —j)n
O 1Ps® = Py —i[A, Ps] — [A[A Po]l + >, ——adl ) (Ps) + T,
n=3 ' 7.129
(_1)2M+3 ! 2M+2 2M+3 ( )
Ty = mfo (1 = 7)1 7 (p) ady ()" (Ps) @7 (p)dT,
and, by ,
2M 41 )"
Pl ow- 9,00 =w- 0, +i(w-0,A)(¢) — D, fadg@;)(w 0,A(p)) + Thy
e gl n=2 (7.130)
—1 — T
Tis =~y ), (1= 707 () il - 2, Al0) 87 ()

Note that ad’;, +)3(P6) and ad%\; §1(w 0 A( )) are in OPS™ . The number M will be fixed in

(B-5). Note also that in the expansions (7.129), (7.130) the operators have decreasing order and
size. The terms of order 1 come from 1) in partlcular from Ps —i[A, Ps]. Recalling (7.125)),

that A(y) := b(p,z)|D|z, and that (cfr. (£1)), (£3))
Ok, €) = VRIEIEX(E) +10(5,6) . ro(r,€) € S°, (7.131)

(the cut-off function x is defined in (3.10)) we deduce that
[A, P5] = i3\/img byds + (3(ai”)ub — al?b,)|DI% + Op(ru0),, (7.132)

where 7,0 € S° is small with b. As a consequence, the first order term of Ps — i[A, Pg] is
(agd) +3 \/Em% bs) 0y and we choose b(p, x) so that it is independent of z: we look for a solution

b, z) = bi(p, @) + ba(¢p) (7.133)
of the equation
1
0 (e, 2) + my Vi ba(e,2) = @™, (0), @), (9) = o j oD z)de.  (7.134)
Therefore . .
bi(p,2) = =52 07 (0l (¢, ) = (ai?), () - (7.135)

We now determine by(¢) by imposing a condition at the order 1/2. We deduce by (7.129)), (7.130),
(7125), (7.132)-(7-134), that

Ly = @7 (p) (w+ dy + Po) B(p) =w - 0 +imyQ(s, D) +<ai”, () 0

. . (7.136)
+ial?DE + Op(ri™) + Tos + Ty,

(d)

where a3 ' (o, x) is the real function
af? = = L(a{)aby + ai? (b1)s + \/Ems ((b1)2 - <b1>mbl) + (@ 0b1)

(7.137)
- (%(agd))x + §\/Em% (bl)zz)bZ + (W : a¢b2)
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and

. 1
Op(r{) :=0p(=iryo + 7y, _y +7") = 5[b|D|  (3(ay")sb = ai"b,)| DI + Op(r1,0)]

i

(7.138)

3 ’I’L

M-
Z adA(sa (Ps) =

(w-0,A(p)) € OPSY,

A(sa

where r, 1 € S~z is small in b. In view of Section we now determine the function by (p) so

that the space average of the function aéd) in ([7.137) is independent of ¢, i.e.

<agd)>3,(<p) =m eR, VpeT”. (7.139)

Noting that the space average <(%(a§d))x + gmgv/R(b1)ex) ba(p) ), = 0 and that {w- 6¢b1>4p .
we get

my = (~1(a\P)2by + d\P (by). + Z\/Em% ((b1)2 — %(bl)mbl»%m, (7.140)
ba(p) = —(w - ) (( = 3 (al?)abr +af? (b1)+
+ % %\f((bl) ;(bl)szl) + (w . 6¢b1)>w — m%) . (7.141)

Note that (7.139) holds for any w € DC(v, 7).

Time reduction. In order to remove the p-dependence of the coefficient <a§d)>z (¢) of the first
order term of the operator L7 in ([7.136|), we conjugate L; with the map

(Vu)((p’ :L') = u(‘ﬁv T+ 9(90))7’ (7142)

where o(y) is a real periodic function to be chosen, see (7.145)). Note that V is a particular case
of the transformation £ in (7.34) for a function (¢, z) = o(¢), independent of z. We have that

w- 0p)V =w- 0y + (w+0,0)0,,

whereas the Fourier multipliers are left unchanged and a pseudodifferential operator of symbol
a(p, z,€) transforms as

V™'0p(a(p, z,€))V = Op(a(p, z — 0(¢),€)) - (7.143)
We choose g(¢) such that
¥ @ = = (al” R 7.144
w %Q(SD) + <a’1 >z (SD) mp, my : <a’1 ><p,w € ’ ( : )
(where agd) is fixed in Lemma, namely we define
o(9) 1= (- 9)5d (i), —m1). (7.145)

Note that (7.144) holds for any w € DC(v, 7).
We sum up these two transformations into the following lemma.
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Lemma 7.12. Let M € N, qp € Ng. Let b(p,z) = bi(p, x) + ba(@) and o(p) be the functions de-

fined respectively in (7.135), (7.141), (7.145). Then, conjugating L¢ in (7.108) via the invertible,
real, reversibility preserving and momentum preserving maps ®,V defined in (7.126)-(7.127) and
(7.142), we obtain, for any w € DC(v, T), the real, reversible and momentum preserving operator

Lg:=V & 1 LDV

7.146
= w0, +imyQ(r, D) +mi0; +iAL|D[F +illy + ROY + T, (7.146)

where:
1. the real constant m; defined in (7.144) satisfies |mi|Fov < ¢e;

2. Agd) is a diagonal matriz of multiplication

AD . a0
3 0 aéd) ’
()

for a real function ay’ which is a quasi-periodic traveling wave, even(y, x), satisfying
a§"y, (p) =mi R, Vpel”, (7.147)

where mi € R is the constant in (7.140), and for some o = o(7,v, ko) > 0, for all s = s,
las” 15 <. cv™ (1 + [30855) (7.148)

3. Réo’d) is a block-diagonal operator

(d)
©a (s (p,7,D) 0 0
ROY = . | €OPs?,
TS (‘pwan)

that satisfies for all a € Ny, for some op(@) := op(ko, 7,v,a) > 0 and for all s > sy,

IR D60, Saoara c0™ (14130598 (o) 5 (7.149)

0,5, s+onm(a

4. For any q € Ny with |q| < qo, n1,n2 € No with ny + no < M — 2(ko + qo) + g, the
operator (DY 03 Ts ar(p){D)Y"? is D*o-tame with a tame constant satisfying, for some
UM(qO) = UM(kO7Ta v, CIO)7 fOT' any so <s< Sa

DM Dym1 23T s (0)(Dym2 (8) S8.M.q0 €07 (14 [|T0 ||I:3r’[,M () (7.150)

5. The operators ®*' —1d, (®*! —1d)* are D*0-1 (ko + 1)-tame and the operators V*' —1d,
(V*! —1d)* are D*o-(ko + 2)-tame, with tame constants satisfying, for some o > 0 and for
all sp < s< S,

M s1_14(5) + M(p1_ays (s) €5 20~ (1 + [T 522) | (7.151)
Mys1_ra(s) + Mys1_1a)e(5) S5 v (1+ [To[53). (7.152)
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Furthermore, for any s1 as in , a € Ng, q € N, with |q] < qo, and ni,ns € Ny, with
ny + ng SM—qu-i-%, we have

[A12a§" s, oy e i —ally, 4o 5 [Aromi] S ellit =2l 4y - (7.153)
1A12RE o010 Sorara 207 i = i2llg, 4o o) - (7.154)
1<DY™ 03 A12Ts ar <DY™ | £arony Ssv,mao €07 i1 = i2llg, 4ons (qo) - (7.155)

”A12(~A)hHs1 $s1 5071 Hll - Z‘2”514,_(-: ||hH81+o' ) Ae {q)ilv ((I)il)*a Vilz (Vil)*} . (7156)

Proof. The function b(¢,z) = by (p, ) + ba(p), with by and by, defined in (7.135) and (7.141)
and the function o(p) in (7.145)), satisfy, by Lemma and ([7.95),

Ko, : : - ko,
[Bal <o e+ 130l%5) 5 Iole, b2l Jel& ™ <5 ev™ (1 + [3ofls%s) (7.157)

for some o > 0 and for all s > s5. The estimate |m;|*¥ < ¢ follows by (7.144) and (7.95). The
function J } 4
oy (¢, ) := v*wé ) =l (e, 2~ ole)).

where aéd) is defined in ([7.137), satisﬁes 7.147) by (7.139). Moreover, the estimate ((7.148))
follows by Lemma [3.8) and (7.93)), (7.157 The estimate (7.149) for (cfr. (7.143))

r (g, 2,D) := V" (0,2, D)V = vl (p, 2 — 0(), D)

with ng) defined in ([7.138)), follows by Lemmata and (7.157), (7.110). The smoothing
term T'g pr in (|7.146) is, using also (7.128),

—y-1(p-1 : 1R (~M.0) (T + Ty 0
Tsa =V (@ "Tou® +illy(® —1d) + & 'Ry )V +V ( 0 Tor +T0, %

with Ty and T}, defined in (7.129)), (7.130)). The estimate (7.150) follows by (i Lemmata
3.12, [3.13] the tame estimates of ® in Proposition 2.37 in m, and estimates (7.95), (7.157),
7.151), (7.111)), noting that operators of the form 0503 V*! lose |k| +|q| derivatives. The estlmate

7.151) follows by Lemma 2.38 in [2] and (7.157), whereas ) follows by the equivalent
representation for V as in (7.104), Lemma and (7.157). The estimates (7.153), (7.154),

(7.155)), (7.156)) are proved in the same fashion. By Lemma (@) ;

7.9, the function a7’ is an even(go, x)
quasi-periodic traveling wave, hence the function b, in (7.135)) is a odd(p,z) quasi-periodic
traveling wave, the function by in (7.141) is odd in ¢ and satisfies ba(¢ — J5) = ba(¢p) for all
¢ € R, whereas the function g in (7.145) is odd in ¢ and satisfies o(¢ — 55) = o(¢p) for all ¢ € R.
By Lemmata [3.19] [3.29] and [3.25] the transformations @ and V are reversibility and momentum
preserving. Then the operator Lg is reversible and momentum preserving. The function agd) is
an even(y, x) quasi-periodic traveling wave. O

7.6 Reduction of the order 1/2

The goal of this section is to transform the operator Lg in into the operator Lg in
whose coefficient in front of |D|'/? is a constant. We eliminate the z-dependence and, in view of
the property (7.147)), we obtain that this transformation removes also the ¢-dependence.

We first write the operator Lg in as

P 0

Eg=bd'6¢+<0 Pg)‘f‘iHO"f‘TS,Ma
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where .
Py := im3 (s, D) +md, +iaf” | D] + Op(r{”) . (7.158)

We conjugate Lg through the real operator

_ (¥ 0
U(p) = < 0 W(w)) , (7.159)

where U (y) := U7 (¢)|,=1 is the time-1 flow of

{aT\I'T(go:) = B(p)¥7 (), B(p) := bs(g, 2)H | (7.160)

WO(p) =1d,

the function b3(¢,x) is a smooth, real, periodic function to be chosen later (see (7.165)) and H
is the Hilbert transform defined in (3.19). Note that Uy = 7y = ¥~ 17, so that

U, W = I1,0 . (7.161)

By the Lie expansion in (3.16]) we have

) M+1 (_1)71
U RV =P — B, Bs] + Z_: Tad%(w(&) +Lu,
) n=2 (7162)
ma = S [ ) el ) w7
(M+1)' o B(p) ’

and, by (3.17),

M
- )" -
v 1ow-@wo\Il:w-@p—l-(w-é’kpB((p))— Z 7( n!) adB(;)(w-awB(cp))+L;\4,

n=2 (7.163)

_)M
Ly = % L (1 =7)MU 7 () adjsi,)(w - 9, B(9)) U7 (p)dr.

The number M will be fixed in (8.5). The contributions at order 1/2 come from (7.162), in
particular from Pg — [B, Ps] (recall (7.158)). Since B = bsH (see (7.160)), by (3.26) and (7.131)

we have

Ps —[B, Ps] = insQ(k, D) +m0, +1 (af” — Sma/m(bs).) |D|? (7.164)

+0p(r” + 7y, 1) — [B,mi 0, + 10§ |DI* + Op(r{)],

where OP(Tb&f%) € OPS™2 is small with bs. Recalling that, by (7.147]), the space average

<aéd)>m (¢) =my for all p € T”, we choose the function bz (¢, ) such that aéd) —%m%\/ﬁ(bg)m =my,
namely

— d d d
ba(p,7) = 5207 (a5 (0, 2) = a§™), (), <af™), (p) =my (7.165)
We deduce by (7162)-(7163) and (7-164), (7163) that
Lo := U ) (w- 0y + Ps)¥(p)
(7.166)

=w- 0y +imgQ(k, D) +my 0y +imy |D|% + Op(réd)) + L + LYy,
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Op(r§?) = Op(ry? + 1y, 1) — [B(g),mds +ia§”|D|* + Op(r{")] + (w- 3, B(¥))

ARk S (D" e 0 (7.167)
+ —adig) (Ps) > —adp (W 0,B(¢)) € OPS’.
n=2 n=2 '

1 0

Define the matrix X := (0 1

). Summing up, we have obtained the following lemma.

Lemma 7.13. Let M € N, qp € Ng. Let b be the function defined in . Then, conjugating
the operator Lg in (7.146|) via the invertible, real, reversibility and momentum preserving map W
defined in , (7.160), we obtain, for any w € DC(v, T), the real, reversible and momentum
preserving operator

Lo=W7 LW = w0, +imsQ(k, D) +mydy +im T DI +illy + ROV + To s, (7.168)
where

: ; ko < 2.
1. the constant my defined in (7.140) satisfies |m%| 0 < g2

2. Rgo’d) is a block-diagonal operator

(d)
0,d) _[T9 (‘P»%D) 0 0
R9 = 0 @, e OPS s
T9 (‘pvan)

that satisfies, for some o := oy (ko, 7,v) > 0, and for all s = s,

(0,d) ko ,v ~ 1ko,v .
”RQ ”005 1 s M Ev (1 + H‘JOHS?FO'M) ) (7169)

3. For any q € Ny with |q| < qo, n1,n2 € No with ny +ny < M — 2(ko + qo) + g, the
operator (DY 03Ty ar(p){D)Y"2 is D*o-tame with a tame constant satisfying, for some
om(qo) := on(ko, 7,v,qo), for any so < s < S,

ko,v
M Dyn1 08 T ()02 (8) Ssar,a0 €07 (L4 [Toll370 (g0) 0 (7.170)

s+o(qo

4. The operators ¥ —1d, (¥l — 1d)* are D*o-tame, with tame constants satisfying, for
some o := o(ko,T,v) >0 and for all s = so,

My+1_14(5) + Mg+1_1ay% () Ss ev 1+ ||30||]§i;’) (7.171)

Furthermore, for any s; as in , a € Ny, q € Ny, with |q] < qo, and ny,n2 € Ny, with
ny + ng SM—2q0+%, we have

|A1RE P o, Sevnr e in —ially, 4o, » |Aromy | € €% Jin — 2, 4y - (7.172)
[ <D™ 08 A12Tg ar (D)™ | £(meny Ss1,ma0 €0 i1 =2l g, 4 ops (a0 » (7.173)
|81 (TED A, + A (TEY* R, <o, o iy —ialy, oy IR, oo - (7.174)
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Proof. The function bs(¢, z) defined in (7.165), satisfies, by (7.148) and the estimate of ms given
in Lemma [7.9}item{2] for some o > 0 and for all s > s,

B3] <5 e (1 + ||3o||f?#§)~ (7.175)

The estimate for my follows by ([7.140] , and ( , (7.157). The estimate ([7.169) follows
by (7.167), (7-158), Lemmata.. 3.6] and (7.148 . (]7 149[) (7.175). By (7.146), (7.158), (7.166),
(7.168

and 1} the smoothing term Ty 5/ in 68) is

Ly + L 0
| ; _ M M .
Tg’M = TS’M‘I’ + IH()(\I’ Id) + ( 0 LM i LIIVI)
with Ly and L), introduced in (7. .163). The estimate ([7.170) follows by Lemmata [3.12]

3.131 3.7 (7.158), (7.148)), (7. ). The estimate (7.171) follows by Lemma
3.13| and (7.175). The estimates (7.172), (7.173)), (7.174) are proved in the same fashion. By

Lemma |7.12| the function aéd) is a even(y, x) quasi-periodic traveling wave. Hence the function
H

bz in (7.163) is a odd(yp, ) quasi-periodic traveling wave. By Lemmata [3.19] [3.29, and [3.25]
the transformation W is reversibility and momentum preserving, therefore the operator Lg is

reversible and momentum preserving. O
Remark 7.14. In Proposition we shall estimate ||[690,R9O d)]||k°’0 using (7.169) and (3.27).

In order to control R4 H’g”s’ 1 we used the estirnates [7.97) for finitely many o € Ng, a < o (M),

depending on M. Furthermore in Proposition we shall use ((7.172)-(7.173) ounly for s; = sg.

7.7 Conclusion: partial reduction of L,

By Sections 7.6 the linear operator £ in ([7.12) is semi-conjugated, for all w € DC(v,7), to
the real, reversible and momentum preserving operator Lg defined in (|7.168)), namely

Lo =Wy LW, (7.176)
where N ~
Wl = PZ£QMC@M<I’V\II s W2 = 'PpZSQMCq)M(I’V\I’ . (7177)

Moreover Lg is defined for all w € R”.
Now we deduce a similar conjugation result for the projected operator £, in (6.23), i.e. (7.1),
which acts in the normal subspace ﬁ§+ 5- We first introduce some notation.

We denote by H§+ 5, and H§+ 5 the projections on the subspaces SﬁTJr = and ﬁ§+ 5, defined
in Section In view of Remark we denote, with a small abuse of notation, IIT =

Sy
Iy 5 + 7o, so that HS';+ st HSJr + = Id on the whole L? x L?. We remind that Sy = S u {0},

where S is the set deﬁned in . We denote by IIs, := IIT + my, where II{ is defined below
(2.58) together with the deﬁnition of Hé‘o , so that we have Ilg, + Hé‘o = Id.

Lemma 7.15. Let M > 0. There is opr > 0 (depending also on ko, T, V) such that, assuming
with pg = oy, the following holds: the maps Wy, Wa defined in ) have the form

W; = MC + Ri(e), (7.178)
where, for any i = 1,2, for all s < s <95,

IRi(e)RIEY Ssar ev™ (IR1E%5,, + 1T0ly sy, Ihles,, ) - (7.179)

s+onm s+on So+om
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Moreover, for ev=" < §(S) small enough, the operators

Wit =115 Wilg, , Wy o= g Wl (7.180)
are invertible and, for all sp < s<S,i1=1,2,
v ko,v ko,v ko,v
IOV E RN Ssoar (Rl e + 13005500 1lseton, - (7.181)
|A2WH)  hllsy Sspanr ev™t i =izl 4o, 1Pl 40y, - (7.182)

The operators Wi-, Wy map (anti)-reversible, respectively traveling, waves, into (anti)-reversible,
respectively traveling, waves.

Proof. The formulae (7.178) and the estimates (7.179) follow by (7.177), Lemmata[3.12] [3.13] and

(-36), (7.23), (7.27), (7. 9 |7 92), (7.112), (7.151), (7.152), (7.171). The invertibility of each

Wit and the estimates ) follow as in [2] and noting that HS+ 5 Mc Mg, = 1§, ; MCIIg,
are invertible on thelr ranges, with inverses (I, o MCIIg)~! = IIg (MC)~ 1H§+ 5 Since

Z,E, 9, ./W Dy, P, V W are reversibility and momentum preserving and using Remark n and
Lemmata and |3 we deduce that Wi, W5 map (anti)-reversible, respectively traveling,
waves, into (antl)—rever51b1e respectively traveling, waves. O

Remark 7.16. The time reparametrization P and the multiplication for the function p (which is
independent, of the space variable), commute with the projections IIg; , and IIg; .

The operator £, in (6.23) (i.e. (7.1)) is semi-conjugated to
L= W) LWt =I5, Lo1IE + RS (7.183)

where R/ is, by (7.180), (7.176)), (7.178) (recall that M is defined in (7.78)-(7-79)), and (2.59),
RS = (Wy) 1§ o Ra(e)Ils, Lollg, (7.184)
_ (w;)*lngm,cn;mm(s)ngo —e(Wy) 'TIg g JRWY-.

Lemma 7.17. The operator R in has the finite rank form , . Moreover, let
Qo € Ng and M > 2(ko + qo) — 3. There exists X(M,qo) > 0 (depending also on ko, 7, v) such
that, for any ni,na € Ny, with ni +ny < M —2(ko +qo) + 3, and any q € N¥, with |q| < qo, the
operator (DY 03RS (DY"* is D*-tame, with a tame constant satisfying

M pym s oy (5) Sonra0 0™ (14 [Toletinran) Y50 <5<, (7.185)
[{DY™ 08 212RI (D)™ || rrory Soumrgo €07 it = dally, 1 n(argo) » (7.186)

for any s1 as in (7.15)).

Proof. The first two terms in m have the finite rank form . because of the presence of
the finite dimensional projector Ils,, respectively H . In the last term, the operator R has the

ﬁmte rank form (7.4). The estimate (7.185)) follows by m, (7.177), (7.180), (7.168]), ,
D and [7.179), (7.181), (7.169), (7.170), (7.5 . The estimate ((7.186) follows similarly.

Proposition 7.18. (Reduction of £, up to smoothing operators) For all (w, k) € DC(v, T) x
[K1, k2], the operator L, in (6.23) (i.e. (7.1))) is semi-conjugated via (7.183)) to the real, reversible

and momentum preserving operator L) . For all (w, k) € RY x [k1, ka], the extended operator de-
fined by the right hand side in ((7.183) has the form

Elzw-a 1, +iD; +R,,, (7.187)
where 1, denotes the identity map ofH (cfr. 2.58)) and
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1. D, is the diagonal operator

D0 : c
D, := ( 0 —DJ o Dui=diagjesgpy, Spi=Z\S v {0}),

with eigenvalues f1; 1= ms (k) +mj +m |]|2 € R, where the real constants ms,mp,m1,
defined respectively in (7. 88) l7 144)), (7.140), satisfy
|m% — 1]foY 4 |my [Fov + |m%|k°’“ Se; (7.188)

In addition, for some o > 0,

|A12m%| =+ |A12m1| =+ |A12m%| S IS HZl — i2Hso+a . (7189)

2. The operator R is real, reversible and momentum preserving. Moreover, for any qo € No,
M > 2(ko + qo) — 5, there is a constant X(M,qg) > 0 (depending also on ko, T, v) such

that, assuming (7.14)) with po = X(M,qp), for any so < s < 5, q € Ni, with |q| < qo, the
operators O3R 1, [03R 1, 0.] are DFo-tame with tame constants satisfying

ko,
Marr, (8), Miaar, 0,1(8) $s,M,q0 €V 1+ 150135 % Mqo)) (7.190)
Moreover, for any q € Nij, with |q| < qo,

103 AR L £areo) + 103 A12[R L, 02] | 2emeoy Sarev™ ! in — ially tniargy) - (7.191)

Proof. By (7.183)) and ([7.168|) we deduce ([7.187) with

Ry =I5 (R + Ty a)lIE, + R

The estimates (7.188)-(7.189) follow by Lemmata [7.9] [7.12] The estimate ([7.190) follows
3.13 (7.16

by Lemmata 9) and (7.170), (7.185), choosing (n1,n2) = (1,0),(0,1). The esti-
mate (7.191]) follows similarly. The operator L, in (6.23? is reversible and momentum preserving
(Lemma 7. b By Sections 6 the maps Z, &, Q M Py, P, V, ¥ are reversibility and mo-

mentum preserving. Therefore usmg also (7.1§ -, and Lemmata [3.23) and [3.31] ‘ we deduce
that the operator £, in ([7.183) is reversible and momentum preserving. Since iD | is reversible

and momentum preserving, we deduce that R is reversible and momentum preserving,. O

8 Almost-diagonalization and invertibility of £,

In Proposition we obtained the operator £, in which is diagonal and constant
coefficient up to the bounded operator R (¢). In this section we complete the diagonalization
of £ implementing a KAM iterative scheme. As starting point, we consider the real, reversible
and momentum preserving operator, acting in Héﬂ ,

Lo:=Lo(i) = £, =w-d,1, +iDg+ R, (8.1)

defined for all (w, k) € R” x [k1, k2], with diagonal part (with respect to the exponential basis)

D 0 . , 01
Dy := (00 —Do> ;Do = diagjese u§ ) /Lgo) =ma€Y(k) +mj+my |j]7, (8.2)
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where S§ = Z\Sp, So = S U {0}, the real constants mg, mp, my satisfy (7.188)-([7.189) and

) R R (0,) (0,0) . 771 N
Ry =R, := 0.0 0 | Ry HSO HSO Ry H>g — Hg, (8.3)
RL RL

which is a real, reversible, momentum preserving operator satisfying (7.190)), (7.191)). We denote
Hig, = {h(z) = Y e, h;etiT € L2}, Note that

Dy : HJ‘SO — Hi‘SO , Do = diag,e s (u(o)) (8.4)

Proposition implies that the operator R(f) satisfies the tame estimates of Lemmam below
by fixing the constant M large enough (which means performing sufficiently many regularizing

steps in Section , namely
M :=[2(ko+so+b) — 3] +1€N, (8.5)

where
b:=[a]+2eN, a:=3n>1, 7 :=ko+ (ko+1)7. (8.6)

These conditions imply the convergence of the iterative scheme (8.46)-(8.47)), see Lemma
We also set
(o) = R(M, 50 +b), (8.7)

where the constant R(M, qq) is given in Proposition

Lemma 8.1. (Smallness of R ) Assume with po = u(b). Then the operators R( )
[Rf), 0z], and (9;20mRL , [6;%11@,@], 6;(:"11(1)), [6;‘1:be), Oz, m=1,...,v, are Dko-tame
and, defining

Mo( ) = max {WR(O) ) ,‘JJT[RS?)&](s), WFZ,%RT)(S)’ m[&;"me),Fm](s)’ m=1,..., I/},
M (s,b) := max {Smﬁjﬁ“Rf) (s), m[e;‘)“R(f),ez](s) ,m=1,...,v}, (8.9)
we have, for all so < s < S,

9+/L

Mo(s,b) := max { Mo(s), Mo(s,b) } < C(S) (1413035 e)) » Mo(s0,b) < C(S)%. (8.10)
Moreover, for all q € N, with |q] < so + b,
1032 02R e g0y, 1A12[03RY, a2 (100 < C(S)ev™" i — a5y o) - (8.11)
Proof. Recalling (8.8), (8.9), the bounds (8.10)-(8.11)) follow by (7.190), (8.5, (8-7), (7.191).
We perform the almost-reducibility of L along the scale
N_y:=1, N,:=NY, VneNy, yx:=3/2. (8.12)
Theorem 8.2. (Almost-diagonalization of Lo: KAM iteration) There ezists To(T,v) >
m1(7,v) + a (with 71,2 defined in (8.6)) such that, for all S > so, there is Ny := No(S,b) € N

such that, if
N*Mo(s,b)vt < 1, (8.13)
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then, for allme Ng, n=0,1,...,n:

(S1), There ewists a real, reversible and momentum preserving operator
Ly:=w-0,1, +iD, + R,

D, 0 . . (8.14)
D, := ( 0 _1)11> ;v Dn:= dlagjeSg ,u; ) )

@

defined for all (w,k) in RY x [K1, ko], where p; " are ko-times differentiable real functions

,u;n)(w,m) = u§-0)(w,/£) + t§n)(w, K), ,ug-o) =mz (k) +m j+my [j[7, (8.15)
satisfying tgo) =0 and, forn>1,
P or < 0(Sp)ev ™, |ul — p TP < C(S b)evT NG, VieSs.  (8.16)

The remainder

(@) RT’d) R(f’o) (md) | 77l 1 (m,0) | 7l 1
Ry =\—"Go Lwa ) "L iHsy = Hs, By™ : Hog — Hg, (8.17)
RL’ RL’

is DFo-modulo-tame: more precisely, the operators Rf’d), Rf’o), <6¢>b RT’d), <6¢>b RT’O), are
DFo-modulo-tame with modulo-tame constants

ML (5) = M o () = max{ MM (), M (3)) .
Smﬁ(&b) = Smg(qwbR(f) (s) = ma’x{miawny(Ln,d)(s)?miawy)RSil,o)(s)} )
which satisfy, for some constant Cy(sg,b) > 0, for all sp < s <9,
ME (5) < Cy(50,0)Mo(s,b)NT2,  MA(s,b) < Cy(50,b)Mo(5,b) N7 . (8.19)

Define the sets AY = AY(i) by AY := DC(2v,T) X [K1, k2] and, forn>1,
A :={\ = (w,k) €AY, :
n— n— 3 13 —T
G T R IRV
v |£| < Nn—la jajl ¢ SO7 (gajvjl) 7 (Oﬂjaj)v with j £+] _j/ = Oa (820)
n— n— L2 g3 —r
o £+ Y+ uGTY = 0 (1517 +151F) @
V0| < Naot1, 4, j" ¢ So with J- £+ j+j' = 0}.
Forn > 1 there exists a real, reversibility and momentum preserving map, defined for all (w, k) €
RY x [k1, k2], of the form

B~

9 x(o)
— n— d o
1 1) , X9 HE - HE X HY - HE

X
P, 1= exn_l ; Xapo1:= <

such that, for all A € Ay, the following conjugation formula holds:

L,=® 'L, %, ;. (8.21)
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The operators X, 1, <6¢>b X._1, are D*-modulo-tame with modulo tame constants satisfying,
for all sg < s < S,
M (s) < C(s0,b)v NI N7% M (5,b)

8.22
(s) < C(so,b)v_lNJian,gimo(s,b) . ( )

i
m<6w>b Xn—1

(S2), Let i1(w,k), i2(w, k) such that RT)(il), R(f)(ig) satisfy (8.10), (8.11). Then, for all
(w,K) € AV (i1) N AY2(is) with vy, vs € [V/2,20],

ARz ) Ssp 0 N i — izl e (8.23)
11406)° AaaR P £gare0y S5 20 Naa [lin = d2lly, 4 o) - (8.24)

Furthermore, forn > 1, for all j € S§,

A (e — ) < CALRY |20y (8.25)
A1t < C(S )ev™ iy — a4 o - (8.26)

(S3), Let iy,io be like in (S2), and 0 < p < v/2. Then

o CSINTH i — il gy <P = AU(01) € AT (i2). (8.27)

Theorem implies also that the invertible operator
UHIZ(DOO...O(I)ﬁ_l, ﬁ?l, (828)
has almost diagonalized Ly. We have indeed the following corollary.

Theorem 8.3. (Almost-diagonalization of Lj) Assume (7.14) with po > wp(db). For all
S > sg, there ezist Ny = No(S,b) > 0 and 69 = 00(S) > 0 such that, if the smallness condition

Nzev 2 < 6 (8.29)

holds, where 7o = 7o(7,v) is deﬁned in Theorem [8.3, then, for allm € N and for all (w,k) €
RY x [k1, k] the operator Uz in is well-defined, the operators U, — 1, are D*o-modulo-
tame with modulo-tame constants Sattsfymg, for all so < s <5,

My (8) S5 ev NG (1 + [F0ll5 1)) (8.30)

where T1 is given by . Moreover Ug, Uﬁ_1 are real, reversibility and momentum preserving.

The operator Ly = w - d,1, +iDg + Rﬂ_ﬁ), defined in (8.14) with n = 1 is real, reversible and
momentum preserving. The operator R(f)
satisfying, for all so < s <9,

is D*o-modulo-tame with a modulo-tame constant

—1 _ ~ k 3
M o (5) S5 0 N (14 [Tl )

Moreover, for all (w,r) in AY = AY(i) = (E_, AY, where the sets AV are defined in (8:20), the

nOn;

conjugation formula Lz := UglLoUﬁ holds.

Proof of Theorem [8.2]
The proof of Theorem [8.2is inductive. We first show that (S1),-(S3), hold when n = 0.
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The step n = 0. PROOF OF (S1)g. Properties (8.14)-(8.15), (8.17) for n = 0 hold by (8.1,
(18-2)), (8.3) with tgo) = 0. We now prove that also (8.19) for n = 0 holds.

Lemma 8.4. We have img(s),img(s,b) <sob Po(s,b).
Proof. Let R e {R(f’d), Rf’o)}. We prove that <6¢>b R is D*o-modulo-tame. Using the inequality
20 ;. N2 2 L2 20 . 42
<£_£/>qo<]_]/> §q01+|€_gl| qo+|]_]/| +|£_£l| q0|]_jl| ,
it follows, recalling (3.35)), (8.10), (the matrix elements of the commutator [0, A] are i(j —
§")A% (¢ = 1)), that, for any j' € S§, ¢ € Z,

VP S, 57 (0 — ey G N |k RY (0 o) )
4,5 8.31

ﬁb m0(307b)2 <€Ijjl>28 —i—f)ﬁo(s,b) <€I '/>250

Let sp < s < S. Then, for any |k| < ko, by Cauchy-Schwartz inequality, we have

<00 akminl; < Sty (5= ek =0 lheg)

g’
s /N So+b ] ’ 1 2
<2y (;@ O G = YNGR (€= Ollbwny | s o)
NSOZ@ PP S D G OAR)T (6~ )Pl |
7] ZI o1

?;0 2N B o P (Do (s0,0)2 0, 55 + Mo (s, 0)2 L, 55 .

2,5

Therefore, we obtain 9ﬁ< PR 1(8) Sso0 Mo(s,b) and then im%(s, b) <sop Mo(s,b). The inequality
imo( ) Zso Mo(s,b) follows similarly. O

PROOF OF (S2)g. The proof of estimates (8.23), (8.24) at n = 0 follows by (8.11), arguing
similarly to Lemma [8:4]
PROOF OF (S3). It is trivial since, by definition, A§(i1) = DC(2v,T) X [k1, k2] € Ay ?(i2).

The reducibility step. We now describe the generic inductive step, showing how to transform
L, into L,4; by the conjugation with ®,. For sake of simplicity in the notation, we drop the
index n and we write + instead of n + 1, so that we write L := L,, Ly := Lyy1, R} := Rf),

R(f) = R(DH) N := Ny, etc. We conjugate L in (8.14) by a transformation of the form

x{d)  x{o)
=X, X:= <X(O) X(d)) , X HE — Hg., X9 HY — Hy (8.32)

where X is a bounded linear operator, chosen below in (8.37)), (8.38)). By the Lie expansions

(3.16)-(3.17) we have

Ly =% 'L& = w- 3,1, +iD + ((w-,X) —i[X,D] + IyRy) + TL R, (8.33)
1 1
_ J e XX, Ry Jem ™ dr — f (1 =7)e”™[X, (w- 0,X) —i[X,D]]e™ dr
0 0
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where Iy is defined in (3.39) and IIy; := Id — II. We want to solve the homological equation

w - 6¢X — I[X, D] +IIyR, = [RJ_] (834)
where : (d)]
R 0 , ;
[R.]:= ( . [R(f)]> . [BY] = diageq (RY))(0). (8.35)

By (8.14), (8.17) and (8.32), the homological equation (8.34) is equivalent to the two scalar

homological equations

w-0,X D —i(X DD —DXD) + Iy R = [RY)

_ (8.36)
w-0,X© +i(XOD+DX) +TIyRY = 0.

Recalling (8.14) and since D = diag e _ge(p—j), acting in HZg, (see (8.4)) the solutions of (B.36)
are, for all (w, k) € Ay | (see (8.20) with n v n + 1)

) L RIOFO () # (0.4.9), 3.5 €85, (<N
XDV ={ Tiw bty —pg) €T+ =0 (8.37)
0 otherwise ,
) @Y o [veerj—jess <N
(XONT(0) := < i(w - €+ pj + pyr) t-7+j—3"=0 (8.38)
0 otherwise .

Note that, since —j’ € S§, we can apply the bounds (8.20) for (w,x) € AY, ;.

Lemma 8.5. (Homological equations) The real operator X defined in (8.32), (8.37), (8.38),
(which for all (w, k) € AY,, solves the homological equation (8.20))) admits an extension to the
whole parameter space RY x [k1, ko]. Such extended operator is D*-modulo-tame with a modulo-
tame constant satisfying, for all so < s < S,

M (s) <y NTto'OME(s), o

toyx (8) Sho NTo~ 0 (s,b) , (8.39)

where 11 := T(ko + 1) + ko. If v/2 < v1,v2 < 2v, then, for all (w, k) € AL, (41) N AT, (i2),

HAwRX] 20y S N270 (| R(iz) Lo [ = il 4y + 11ARL eqareo)) . (8:40)
[RCRSINTS [P
N0 (103 R (i2)eqareo) lin — izl 4 ey + 110" AraRot [l aeny) (8.41)

The operator X is reversibility and momentum preserving.

Proof. We prove that (8:39) holds for X(¥. The proof for X(°) holds analogously. First, we
extend the solution in (8.37)) to all A in R” x [k1, k2] by setting (without any further relabeling)

(XDY(0) = igej o (\(RY)] (£), where

ge,j,jf@):’”ﬁ;;_), FO) = Oty — g pe= o0 TR — 175,
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and y is the cut-off function (3.10). By (8.15), (8.16), (7.188), (8-20), Lemma[L.4] (5.39), together
with (3.10), we deduce that, for any k; € N§, |k1| < ko,

Sko O 0TI = (kg 4+ 1) + ko,

k
sup 03" 9,5,
|k1|<ko

and we deduce, for all 0 < [k| < ko,

5X DN O <k Y. 185 geg 0 W15 (R (0)]
ki+ko=k

Sio (O 0TI ST ylklgke (RED) (o)) (8.42)

J
k2| <[k

By (8.37) we have that (X(d))g:l(f) = 0 for all /) > N. Therefore, for all |k| < ko, we have

. 2
1O XD < 3™ (D) 1= XD (€~ )by
4,5

<£f£’>§N,j’
18.42) " 2
o NEOT2HED SRtk S iy (e = 00" 9 (R (0= ) |he 1)
|2 |<|k| £,j e,
Sky N2 200D 37 g2kl (0,50 082 RL || |2
\k?lg\k\
39 619

Ske NP0 2D (90 (5, B) |2, + 90 (s0, D)% [R]7)
and, by Definition , we conclude that Dﬁga )"X(d)(s) <k, N0 19 (s,b). The analogous
estimates for <é’@>b X)X x(°) and (8.40), (8.41) follow similarly. By induction, the operator
R, is reversible and momentum preserving. Therefore, by (8.32)), (8.37)), (8.38) and Lemmata

3.18] [3.28] it follows that X is reversibility and momentum preserving. O
By (8.33), (8.34), for all Ae A}, ,, we have
L,=% 'L&=w-d,1, +iD, +R{"”, (8.43)
where

D, :=D —i[R,],
1 1 (8.44)
e "X [X,Ry]e™ dr + f (1—7)e ™X[X,TIyR, — [Ry]]e™*dr.

RY .= I§R, —f
0

0

The right hand side of — define an extension of L, to the whole parameter space
R” X [K1, k2], since R} and X are defined on R” x [k, K2].

The new operator L, in has the same form of L in with the non-diagonal
remainder Rf) which is the sum of a term HﬁR 1 supported on high frequencies and a quadratic
function of X and R, . The new normal form D, is diagonal:

Lemma 8.6. (New diagonal part) For all (w, k) € R” X [k1, k2], the new normal form is

. . . (D 0 .
iD, =iD+[R,] =1< 0+ —D+> , Dy = dlagjeggu§+), ,u§-+) =pu; +r; R,
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where each r; satisfies, on R” x [k, k2],
g Fo = g™ — o < M (o). (8.45)
Moreover, given tori ii(w, k),i2(w, k), we have |r;(i1) — r;(i2)| < [[|A12R L] £(zs0)-

Proof. Recalling (8.35)), we have that r; := —i(R(f));:(O), for all j € S§. By the reversibility of
R(Ld) and (3.44) we deduce that r; € R. Recalling the definition of 9% (so) in (8.18) (with s = s)
and Definition 3.14) we have, for all 0 < [k| < ko, [|95R\”|hls, < 20~ MM(so) |R],,, and

therefore 0% (R );(0)| < v IFINE(sp) . Hence (8:45) follows. The last bound for |r; (i) —r;(i2)|
follows analogously. O

The iterative step. Let n € Ny and assume that the statements (S1),-(S3), are true. We now
prove (S1),:1-(S3)n+1. For sake of simplicity in the notation (as in other parts of the paper) we
omit to write the dependence on kg, which is considered as a fixed constant.

PROOF OF (S1),+1. The real operator X, defined in Lemma is defined for all (w,k) €
RY x [k1, ko] and, by (8-39), (8.19), satisfies the estimates (8.22) at the step n+ 1. The flow maps
®F!' = ¢ are well defined by Lemma 3.16, By (8.43), for all X € A, ;, the conjugation formula
holds at the step n+ 1. The operator X, is reversibility and momentum preserving, and so
are the operators ®1! = ¢4%:, By Lemma the operator D, is diagonal with eigenvalues
u§n+1) : R” x [k, k2] = R, u§n+1) = u; )+ tg.nﬂ) with tgn“) = t§n) + rgn) satisfying, using
also , at the step n + 1. The next lemma provides the estimates of the remainder

(

R(fH = R{" defined in (8:44).

Lemma 8.7. The operators R( " ond {0y b R @) are DR modulo-tame with modulo-tame
constants satisfying

M, 1 (s) S N7POME(s,b) + Nt~ 'omE (s) 00 (s0) , (8.46)
ME, 1 (5,1) Sp MA(s,b) + N o~ (M (s, )M (s0) + DJTE(SO,b)Smﬁ(s)) : (8.47)

Proof. The estimates (8.46), (8.47) follow by (8.44), Lemmata [3.15] , [3.16] (3.40) and -,
@19, @6, B12), (8.13).

Lemma 8.8. FEstimates (8.19) holds at the step n + 1.

Proof. Tt follows by (8.46), (8.47), (8.19) at the step n, (8.6)), the smallness condition with

No = Ny(s0,b) > 0 large enough and taking 7o > 7 + a. O
Finally R(nﬂ) is real, reversible and momentum preserving as R(f), since X, is real, re-

versibility and momentum preserving. This concludes the proof of (S1),41.

PROOF OF (S2),+1. It follows by similar arguments and we omit it.

PROOF OF (S3),4+1. The proof follows as for (S4),,1 of Theorem 7.3 in [6], using (S2), and the

fact that the momentum condition in implies |j — j'| < M.

Almost invertibility of L,
By (7.183) and Theorem [8.3] (where Ly = £ ) we obtain

Lo,=WysLgWis, Wig:= WitUs, Wag:= Wi Uy, (8.48)
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where the operator Lz is defined in (8.14) with n = 7. By (7.181)) and (8.30)), we have, for some
o:=o(r,v, ko) >0, for any sg < s < S,

Fow i~ [kow Fo,
[Wizhle, [Waghl2? <s [R5 + [Tol Ihlsovo - (8.49)

s+u(b)+o so+o

In order to verify the almost invertibility assumption (AI) of £, in Section @, we decompose the
operator Lg in (8.14) (with @ instead of n) as

Ly = D5 + QY + R (8.50)
where
DS =T, (w- 0,0, +iDp)llg, + 1%, QP =TI (w- 0,1, +iDg)g. — Tk, (8.51)

and the smoothing operator IIx on the traveling waves is defined in (3.6)), and IT% := Id — I .
The constants K, in (8.51) are K, := K, x = 3/2 (cfr. (6.24)), and K, will be fixed in (9.5).

Lemma 8.9. (First order Melnikov non-resonance conditions) For all A = (w, k) in

3
ngly = {NERY x ] ¢ w4 ) > Lé'y,vw\ KsjeS5.j+70=0}, (852)

on the subspace of the traveling waves 17.g(v) = g(p — ), s € R, such that g(p,-) € Hé‘o, the
operator D= in (8.51) is invertible and there exists an extension of the inverse operator (that we
denote in the same way) to the whole R” x [k1, ko] satisfying the estimate

(D) gk <o v g5, 1= ko + T(ko +1). (8.53)

s$+71
Moreover (D)™ 1g is a traveling wave.

Proof. The estimate (8.53)) follows arguing as in Lemma O

Standard smoothing properties imply that the operator Qf) in (8.51)) satisfies, for any trav-
eling wave h € HZ , for all b > 0,

n ) ko, n v ko,
QP < Kz IRy, s 1QERIEY S RIS (8.54)

By the decompositions (8 , Theorem- note that (6.1) and Lemmaimply -

Proposition _ 7.18] the fact that W1 a, Wag map (anti)- rever51ble respectively travehng, Waves

into (antl) reversible, respectively traveling, waves (Lemma [7.15) and estimates (8.49), (8-53),
(8:54), (3-8) we deduce the following theorem.

Theorem 8.10. (Almost invertibility of £,) Assume (6.1). Let a,b as in and M as
829

in (8.5). Let S > sg and assume the smallness condition (8.29). Then the almost invertibility
assumption (Al) in Section@ holds with Ay replaced by

Af = AL (@) =M 1 N An+17 (8.55)

(see (8-20), (8-52)) and, with p(b) defined in (8.7),

L5 :=WoiDFWil, Ry =W :RPWL  RE:=W,:QP Wil
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9 Proof of Theorem 5.2

Theorem[5.2]is a consequence of Theorem [9.2]below. We consider the finite dimensional subspaces
of traveling wave variations

= {J(p) = (0,1, w)(¢) such that (3.53) holds : © =11,0, I =111, w = Hyw}
where IIyw := IIx, w are defined as in (3.6) with K, in (6.24)), and we denote with the same
symbol Ihg(¢) == X<k, geel?¥. Note that the projector II, maps (anti)-reversible traveling

variations into (anti)-reversible traveling variations.
In view of the Nash-Moser Theorem we introduce the constants

a; := max{6o; + 13, x(p(T + 1) + pu(b) +201) + 1}, as:=x ‘a; — u(b) — 20y, (9.1
pr = 3(u(0) +201) +1, by:=a; +2ud) +4o; +3+x u, x=3/2 (9.2)
o1 = max{c, 2sg + 2kg + 5}, S =s9+Dby, (9.3)

where & = &(7, v, ko) > 0 is defined by Theorem 250 + 2k + 5 is the largest loss of regularity
in the estimates of the Hamiltonian vector field Xp in Lemma (b) is defined in (8.7)), and

= [a] + 2 is defined in (8.6). The exponent p in (6.24) is required to satisfy
pa>ta;+30;. (9.4)

By , and the definition of a; in (9.1), there exists p = p(7, v, ko) such that (9.4) holds, for
example we fix

3(u(d) + 401 + 1) .

pi=

Remark 9.1. The constant a; is the exponent in (9.9). The constant a, is the exponent in
the second bound in (9.7). The constant u; is the exponent in (P3),. The conditions on the
constants p1, b1, a; to allow the convergence of the Nash-Moser scheme in Theorem are

a; > 601+ 12, by > a; +2u(b) + 401 +x Y, pa> %al + %01,

as well as 1 > 3(u(b) + 201). In addition, we require a; > x(p(7 + 1) + u(b) + 201) + 1 so that
as = p(7 + 1) + x 7!, which is used in the proof of Lemma

Given a function W = (7, 8) where J is the periodic component of a torus as in (5.8) and
B € R, we denote |[W ko .= |J|kov 4 |g]"".

Theorem 9.2. (Nash-Moser) There exist 0y, Cyx > 0 such that, if
KPev 2 <&y, 73:= max{pr,20y +a; +4}, Ko:=v ', vi=e*, 0<a<(2+73)" ", (9.5)
where 1o = To(T, V) is given by Theorem then, for alln = 0:
(P1)y There exists a ko-times differentiable function Wa : RV x[k1, ka] = Faey xR, A = (w0, ) —
Wa(A) := (3a, dn — w), forn =1, and Wy := 0, satisfying
IWaleo < Cyevt. (9.6)

so+u(b)+o1

Let Uy := Uy + Wn, where Uy := (¢,0,0,w). The difference H, = U, — ﬁn_l, forn>1,
satisfies

~ ko, — ko,
[HL )10 < Cxev U | Hy ley io)son < Cuev™ K72, Yn>2. (9.7)

The torus embedding 7, := (p,0,0) + Iy is reversible and traveling, i.e. (5.7) holds.
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(P2), We define
Go:=Qx [K1,k2], Goy1:=Gan A (), Vn=0, (9.8)
where AL, (%) is defined in (8.55). Then, for all X € G, , setting K_; :=1, we have

| F(Ta)|Fo < Cre K% (9.9)

(P3), (HicH NORMS) For all X € G,, we have Hf/IV/nH];gfbl < Cyev K.

Proof. The inductive proof follows exactly as in [0 [2]. Note that the almost invertibility property
proved in Theorem as well as in Theorem is formulated exactly as in [6, 2]. The
only novelty is to check that each approximate torus 7, is reversible and traveling. Clearly
10 := (¢,0,0) satisfies . Supposing inductively that 7, is reversible and traveling, we now
prove that the successive approximation 7,,1 defined by the modified Nash-Moser scheme in
[6 2] is a reversible and traveling wave as well. By (0.5), the smallness condition holds for
e small enough. Moreover (6.1) holds by (9.6). Therefore Theorem %olds and the almost
invertibility assumption (AI) of Section |§| holds for all A € An +1, see (8.55). Then Theorem
implies the existence of an almost approximate inverse T, := T, (A, 7,) of the linearized operator
d;,oF (i), which satisfies, for any anti-reversible traveling wave variation g, the tame estimate
. Moreover. the first three components of T,¢g form a reversible traveling wave variation.
For all A€ Goy1 = Go n AY, 1 (2) (cfr. (9.8))) we define the successive approximation

Un+1 = fjn + Hn+1 y Hn+1 = (§n+17an+1) = _HnTanf(ﬁn) € En X RV?

where II, is defined for any (J, ), with J a traveling wave variation, by IL,(J,a) := (II,J, «).
By Lemma and since 7, is a reversible traveling wave, we have that F(U,) = F(in, &y) is an
anti-reversible traveling wave variation, i.e 6.29)-(6.30) hold. Thus the first three components
of Ty, F(U,) form a reversible traveling wave variation, as well as I, Ty II, (U,). Finally one
extends Hyy1, defined for A € Goy1, to H,.1 defined for all A\ € R” x X [k1, k2], with an equivalent
| ||¥o-v-norm. Set Un+1 = U + Hyypq.

The estimates and (P3)n41 follow exactly as in [6, 2]. O

Proof of Theorem Let v = ¢*, with 0 < a < ag := 1/(2 + 73). Then, the smallness
condition in ([9.5) holds for 0 < & < ¢ small enough and Theorem holds. By (9.7), the

sequence of functions W, =U, — (p,0,0,w) = (ﬁn,&n — w) converges to a function W, : R x
[k1, k2] — HE x H3 x H* x R”, and we define
UT = (irf,, OCOC) = ((P,0,0,CU) + W’L .

The torus iy, is reversible and traveling, i.e. (5.7) holds. By (9.6), (9.7), we also deduce

[0 = Vo2 oy 4o < Cav ™y U = Talef )10y < Cev 'Ky, ¥z 1. (9.10)

In particular (5.10)-(5.11) hold. By Theorem [9.2}(P2),, we deduce that F(\; U, ())) = 0 for any
re [V Ga=0Gon N A20 ) B Gon [ me 0] o[ 470 0]
neNg n=1 n=1 n>=1

where go = Q X [K1, k2]. To conclude the proof of Theorem [5.2{it remains only to define the u7
in and prove that the set CY in (5.14)-(5.16) is contalned in Ny>0Ga. We first define

Gy :=Go N [ ﬂ AE“(@'I)] N [ ﬂ A2 I(z,)] : (9.11)

n=1 n>=1
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Lemma 9.3. G, € Nu>0Gn, where G, are defined in .
Proof. We shall use the inclusion property (8.27), with S fixed in (9.3)). By (9.10) we have

£(20) T O(S)NG i — o]l 4 o) < £(20) T C(S)KE T Chev™ < v,
e(20) " C(SINTH iy =t 1l sganie) < £20)TIC(S) KXV Cav™ K% <v, ¥n>2,
since 73 > p(7 + 1) (by (9.5) and 72 > 71 = 7(ko + 1) + ko) and as > p(7 + 1) (see Remark

[9.1). Therefore (8:27) implies A2%(i,.) © AY(a—1), ¥n > 1. By similar arguments we deduce that
AU T (G,) e AT (7, ). O

Then we define the p7 in (5.12)), where m3" := ms (i), m{" = mi (i), m7T = my1 (i), with
5 2 2

mg,my,my provided in Proposition By (8.16)), the sequence (t§-n) (i) )nen, With t;-n) given

=K

by Theorem (8.2} (S1), (evaluated at i = i), is a Cauchy sequence in | - [Fo¥. Then we define
o = limg g t§n)(il), for any j € S, which satisfies |v* — t§n) (i) |F0¥ < Cev™!N_? for any
n > 0. Then, recalling t§0)(i7v) = 0 and (7.188)), the estimates (5.13)) hold (here C = C(S) with

S fixed in (9.3))). Finally one checks (see e.g. Lemma 8.7 in [6]) that the Cantor set CY, in (5.14)-
(5.17) satisfies CY < G, with G defined in (9.11), and Lemma implies that C¥ € Ny>0Gn-
This concludes the proof of Theorem
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