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Abstract

The stationary Navier-Stokes equations under Navier boundary conditions are considered

in a square. The uniqueness of solutions is studied in dependence of the Reynolds number and

of the strength of the external force. For some particular forcing, it is shown that uniqueness

persists on some continuous branch of solutions, when these quantities become arbitrarily

large. On the other hand, for a different forcing, a branch of symmetric solutions is shown

to bifurcate, giving rise to a secondary branch of nonsymmetric solutions. This proof is

computer-assisted, based on a local representation of branches as analytic arcs.
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1 Introduction and main results

Let Ω ⊂ R
2 be a bounded domain and consider the stationary Navier-Stokes equations

− ν∆u+ (u · ∇)u+∇p = f , ∇ · u = 0 in Ω , (1)

that model the steady-state motion of an incompressible viscous fluid: u is its velocity, p its pressure,
f is an external force, ν > 0 is the kinematic viscosity. The equations (1) need to be complemented
with some boundary constraint, the most common being the no-slip boundary conditions

u = 0 on ∂Ω , (2)

that are physically reasonable if the boundary of Ω is solid and the flow is regular in a suitable
sense. Existence and regularity results for (1)-(2) are classical topics [15], the latter being strongly
influenced by the regularity of both the boundary ∂Ω and the source f . Much more delicate is
the uniqueness, which is guaranteed only for large viscosities ν or small sources f . Through an
application of the Sard-Smale Lemma, Foias-Temam [13, 14] were able to prove that (1)-(2) admits
a finite number of solutions, generically with respect to f and ν. Non-uniqueness has been obtained
in very particular situations such as the Bénard problem [26], see also [20] for the same problem
tackled through computer assistance, or the so-called Taylor problem, where one has multiplicity of
solutions if f is large, see [33] and also [15, Theorem IX.2.2] for a slightly more general statement.
There exists no multiplicity result valid in any situation, nor any detailed description of how the
bifurcation from uniqueness might occur; see however [27]. Therefore, a complete comprehension
of these phenomena is a challenging task, see [22, Problem 67].
In some situations, such as in 2D geophysical models [25], (2) is no longer suitable to describe the

behavior of the fluid at the boundary and a slip boundary condition appears more realistic. In 1827,
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Navier [23] proposed boundary conditions with friction, with a stagnant layer of fluid close to the
wall allowing a fluid to slip, and with the tangential component of the strain tensor proportional to
the tangential component of the fluid velocity on the boundary. The Navier boundary conditions
read

u · n = (Du, n) · τ = 0 on ∂Ω , Du =
1

2
(∇u+∇Tu) , (3)

where n is the outward normal vector to ∂Ω while τ is tangential. The boundary conditions (3) turn
out to be appropriate in many physically relevant cases [30], in particular in presence of permeable
walls [8] or of turbulent boundary layers [16, 24]. The Navier-Stokes equations (1) under the
Navier boundary conditions (3) (with and without friction) have been studied by many authors.
The first contribution (in 1973) is due to Solonnikov-Scadilov [31], with external forces f ∈ L2(Ω).
Concerning regularity results, we mention the works by Beirão da Veiga [9], Amrouche-Rejaiba
[4], Acevedo-Amrouche-Conca-Ghosh [2] while Clopeau-Mikelic-Robert [12] and Iftimie-Sueur [18]
studied the inviscid limit of (1) under conditions (3). Regularity results can also be found in the 3D
work by Berselli [10] which appears relevant for our purposes, since he considers flat boundaries.
Under the Navier boundary conditions (3) as well, uniqueness results for (1) are available only

for small f or large ν, see e.g. Theorem 1.5 in [24], while multiplicity results are not known. In this
paper we give results on this problem in the simple 2D case of a square:

Ω = (0, π)2 . (4)

It is known [10] that for flat boundaries, the conditions (3) become of mixed Dirichlet-Neumann
type and (1)-(3) read















−ν∆u+ (u · ∇)u+∇p = f in Ω ,
∇ · u = 0 in Ω ,
u1 = ∂xu2 = 0 on {0, π} × (0, π) ,
u2 = ∂yu1 = 0 on (0, π)× {0, π} .

(5)

The mixed conditions are natural, since they guarantee that the boundary term vanishes after an
integration by parts:

∫

Ω

∇u : ∇v = −
∫

Ω

v∆u+

∫

∂Ω

(v1∂nu1 + v2∂nu2) = −
∫

Ω

v∆u .

The pressure p is defined up to an additive constant so that one can fix its mean value, for instance

∫

Ω

p = 0 . (6)

In Section 2 we take advantage of the geometry of the square Ω in order to obtain symmetry
and regularity results for the solutions of (5). Our particular choice of domain allows us to obtain
more precise information and to highlight some phenomena in a simple geometric situation. Still, it
seems plausible that similar phenomena might occur for more general situations as well, including
the case of no-slip boundary conditions (2).
Then we focus our attention on uniqueness and multiplicity results for (5). In Section 3.2 we prove

the following statement, which shows that small viscosities do not necessarily imply multiplicity of
solutions for (5).

Theorem 1. There exists a continuous curve ν 7→ fν from the positive real line (0,∞) to L2(Ω),
with ‖fν‖L2 = 1 for all ν, such that the problem (5)-(6) with f = fν admits a unique solution
(u, p) ∈ H2(Ω)×H1(Ω).
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For other curves ν 7→ fν , nonuniqueness and bifurcations may occur. Although we believe these
to happen in general, we choose a particular forcing term. We take f symmetric with respect to a
reflection about the line y = π/2, that is,

f1(x, π − y) = f1(x, y), f2(x, π − y) = −f2(x, y) ∀(x, y) ∈ Ω . (7)

One then expects that (at least) a solution of (5) has the same symmetry, namely

u1(x, π − y) = u1(x, y), u2(x, π − y) = −u2(x, y), p(x, π − y) = p(x, y), ∀(x, y) ∈ Ω . (8)

We take f analytic and concentrated near the center of the square Ω. Then, as the viscosity de-
creases from ν = +∞, we are able to prove nonuniqueness via bifurcations and symmetry breaking.
More precisely, we have

Theorem 2. There exists an analytic function f , with ‖f‖L2 = 1, satisfying (7) and such that:
• for all ν > 0, (5)-(6) admits an analytic solution (uν , pν) satisfying (8), the curve ν 7→ uν is

analytic and uν is isolated within the subspace of symmetric functions satisfying (8);
• there exists ν1 > 0 such that the solution of (5)-(6) is unique for all ν > ν1;
• at some positive ν0 ≤ ν1 a pitchfork bifurcation occurs and the secondary branches of solutions

that arise do not contain solutions satisfying (8).

The existence of a symmetric solution is somehow standard, see Section 2, and it does not depend
on the specific choice of f . The uniqueness statement for large ν follows from a general statement
as well, see Proposition 4 where a lower bound for ν1 is given. The remaining part of the proof of
Theorem 2 is obtained through computer assistance and is described in Section 4, where we provide
the explicit definition of the function f and the value ν0 of the bifurcation point. Our computer
assisted proof is based on a well-established technique that, in the last few years, has been applied
to many different kind of differential equations, see e.g. [6, 7], and see [32] for a very recent result
on the existence of a periodic solution for the full Navier-Stokes equation. We emphasize that the
proof not only provides the existence of the solutions listed in Theorem 2, but also rigorous and
tight bounds for their Fourier coefficients. Moreover, the proof of the pitchfork bifurcation and of
the existence of the analytic branch of solutions is based on the Taylor expansion of the Fourier
coefficients and is, to the best of our knowledge, completely new. We recall that the analyticity of
the curve ν 7→ uν is known since Foias-Temam [14].
The secondary branch mentioned in Theorem 2 has been determined rigorously only close to the

bifurcation value ν0, except for a few isolated points along a numerically determined continuation of
the branch; see Figure 1. For further details on our bifurcation results, both rigorous and numerical,

0 νν0 ν10 νν0 ν1

Figure 1: Sketch of the bifurcation branch: in black the parts proved through computer assistance, in

gray the parts obtained numerically.
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Figure 2: Symmetric and non symmetric solutions at ν = 1/2500.

we refer to Section 4.
Theorems 1 and 2 are complemented with a number of further results. In Section 2 we determine

explicitly the eigenfunctions of the associated Stokes problem and we make clear how the symmetry
property (7) for f influences the symmetry of some solutions of (5)-(6). In fact, the symmetric
framework also yields a nonuniqueness criterion, see Corollary 1. Besides the expected uniqueness
result for small f (Proposition 4), we prove a statement yielding uniqueness for some special f with
arbitrarily large norm (Theorem 4), whose proof is based on the knowledge of explicit solutions of
(1)-(3): we take advantage of the fact that the eigenfunctions of the Stokes problem are transformed
into conservative vector fields by the nonlinearity. In fact, when f coincides with one of these
eigenfunctions, we expect uniqueness of the solution of (1)-(3) for any value of ν: in Theorem 4 we
obtain a “strange” necessary condition for uniqueness to fail, see (31).
The remaining part of this paper is organized as follows. In Section 3 we prove Theorem 1 and

provide some additional results concerning the uniqueness of the solution. In Section 4 we describe
the functional setting of the computer assisted proof of Theorem 2. In Section 5 we provide the
technical details of the computer assisted proof. Section 6 contains the conclusions and a list of
open problems, some of which appear to be quite challenging and of wide interest from several
points of view.

2 Existence and symmetry of solutions

Most of the results presented in this section are well-known, but it is useful to emphasise some
peculiarities of the problem (5) in the square (4). For this reason, we sketch some steps in the
proofs.
We first introduce the usual spaces of the Helmholtz-Weyl decomposition

G1 = {v ∈ L2(Ω); ∇ · v = 0, v · n = 0 on ∂Ω} , U = G1 ∩H1(Ω) ,
G2 = {v ∈ L2(Ω); ∃g ∈ H1(Ω), v = ∇g} , (9)

where v 7→ n · v denotes the boundary-normal trace operator. It is known that

L2(Ω) = G1 ⊕G2 , G1 ⊥ G2 , (10)
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where orthogonality is with respect to the scalar product in L2(Ω).
Assuming that f ∈ L2(Ω), we say that u ∈ U is a weak solution of (5) if

ν

∫

Ω

∇u : ∇v +

∫

Ω

(u · ∇)u · v =

∫

Ω

fv ∀v ∈ U . (11)

Weak solutions may also be found under the less restrictive assumption that f ∈ H−1(Ω) but, since
our main concern are smooth solutions, we assume here (at least) that f ∈ L2(Ω). In this case,
as we shall see, the solution has the additional regularity u ∈ H2(Ω). Then, (11) implies that the
first equation in (5), seen as an equality of functions in L2(Ω), is satisfied when projected onto G1.
Due to (10), −ν∆u+ (u · ∇)u− f ∈ G2 and, therefore, that there exists p ∈ H1(Ω) such that the
full equation is satisfied in a strong form. This is the reason why the pressure p does not show up
explicitly in the weak formulation (11), see also Lemma 1.
The geometry of Ω will also be used to determine explicitly the eigenfunctions of −∆ in U ,

satisfying the boundary conditions in (5). Let

Ψ1,j,k(x, y) =
(

sin(jx) cos(ky) , 0
)

, Ψ2,j,k(x, y) =
(

0, cos(jx) sin(ky)
)

. (12)

Then the L2−normalized eigenfunctions of −∆ in U are given by

Φj,k(x, y) =
2

π
√

j2 + k2
(−kΨ1,j,k(x, y) + jΨ2,j,k(x, y))

=
2

π
√

j2 + k2

(

−k sin(jx) cos(ky)
j cos(jx) sin(ky)

)

, (j, k = 1, 2, 3, ...) .

(13)

In fact, the eigenfunctions of the Stokes operator are defined up to the addition of the gradient
of an harmonic function, see [28, (1)-(2)-(3)]; here we take such function to be zero.

Remark 1. The eigenfunctions in (13), that will also be used to find explicit solutions of (5) (see
the proof of Theorem 4 below), may be obtained as follows. Consider the (scalar!) eigenfunctions
ϕ of −∆ in H1

0 (Ω), that is,

−∆ϕ = λϕ in Ω , ϕ = 0 on ∂Ω .

The eigenfunctions with separated variables are given by ϕj,k(x, y) = sin(jx) sin(ky) with corre-
sponding eigenvalues λj,k = j2 + k2. The separated-variables-feature excludes, for instance, eigen-
functions that are linear combinations of sin(jx) sin(ky) and sin(kx) sin(jy) (when k 6= j), that
belong to the same eigenspace. Then

Φj,k =
2

π
√

j2 + k2

(

−∂yϕj,k

∂xϕj,k

)

(j, k = 1, 2, 3, ...)

and the corresponding eigenvalue is again given by λj,k = j2 + k2. �

The least eigenvalue λ1,1 = 2 is simple; it is associated to the eigenfunction Φ1,1, and it charac-
terizes the Poincaré embedding constant:

min
u∈U

‖∇u‖2L2

‖u‖2L2

= 2 . (14)

Other eigenvalues λj,j may be simple, for instance λ2,2 = 8, λ3,3 = 18, or λ4,4 = 32. But there are
also multiple eigenvalues: if k 6= j, the eigenvalue λj,k is at least double. Note also that Φ1,7, Φ7,1,
Φ5,5 are all eigenfunctions associated to the eigenvalue λ = 50, which is then triple. Finally, also
higher multiplicities are to be expected. We summarize these results in the following statement.
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Proposition 1. The functions Φj,k in (13) with j, k = 1, 2, 3, ... are a complete L2-orthonormal
basis of U , consisting of eigenfunctions of −∆. The associated eigenvalues are λj,k = j2 + k2.

By exploiting the simple geometry of Ω, we are also able to give a fairly precise picture of the
existence result whenever f possesses some symmetries.

Proposition 2. Assume that f = (f1, f2) ∈ L2(Ω). Then:
• any u ∈ U satisfying (11) is a strong solution u ∈ U ∩H2(Ω) of (5);
• there exists a solution u ∈ U ∩H2(Ω) of (5), coupled with a unique p ∈ H1(Ω) satisfying (6).
Furthermore, if f satisfies (7) a.e. in Ω, then:

• there exists (at least) one strong solution (u1, u2, p) ∈ (U ∩H2(Ω))×H1(Ω) of (5)-(6) satisfying
the symmetry property (8);
• if (u1, u2, p) ∈ (U ∩H2(Ω))×H1(Ω) is a strong solution of (5), so is (v1, v2, q) with

v1(x, y) = u1(x, π − y), v2(x, y) = −u2(x, π − y), q(x, y) = p(x, π − y), ∀(x, y) ∈ Ω . (15)

Proof. The existence of a weak solution follows from the classical Galerkin method, see e.g. the
proof of Theorem 1.4 in [24]. Since f ∈ L2(Ω), one has that u ∈ H2

loc(Ω) by local elliptic regularity.
Then one can obtain that u ∈ H2(Ω) either by arguing as in the proof of [19, Theorem p.403] or
by repeating the reflection argument in the proof of Proposition 3 below, see Remark 2.
If f satisfies (7), we proceed as in [17, Theorem 3.4] in order to obtain the existence of at least

a symmetric solution satisfying (8). We then notice that (15) solves (5) since in the first scalar
equation all the terms maintain their sign whereas in the second scalar equation all the signs change,
see again the proof of Proposition 3 below. �

Note that (8) and (15) hold pointwise (and not just a.e.) because u ∈ H2(Ω) ⊂ C0(Ω) since Ω
is a planar domain. Note also that a completely similar statement holds, with obvious changes, if
f has the “converse” symmetry:

f1(π − x, y) = −f1(x, y), f2(π − x, y) = f2(x, y) for a.e. (x, y) ∈ Ω . (16)

In this case, (8) and (15) should be replaced, respectively, by

u1(π − x, y) = −u1(x, y), u2(π − x, y) = u2(x, y), p(π − x, y) = p(x, y), ∀(x, y) ∈ Ω , (17)

v1(x, y) = −u1(π − x, y), v2(x, y) = u2(π − x, y), q(x, y) = p(π − x, y), ∀(x, y) ∈ Ω . (18)

Proposition 2 and this variant will be used to obtain multiplicity results, see Corollary 1 below.
For our computer assisted proofs we need much more regularity of the forcing term f in (5).

Recalling (12) and given ρ > 1, denote by Cρ ⊂ L2(Ω) the space of functions

f =
∑

i,j,k

fijkΨi,j,k (fijk ∈ C) (19)

such that
‖f‖ρ :=

∑

i,j,k

|fijk|ρj+k < +∞ . (20)

The sum in (19) and (20) ranges over {1, 2}×N×N, with the triples (1, 0, k) and (2, j, 0) excluded.
Notice that these functions extend analytically to the complex domain |ℑx| < log ρ and |ℑy| < log ρ.
For a forcing in this space, we have

Proposition 3. Let ρ > 1 and let f ∈ Cρ. Then any solution (u, p) of (5) is analytic in Ω.
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Remark 2. Proposition 3 is not the consequence of elliptic regularity since ∂Ω is merely Lipschitz.
Instead, it follows directly from the explicit form of f in (19) which enables one to extend the
problem and the solutions by periodicity to the whole plane. In particular, one can extend all the
functions to the rectangle Rx = (−π, π)× (0, π) ⊃ Ω as follows:

g1(x, y) =

{

f1(x, y) if x ≥ 0
−f1(−x, y) if x ≤ 0

g2(x, y) =

{

f2(x, y) if x ≥ 0
f2(−x, y) if x ≤ 0

,

v1(x, y) =

{

u1(x, y) if x ≥ 0
−u1(−x, y) if x ≤ 0

v2(x, y) =

{

u2(x, y) if x ≥ 0
u2(−x, y) if x ≤ 0

,

q(x, y) =

{

p(x, y) if x ≥ 0
p(−x, y) if x ≤ 0

.

Then g is analytic in Rx and (v, q) solves the problem















−ν∆v + (v · ∇)v +∇q = g in Rx

∇ · v = 0 in Rx

v1 = ∂xv2 = 0 on {−π, π} × (0, π)
v2 = ∂yv1 = 0 on (−π, π)× {0, π} ,

since in the first scalar equation all the terms have maintained their sign whereas in the second
scalar equation all the signs have changed; the divergence-free condition is also trivially fulfilled.
Therefore, (v, q) is analytic in Rx except, at most, in its corners. In particular, it is analytic in a
neighborhood of the two points (0, 0) and (0, π) and so is the original solution (u, p).
With the same reflection technique, one may also obtain intermediate regularity, that is: if

f ∈ Hm(Ω) for some integer m ≥ 0, with f as in (19), then any solution (u, p) of (5) satisfies
u ∈ Hm+2(Ω) and p ∈ Hm+1(Ω). �

3 Uniqueness of the solution

3.1 Uniqueness for small forcing f

In the previous section we have analyzed the main properties of the solutions of (5), but we have
not discussed uniqueness of the solution. This is a delicate matter and is the subject of the present
section.
As a straightforward consequence of Proposition 2, we have a nonuniqueness criterion.

Corollary 1. Assume that f ∈ L2(Ω) satisfies (7) (resp. (16)). If (5) admits an asymmetric
solution (u, p) ∈ (U ∩H2(Ω))×H1(Ω) violating (8) (resp. (17)), then (5) admits at least two more
solutions: its reflection (v, q) given by (15) (resp. (18)) and a symmetric solution satisfying (8)
(resp. (17)).
Moreover, if f ∈ L2(Ω) satisfies both (7)-(16) and (5) admits an asymmetric solution (u, p) ∈

(U ∩H2(Ω))×H1(Ω) violating both (8)-(17), then (5) admits at least four more solutions.

When considering the boundary conditions in (5), it is convenient to define the horizontal and
vertical edges of ∂Ω, namely

H = (0, π)× {0, π} and V = {0, π} × (0, π) , (21)
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and then to introduce the spaces of scalar functions

H1
H
= {w ∈ H1(Ω); w = 0 on H} and H1

V
= {w ∈ H1(Ω); w = 0 on V } .

To be more precise, H1
H and H1

V are defined as the closures in H1(Ω) of C∞
c ([0, π] × (0, π)) and

C∞
c ((0, π)× [0, π])) respectively.
A crucial role in uniqueness statements is then is played by the Sobolev constant

S = min
w∈H1

V

‖∇w‖2L2

‖w‖2L4

. (22)

Uniqueness for the Navier-Stokes equations (1) is expected under some smallness assumption on
the data. We are interested in conditions, as precise as possible, with explicit bounds on f . This
is why we give here a sketch of the following uniqueness criterion:

Proposition 4. Let S be as in (22) and assume that f = (f1, f2) ∈ L2(Ω). If

‖f‖L2 ≤ ν2 S
√
2 , (23)

then the solution (u, p) ∈ (U ∩H2(Ω)) ×H1(Ω) of (5)-(6) is unique. If f also satisfies (7) (resp.
(16)), then the unique solution satisfies (8) (resp. (17)).
Moreover, for any f ∈ L2(Ω), if there exists a solution (u, p) ∈ (U ∩H2(Ω))×H1(Ω) of (5)-(6)

satisfying ‖∇u‖L2 < νS, then (u, p) is the unique solution of (5)-(6).

Proof. We divide the proofs in three steps.
Step 1. We determine an a priori bound for the solution of (5). To this end, we claim that

∫

Ω

(u · ∇)v · v = 0 ∀(u, v) ∈ U × U . (24)

Notice that the integral is well-defined due to the embedding U ⊂ L4(Ω) and Hölder’s inequality.
If H and V are as in (21), we have (first component)

∫

Ω

(u1∂xv1 + u2∂yv1)v1 =
1

2

∫

Ω

u1∂xv
2
1 +

1

2

∫

Ω

u2∂yv
2
1

(by parts with respect to x or y) = −1

2

∫

Ω

v21(∇ · u) + 1

2

∫

V

u1v
2
1 +

1

2

∫

H

u2v
2
1 = 0 ,

where, in the last step, we used: ∇ · u = 0 (first integral), u1 = 0 on V (second integral), u2 = 0
on H (third integral). Similarly, one proceeds for the second component thereby proving (24).
Assume that u satisfies (11) and take v = u as test function therein. Then, by (24),

∫

Ω
(u·∇)u·u =

0 and we obtain

ν

∫

Ω

|∇u|2 =
∫

Ω

fu ≤ ‖f‖L2 ‖u‖L2 ≤ ‖f‖L2

‖∇u‖L2√
2

=⇒ ‖∇u‖L2 ≤ ‖f‖L2

ν
√
2

, (25)

where we used (14).
Step 2. We show that

S‖u‖2L4 ≤ ‖∇u‖2L2 ∀u ∈ U , (26)

where S is the constant defined in (22). By switching the roles of x and y, we see that S in (22)
may be defined equivalently by replacing H1

H
with H1

V
. Hence, the (scalar) components u1 ∈ H1

V

8



and u2 ∈ H1
H
of a vector u = (u1, u2) ∈ U , both satisfy (26). Then, by the Hölder inequality and

these scalar versions of (26), we obtain

S2‖u‖4L4 ≤ S2
(

‖u1‖2L4 + ‖u2‖2L4

)2 ≤
(

‖∇u1‖2L2 + ‖∇u2‖2L2

)2
= ‖∇u‖4L2 ,

which proves (26).
Step 3. Conclusion, arguing (twice) by contradiction. We assume that there exist two solutions

u, v ∈ U of (11), namely

ν

∫

Ω

∇u : ∇φ+

∫

Ω

(u · ∇)u · φ =

∫

Ω

fφ , ν

∫

Ω

∇v : ∇φ+

∫

Ω

(v · ∇)v · φ =

∫

Ω

fφ ∀φ ∈ U .

We subtract these two equations so that, if w = u− v, we get

ν

∫

Ω

∇w : ∇φ =

∫

Ω

(v · ∇)v · φ−
∫

Ω

(u · ∇)u · φ ∀φ ∈ U .

Take φ = w and use (24) to obtain

ν

∫

Ω

|∇w|2 = −
∫

Ω

(w · ∇)u · w .

Then, by the Hölder inequality, using (25) and (26), we infer that

ν‖∇w‖2L2 ≤ ‖w‖L4‖∇u‖L2‖w‖L4 ≤ ‖∇w‖2L2

S

‖f‖L2

ν
√
2

. (27)

By going carefully through the above inequalities, we see that at least one of them is strict, if
w 6= 0. Therefore, the last inequality is also strict if w 6= 0, which contradicts (23). This shows
that w = 0, thereby proving uniqueness whenever (23) holds.
Moreover, we notice that if f satisfies (7) as well, then the assertion follows from Proposition 2.
Finally, if there exists a solution (u, p) ∈ (U ∩H2(Ω))×H1(Ω) of (5)-(6) satisfying ‖∇u‖L2 < νS,

we go back to (27) and obtain

ν‖∇w‖2L2 ≤ ‖w‖L4‖∇u‖L2‖w‖L4 ≤ ‖∇w‖2L2

S
νS = ν‖∇w‖2L2 ,

with strict inequality if w 6= 0. This shows that w = 0, and that (u, p) is the unique solution. �

Proposition 4 ensures uniqueness of the solution (u, p) of (5), provided that f is small. But it
says nothing about uniqueness (or multiplicity) of solutions for large values of ‖f‖L2 . This is the
reason why Theorem 1 appears important and we prove it in the next section.

3.2 Proof of Theorem 1

In this section we prove the following statement, equivalent to Theorem 1, up to a scaling. We
maintain here a constant viscosity ν and we let ‖f‖L2 vary.

Theorem 3. Let ν > 0. There exists a continuous curve α 7→ fα from the positive real line to
L2(Ω), with ‖fα‖L2 = α for all α, such that the problem (5)-(6) with f = fα admits a unique
solution (u, p) ∈ H2(Ω)×H1(Ω).

9



Proof. Consider the eigenfunctions Φj,k in (13) and, for any positive integer n, define the spaces

Vn = span{Φ1,k; k ≥ n} ,

as well as the orthogonal projectors Pn : U → Vn. Then we obtain the improved Poincaré constants

min
v∈Vn

‖∇v‖2L2

‖v‖2L2

= 1 + n2 , (28)

to be compared with (14). Next, we claim that

if fα ∈ Vn and ‖fα‖L2 = α ≤ ν2S
√
1 + n2, then (5) admits a unique solution. (29)

In order to prove (29), fix n ≥ 1 and choose any fα satisfying the assumptions therein. The
existence of a solution (u, p) of (5) follows from Proposition 2. Then take v = u as test function in
(5) and proceed as in the proof of (25) in order to obtain

ν

∫

Ω

|∇u|2 =
∫

Ω

fαu ≤ α ‖Pnu‖L2 ≤ α
‖∇u‖L2√
1 + n2

≤ ν2S‖∇u‖L2 =⇒ ‖∇u‖L2 ≤ νS ,

where we used (28). If u 6= 0, then one of the above inequalities is strict, that is, ‖∇u‖L2 < νS.
Uniqueness then follows from the last statement in Proposition 4: this proves (29).
Finally, we put γn = ν2S

√
1 + n2 and δn = (γn + γn+1)/2, with γ0 = 0. Then we construct the

curve α 7→ fα as follows:
– for all n ≥ 0 and α ∈ (γn, δn], we take fα = αΦ1,n+1;
– for all n ≥ 0 and α ∈ [δn, γn+1], we take

fα = α
(γn+1 − α)Φ1,n+1 + (α− δn)Φ1,n+2

√

(γn+1 − α)2 + (α− δn)2
∈ Vn+1 .

A sketch of this curve is given in Figure 3 below. Note that, for any α > 0, ‖fα‖L2 = α and
uniqueness for (5) follows from (29). This completes the proof. �

Figure 3: Continuous path α 7→ fα connecting 0 and ∞ for which (5) admits a unique solution.

Clearly, it is possible to build many different curves α 7→ fα with the same properties, mostly
displaying a zig-zag path as in Figure 3. In the next section, we describe the behavior along a
specific straight line, which involves the bifurcation described in Theorem 2.
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3.3 Larger bounds for uniqueness for some special f

Theorem 3 (and Figure 3) show that there exist a continuous piecewise linear curve in L2(Ω)
connecting 0 and ∞ such that if f belongs to this curve, then (5) admits a unique solution.
One can then wonder whether this holds true for some straight lines as well. In this respect, an
interesting case occurs whenever f is an eigenfunction of −∆ in U . In the next statement we
improve the uniqueness threshold of Proposition 4 for some special f and we describe a property
of possible multiple solutions when ‖f‖L2 becomes large.

Theorem 4. Let j, k ≥ 1 and define

Υj,k(x, y) =
4
(

k2 sin2(jx) + j2 sin2(ky)
)

π2(j2 + k2)
.

Let fα = αΨj,k with α ∈ R and Ψj,k as defined in (13). If ‖fα‖L2 ≤ ν2S
√

j2 + k2, with S as in
(22), then (5)-(6) admits a unique solution (u, p) ∈ (U ∩H2(Ω))×H1(Ω) which is explicitly given
by

u =
α

ν(j2 + k2)
Φj,k , p =

α2

ν2(j2 + k2)2

(

2

π2
−Υj,k

)

. (30)

Moreover, (30) is the “largest solution”, that is: if ‖fα‖L2 = |α| > ν2S
√

j2 + k2 and (5)-(6)
admits another solution (v, q), different from (30), then

νS ≤ ‖∇v‖L2 < ‖∇u‖L2 ,

∫

Ω

(v · ∇)v · u > 0 , v2∆v1 6≡ v1∆v2 in Ω . (31)

Proof. We first remark that
(Φj,k · ∇)Φj,k = ∇Υj,k (32)

by explicit computation, so that (Φj,k · ∇)Φj,k ∈ G2, see (9). Therefore, (30) is indeed a smooth
solution of (5)-(6) and the uniqueness statement for small |α| is a straightforward consequence of
a generalized version of (29).

Assume now that, for some |α| > ν2S
√

j2 + k2, there exists another solution (v, q) of (5)-(6).
The lower bound for ‖∇v‖L2 in (31) follows from Proposition 4 since, otherwise, v would be the
unique solution (5).
In view of (30) and (32) we know that (u · ∇)u ∈ G2. Therefore, if we test the equation (11)

satisfied by u with v, we obtain (recall fα = αΦj,k)

ν

∫

Ω

∇u : ∇v = α

∫

Ω

Φj,kv .

Moreover, if we test (11) satisfied by v with v itself and we recall (24), we get

ν

∫

Ω

|∇v|2 = α

∫

Ω

Φj,kv .

By combining these two identities, we infer that

∫

Ω

|∇v|2 =
∫

Ω

∇u : ∇v . (33)
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In turn, (33) yields
∫

Ω

|∇u|2 −
∫

Ω

|∇v|2 =
∫

Ω

|∇u|2 − 2

∫

Ω

∇v :∇u+

∫

Ω

|∇v|2 =
∫

Ω

|∇(u−v)|2 > 0

since v 6= u. This proves the upper bound for ‖∇v‖L2 in (31).
From (30) we infer that

‖∇u‖2L2 =
α2

ν2(j2 + k2)
.

Hence, if we test (11), satisfied by v, with u, then we obtain

ν

∫

Ω

∇v :∇u+

∫

Ω

(v · ∇)v · u = α

∫

Ω

Φj,ku =
α2

ν(j2 + k2)
= ν

∫

Ω

|∇u|2 ,

where we used the explicit form of u in (30) and the fact that ‖Φj,k‖L2 = 1. By using again (33),
we then obtain

1

ν

∫

Ω

(v · ∇)v · u =

∫

Ω

|∇u|2 −
∫

Ω

∇v : ∇u =

∫

Ω

|∇(u− v)|2 > 0

since v 6= u. This proves the second property in (31).
Finally, assume for contradiction that v2∆v1 ≡ v1∆v2 in Ω. Since ∇ · v = 0, we then have that

v2(∂xxv1 + ∂yyv1) = v1(∂xxv2 + ∂yyv2) ⇐⇒ v1∂xyv1 + v2∂yyv1 = v1∂xxv2 + v2∂xyv2
⇐⇒ ∂yv1∂xv1 + v1∂xyv1 + ∂yv1∂yv2 + v2∂yyv1 = ∂xv1∂xv2 + v1∂xxv2 + ∂xv2∂yv2 + v2∂xyv2

⇐⇒ ∂y
(

v1∂xv1 + v2∂yv1
)

= ∂x
(

v1∂xv2 + v2∂yv2
)

⇐⇒ (v · ∇)v ∈ G2

so that
∫

Ω
(v · ∇)v · u = 0 by (10), contradicting the second property in (31). �

Several comments are in order. Theorem 4 may be complemented with some information about
the symmetry of the force and of the solution. If k is even, then Φj,k satisfies (7) and the solution
(u, p) in (30) satisfies (8). If j is even, then Φj,k satisfies (16) and the solution (u, p) in (30) satisfies
(17). Finally, if both j and k are even, then Φj,k satisfies both (7)-(16) and the solution (u, p) in
(30) satisfies both (8)-(17).
Although (31) may apply in more general settings, Theorem 4 gives no practical condition en-

suring multiplicity of solutions. It appears out of reach to detect a bifurcation through classical
arguments since the linearized equations, around the solution u in (30), read

−ν∆w + (u · ∇)w + (w · ∇)u = 0 , ∇ · w = 0 in Ω .

These equations, and their weak formulation, are naturally associated to the bilinear form

au(w,ϕ) := ν

∫

Ω

∇w : ∇ϕ+

∫

Ω

(u · ∇)w · ϕ+

∫

Ω

(w · ∇)u · ϕ

over U × U ; this form satisfies

∣

∣au(w,ϕ)
∣

∣ ≤ Cu‖∇w‖L2‖∇ϕ‖L2 , au(w,w) = ν‖∇w‖2L2 +

∫

Ω

(w · ∇)u · w ∀(w,ϕ) ∈ U2 .

The first inequality shows that au(·, ·) is continuous but the second formula shows that it fails to be
coercive if u is large, especially because of the sign arising from (31) (recall that the sign changes if
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we switch u and w). Since u in (32) increases linearly with |α|, the Lax-Milgram Theorem cannot
be applied to exclude bifurcations. Clearly, for small |α| and u the bilinear form au is coercive but,
in this case, we are in the uniqueness regime where bifurcation is automatically excluded.
We searched for bifurcations when ‖fα‖L2 = |α| > ν2S

√

j2 + k2 in the case fα = αΦj,k, and
we found numerical evidence that there are none, see Remark 3. Thus we propose the following
conjecture, with a weak and a strong version.

Conjecture 1. For any j, k ∈ N and α ∈ R, (5) with fα = αΦj,k admits a unique solution. Or, at
least, the branch of solutions (u, p) given in (30) is isolated from other possible solutions of (5).

Finally, let us mention that, by repeating the arguments by Foias-Temam [13, Theorem 2.1], one
obtains the following statement.

Proposition 5. There exists a dense open set O ⊂ R × L2(Ω) such that if (ν, f) ∈ O then the
problem (5)-(6) admits a finite number of solutions (u, p) ∈ (U ∩H2(Ω))×H1(Ω).

4 Proof of Theorem 2

4.1 Scaling and equivalent formulation

To study (5) numerically, and to make a computer assisted proof of the existence of solutions, it is
convenient to define β = ν−1 and scale (u, p) to (

√
βu, βp), so that (5) becomes















−∆u+ (u · ∇)u+∇p = βf in Ω ,
∇ · u = 0 in Ω ,
u1 = ∂xu2 = 0 on {0, π} × (0, π) ,
u2 = ∂yu1 = 0 on (0, π)× {0, π} .

(34)

We look for solutions in the space Cρ defined in (19), with ρ = 33
32
. For u =

(

u1, u2

)

∈ Cρ we write

u =
∑

i,j,k

uijkΨi,j,k , (35)

where the vector fields Ψi,j,k are defined in (12) and satisfy the boundary conditions in (34). Fur-
thermore, the orthogonal projection onto the space G1 of solenoidal vector fields is given by

P
(

c1Ψ1,j,k + c2Ψ2,j,k

)

=
(c1k − c2j)k

j2 + k2
Ψ1,j,k −

(c1k − c2j)j

j2 + k2
Ψ2,j,k . (36)

Applying P on both sides of the first equation in (34) yields

P(−∆)u = P
[

βf − (u · ∇)u
]

,

while the remaining equations in (34) show that u = Pu. As it happens for the variational charac-
terization (11), the pressure p does not appear in the equation, when projected onto G1:

Lemma 1. Let f ∈ Cρ. For u ∈ Cρ define

Fβ(u)
def

= P(−∆)−1
P
[

βf − (u · ∇)u
]

. (37)

Equation (34) admits a solution u ∈ Cρ if and only if u = Fβ(u).
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Proof. Since functions in Cρ satisfy the boundary conditions in (34), and Ω is simply connected,
then u ∈ Cρ is a solution of (34) if and only if both u and f − (u · ∇)u are divergence free. When
restricted to Cρ, the Laplacian commutes with the projection P, therefore if u = Fβ(u), then u is
divergence free and so is f − (u · ∇)u. �

We take f = (f1, 0), where

f1(x, y) =
∑

j,k=1,...,11

fjkΨ1jk(x, y),

with the coefficients fjk being approximations of the coefficients f̂jk of the expansion of a Gaussian
centered in (π/2, π/2), that is

∑

j,k≥1

f̂jkΨ1jk(x, y) = −e−30((x−π/2)2+(y−π/2)2) .

For the exact values of the coefficients fjk we refer to the file data/f in [5], where they are stored
in hexadecimal format. For comparison with the uniqueness result presented in Proposition 4, we
note that ‖f‖L2 = 0.1578 . . .
By recalling the change of parameters leading to (34), Theorem 2 will be proved once we prove

the following statement.

Theorem 5. For all β ∈ [0, 2500] equation (34), with f as described above, admits a solution
uβ ∈ Cρ symmetric with respect to the reflection y 7→ π/2 − y, see (8). The function β 7→ uβ is
analytic. The solution uβ is isolated within the subspace of symmetric functions satisfying (8). At
some β ∈ [2065 + 1485 · 2−11, 2065 + 1487 · 2−11] there is a pitchfork bifurcation, and the secondary
branches are not symmetric. Equation (34) also admits non-symmetric solutions at β = 2100,
β = 2200 and β = 2500. The solution at the bifurcation point satisfies ‖∇u‖L2 = 66.83 . . .

Remark 3. As observed in Theorem 4, when the forcing term is proportional to Φj,k and suffi-
ciently small, there exists a unique solution also proportional to Φj,k and, for such solution, the
quadratic term is a gradient, therefore its projection on G1 is zero. Then the eigenvalues of DFβ

are proportional to β. We have numerical evidence that such eigenvalues lie all on the imaginary
axis for some arbitrary choice of β, therefore no eigenvalue can reach the value 1 for any value of
β, and since that is a necessary condition to have a bifurcation we conjecture that no bifurcation
takes place.

4.2 Branches

Denote by Dρ the subspace of Cρ characterized by the symmetry (7). Note that Fβ(Dρ) ⊂ Dρ and
Pf ∈ Dρ. To prove that (34) admits a solution u(β) ∈ Dρ for each β ∈ [0, 2500], and that the
function β 7→ u(β) is analytic, we write all the coefficients in the Fourier expansion of u as Taylor
polynomials in β:

u(β) =
∑

i,j,k

aijk(β)Ψi,j,k , aijk(β) =
L
∑

l=0

aijkl

(

β − b

δ

)l

, (38)

where aijkl = 0 if k is odd. As a first step, we choose some Fourier-Taylor polynomial ū that is an
approximate fixed point of Fβ, and some finite rank operator M such that I−M is an approximate
inverse of I−DFβ(ū). Then for h ∈ Dρ we define

Nβ(h) = Fβ(ū+ Λh)− ū+Mh , Λ = I−M . (39)
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Clearly, if h is a fixed point of Nβ, then u = ū+Λh is a fixed point of Fβ and, hence, u solves (34)
in view of Lemma 1. Given r > 0 and w ∈ Cρ, let Br(w) = {v ∈ Cρ : ‖v − w‖ρ < r}. We partition
the interval [0, 2500] into six subintervals. The center b and width δ for each subinterval are shown
in Table 1. Then we prove the following lemma with the aid of a computer, see Section 5.

i b δ L
1 250 250 10
2 750 250 10
3 1200 200 7
4 1600 200 7
5 2000 200 6
6 2350 150 6

Table 1: Branch intervals

Lemma 2. The following holds for each i ∈ {1, . . . , 6}. Define b, δ, and L as in row i of Table
1. There exist a Fourier-Taylor polynomial ū(β) of degree L as described in (38), a bounded linear
operator M(β) on Dρ, and positive real numbers ε, r,K satisfying ε+Kr < r, such that

‖Nβ(0)‖ ≤ ε , ‖DNβ(v)‖ ≤ K , ∀v ∈ Br(0) (40)

holds for all {β ∈ C : |β − b| < δ}. Furthermore, if i < 6, then either

Bri(u(δ
i + bi)) ⊂ Bri+1(u(δi+1 − bi+1)) , or Bri+1(u(δi+1 − bi+1)) ⊂ Bri(u(δ

i + bi)) , (41)

where a superscript i refers to the data in row i of Table 1.

This lemma, together with the Contraction Mapping Theorem and the Implicit Function Theo-
rem, implies the following:

Proposition 6. For each β ∈ [0, 2500] there exists a fixed point uβ ∈ Br(uβ) of Fβ, and the curve
β 7→ uβ is analytic.

4.3 Bifurcations

Let us write the fixed point equation for Fβ as F(β, u) = 0, where

F(β, u)
def

= Fβ(u)− u . (42)

Numerically, we observe that DF(β, .) has an eigenvalue zero for β near b = 2065+743 · 2−10. This
suggests the possibility of a bifurcation which takes place in a two dimensional submanifold. We
parametrize this surface by using the parameter β and a coordinate λ for the range of a suitable
one-dimensional projection ℓ. Then we define a two-parameter family of functions u(α, λ) by solving

(I− ℓ)F
(

β, u(β, λ)
)

= 0 , ℓu(β, λ) = λû , (43)

where û is a fixed nonzero function in the range of ℓ. For û we choose a Fourier polynomial that
approximates the eigenvector of DF(b, .) for the eigenvalue closest to zero. The projection ℓ is
defined by

ℓu = ℓ0(u)û , ℓ0(u) =
∑

i,j,k=1,2

uijkûijk , (44)

15



where uijk, ûijk are the Fourier coefficients of u and û, respectively. Our goal is to show that for a
rectangle I×J in the parameter space, the equation (43) has a smooth and locally unique solution
u : I × J → Cρ . Then locally, the solutions of F(β, u) = 0 are determined by the zeros of the
function g,

g(β, λ)û = ℓF
(

β, u(β, λ)
)

. (45)

We write all the coefficients in the Fourier expansion of u as Taylor polynomials in β, λ:

u(β, λ) =
∑

i,j,k

aijkΨ1jk , aijk =
∑

l+m≤4

aijklm

(

β − b

δ

)l (
λ

λ1

)m

, (46)

where δ = 2−11 and λ1 = 2−6.
The equation (43) for u = u(β, λ) is equivalent to the fixed point equation for the map Fβ,λ ,

defined by
Fβ,λ(u) = (I− ℓ)Fβ(u) + λû . (47)

As in the last subsection, we use the contraction mapping principle to solve this fixed point problem.
In place of the map defined in (39), we use the map Mβ,λ defined by

Mβ,λ(h) = Fβ,λ(ū+ Λh)− ū+Mh , Λ = I−M . (48)

Here, ū is an approximate fixed point of Fb,0, and M is a finite rank operator such that Λ = I−M
is an approximate inverse of I − DFb,0(ū). By the Implicit Function Theorem, the solution then
depends analytically on the two parameters β and λ. Denote by Dr(z) a disk in the complex plane
of radius r and center z. Let I = Dδ(b) and J = Dλ1

(0). The following lemma is proved with the
aid of a computer; see Section 5.

Lemma 3. There exists a Fourier polynomial û, a Fourier-Taylor polynomial ū(β, λ) as in (46),
and positive constants ε, r,K satisfying ε+Kr < r, such that

‖Mβ,λ(0)‖ ≤ ε , ‖DMβ,λ(v)‖ ≤ K . (49)

for all v ∈ Br(0) and for all β ∈ I and all λ ∈ J .

As we had in the previous subsection, this lemma, together with the contraction mapping theorem
and the implicit function theorem, implies the following:

Proposition 7. For every (β, λ) in I × J , the equation (43) has a unique solution u(β, λ) in
Br(ū(β, λ)), and the map (β, λ) 7→ u = u(β, λ) is analytic. For any given real β ∈ I, a function u
in B∩ℓ−1(Jû) is a fixed point of Fβ if and only if u = u(β, λ) for some real λ ∈ J , and g(β, λ) = 0.

This leaves the problem of verifying that the zeros of g correspond to a pitchfork bifurcations.
A sufficient set of conditions for the existence of such a bifurcation is given below, see [6, Lemma
3.4] for a proof.

If f is any differentiable function of two variables, denote by ḟ and f ′ the partial derivatives of
f with respect to the first and second argument, respectively. Let I = [β1, β2] and J = [−b, b].

Lemma 4. (pitchfork bifurcation) Let g be a real-valued C3 function on an open neighborhood of
I × J , such that g(β, 0) = 0 for all β ∈ I, and
(1) g′′′ > 0 on I × J, (2) ġ′ < 0 on I × J,
(3) g′(β1, 0)± 1

2
bg′′(β1, 0) > 0, (4) ±g(β2,±b) > 0, (5) g′(β2, 0) < 0.

Then g(β, λ) = λG(β, λ) for some C2 function G, and the solution set of G(β, λ) = 0 in I × J is
the graph of a C2 function β = a(λ), defined on a proper subinterval J0 of J . This function takes
the value β2 at the endpoints of J0 , and satisfies β1 < a(z2) < β2 at all interior points of J0 , which
includes the origin.
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The following lemma is proved with the aid of a computer; see Section 5.

Lemma 5. For any u(β, λ) ∈ Br(ū(β, λ)) the function g(β, λ)
def

= −ℓ0(F(u(β, λ))) satisfies the
assumptions of Lemma 4.

The proof of Theorem 2 is concluded by joining the results of Propositions 6 and 7, together
with Lemmas 4 and 5.

5 Computer estimates

5.1 Verifying Lemmas 2, 3 and 5

In this section we provide a rough description of the proofs of Lemmas 2, 3 and 5. A complete and
detailed description can be found in [5].
The proofs are carried out with the aid of a computer. Our proof of Lemma 2 involves the

following steps. Consider the parameter values (b, δ) from a fixed but arbitrary row in Table 4.2.
As a first step, we determine a Fourier-Taylor polynomial ūβ which is an approximate fixed point of
Fβ and an approximate inverse of I−DFβ(ūβ) of the form Λ(β) = I−M(β), where M(β) has finite
rank and is a polynomial in β. The remaining steps are rigorous: we compute an upper bound ε on
the norm of Fβ(0), and an upper bound K on the operator norm of DFβ(h) that holds for all h of
norm ε or less. This is done simultaneously for all values of {β ∈ C : |β − b| < δ}. After verifying
that K < 7

8
, we choose a positive r < 8ε in such a way that ε+Kr < r.

The same approach is used to prove Lemma 3. Concerning the computation of bounds, we refer
to Subsection 5.2 below.
The proof of Lemma 5 consists in verifying some bounds on the derivatives of the function g.

Let h(z1, z2) = g(b + β1z1, γ0 + γ1z2), and note that h is analytic in {z ∈ C
2 : |z1| < 1, |z2| < 1}

by Proposition 6. Given the Fourier-Taylor polynomial ū(β, λ) of Lemma 3, we compute a Taylor
polynomial P (z1, z2) of degree 4 and a bound E, such that that

sup
|z1|<1,|z2|<1

|P (z1, z2)− h(z1, z2)| < E . (50)

Derivatives of analytic functions such as f = (P − h)(., z2) or f = (P − h)(z1, .) can be estimated
by using the standard Cauchy bound: if f(z) is an analytic function in the unit disk such that
sup|z|≤1 |f(z)| < E, then for 0 < ̺ < 1 and n > 0

sup
|z|≤̺

|f (n)(z)| ≤ n!

(1− ̺)n
E . (51)

Using ̺ = 205/256, this bound is applied (separately in each variable) to verify the conditions in
Lemma 4.

5.2 Technicalities

The methods used here can be considered perturbation theory: given an approximate solution,
prove bounds that guarantee the existence of a true solution nearby. But the approximate solutions
needed here are too complex to be described without the aid of a computer, and the number of
estimates involved is far too large.
The first part (finding approximate solutions) is a strictly numerical computation. The rigorous

part is still numerical, but instead of truncating series and ignoring rounding errors, it produces
guaranteed enclosures at every step along the computation. This part of the proof is written in
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the programming language Ada [3]. The following is meant to be a rough guide for the reader who
wishes to check the correctness of our programs. The complete details can be found in [5].
In the present context, a “bound” on a map f : X → Y is a function F that assigns to a set

X ⊂ X of a given type (Xtype) a set Y ⊂ Y of a given type (Ytype), in such a way that y = f(x)
belongs to Y for all x ∈ X. In Ada, such a bound F can be implemented by defining a procedure
F(X : in Xtype ; Y : out Ytype).
To represent balls in a real Banach algebra X with unit 1 we use pairs S=(S.C,S.R), where

S.C is a representable number (Rep) and S.R a nonnegative representable number (Radius). The
corresponding ball in X is 〈S,X〉 = {x ∈ X : ‖x− (S.C)1‖ ≤ S.R}.
When X = R the data type described above is called Ball. Our bounds on some standard func-

tions involving the type Ball are defined in the packages Flts Std Balls. Other basic functions
are covered in the packages Vectors and Matrices. Bounds of this type have been used in many
computer-assisted proofs; so we focus here on the more problem-specific aspects of our programs.
The computation and validation of branches involves Taylor series in one variable, which are

represented by the type Taylor1 with coefficients of type Ball. The definition of the type and
its basic procedures are in the package Taylors1. Given a Radius ρ, consider the space Tρ of all
real analytic functions g(t) =

∑

n gnt
n on the interval |t| < ρ, obtained by completing the space of

polynomials with respect to the norm ‖g‖ρ =
∑

n |gn|ρn. Given a positive integer D, a Taylor1 is a
triple P=(P.C,P.F,P.R), where P.F is a nonnegative integer, P.R = ρ, and P.C is an array(0..D)
of Ball. The corresponding set in 〈Taylor1,Tρ〉 is defined as

〈P,Tρ〉 =
m−1
∑

n=0

〈

P.C(n),R
〉

pn +
D
∑

n=m

〈

P.C(n),Tρ

〉

pn , pn(t) = tn , (52)

where m = min(P.F, D + 1). For the operations that we need in our proof, this type of enclosure
allows for simple and efficient bounds. We also need a type Taylor2, representing Taylor series of
two variables, for the proof of Lemmas 3 and 5, which is defined similarly in the package Taylors2.
Finally, solutions of the equation (34) are given as Fourier series in two variables, represented by

the type Fourier2 with coefficients in some Banach algebra with unit X . Consider the space Fρ

of all real analytic functions in two variables periodic of period 2π in both variables, obtained by
completing the space of Fourier polynomials p(w, z) =

∑

jk pjke
i(jw+kz), pjk ∈ X , with respect to

the norm ‖p‖ρ =
∑

jk ‖pjk‖ρj+k.
The type Fourier2 consists of a triple F=(F.T,F.C,F.E), where F.T is a record identifying the

parity (see below), F.C is an array(0..K,0..K) of Ball, and F.E is an array(0..2*K,0..2*K)
of Radius. Let fj,k = The corresponding set 〈F,Fρ〉 is the set of all function u = p+h ∈ Fρ, where

p(w, z) =
K
∑

j,k=1

〈F.C(J, K),X〉 ei(jw+kz) , h =
2K
∑

j,k=1

hj,k , hj,k(w, z) =
∑

m≥j,n≥k

hj,k
m,n e

i(mw+nz) , (53)

with pJ,K ∈ 〈F.C(J, K),X〉 and ‖hJ,K‖ ≤ F.E(J, K), for all J,K ≥ 1. To be more precise, instead
of (53) we use cosine series (parity 0) and sine series (parity 1). The parities are specified by the
component F.T. The definition of the type and its basic procedures are in the package Fouriers2.
For the operations that we need in our proof, this type of enclosure allows for simple and efficient
bounds.
We note that Fourier2 (just like Taylor1 and Taylor2) allows a generic type Scalar for its

coefficients; and this Scalar can be again a Taylor (or Fourier) series. This feature makes it easy
to represent Fourier series whose coefficients depend on parameters.
In particular, our enclosures for the functions described in (38) use an instantiation of Fourier2

with Scalar = TScalar, where TScalar is an istantiation of Taylor1 with Scalar = Ball. The
corresponding type VF describes (sets of) vector field in the spaces Cρ and Dρ. These types are
defined in the package Taylors1.Foor. Types and bounds that are specific to the Navier-Stokes
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equation (34) are defined in the child package Fouriers2.VFs. This includes the type VF (a
pair of Fouriers2) which is used to specify enclosures on vector fields in the spaces Cρ, a bound
NegInvLap on −∆−1, a bound ProjDivFree on the projection onto divergence-free vector fields, a
bound NonLinearAdv on the map u 7→ f − u · ∇u, and a bound DNonLinearAdv on the derivative
of NonLinearAdv.
Analogous types, with Taylor1 replaced by Taylor2, are defined in the package Taylors2.Foor.

These types are used as enclosures for for the functions described in (46). A bound on the map Fβ

defined in (37) is implemented by the procedure GMap in the package Taylors1.Foor.Fix. Defining
and estimating a contraction like Nβ is a common task in many of our computer-assisted proofs.
An implementation is done via two generic packages, Linear and Linear.Contr. For a description
of this process we refer to [7]. The only problem-dependent parts here are the bound GMap, and the
type VFMode defined in Taylors1.Foor. The same approach is used for the estimates (49) on the
contraction Cβ,λ defined in (48). The bound GMap on the map Fβ,λ defined in (47) is implemented
in the package Taylors2.Foor.Fix.

6 Concluding remarks and open problems

In this paper we were able to exhibit a bifurcation for the Navier-Stokes equations under Navier
boundary conditions (5) for a particular force f . We exploited the geometry of the square Ω and we
highlighted possible symmetry breaking of the solutions. We were also able to follow some branches
of arbitrarily large forces for which uniqueness for (5) holds. Although our results shed some light
on these fairly difficult topics, many problems remain open. Among them are the following.

Problem 1. Classical arguments in critical point theory show that a (scalar) minimizer w ∈ H1
V

of the ratio ‖∇w‖2L2/‖w‖2L4 satisfies the Euler-Lagrange equation

−∆w = w3 in Ω , w = 0 on V , ∂yw = 0 on H .

If we take w0 ∈ H1
V
independent of y we find a boundary value problem for an ODE, that is,

w′′
0(x) + w0(x)

3 = 0 in (0, π) , w0(0) = w0(π) = 0 , (54)

whose solution is given by

w0(x) =
T

2π
cn

(

T

2π

(

x− π

2

)

,
1√
2

)

, T = 4

∫ π/2

0

dt
√

1− sin2 t
2

≈ 7.416 ,

where cn denotes the Jacobi cosine, see [1]. Multiplying (54) by w0 and integrating by parts yields

∫ π

0

w′
0(x)

2 dx =

∫ π

0

w0(x)
4 dx =

T 4

16π4

∫ π

0

cn

(

T

2π

(

x−π

2

)

,
1√
2

)4

dx =
16

3π3





∫ π/2

0

dt
√

1− sin2 t
2





4

.

Therefore, if we view w0 as a function of two variables, we obtain the following bound for S in (22):

S = min
w∈H1

V

‖∇w‖2L2

‖w‖2L4

≤ ‖∇w0‖2L2

‖w0‖2L4

=

∫ π

0

∫ π

0
w′

0(x)
2 dx dy

(
∫ π

0

∫ π

0
w0(x)4 dx dy)1/2

=
√
π

[
∫ π

0

w0(x)
4dx

]1/2

≈ 1.4257 .

(55)
We do not know if the minimizers for (22) depend on x only. Is the inequality (55) an equality?
The precise knowledge of S would allow to obtain more precise statements for uniqueness, see
Proposition 4 and Theorem 4.
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Several further problems were left open. We summarize them in the following list.

• Is it ν0 = ν1 in Theorem 2 and for any f? In other words, for general f is uniqueness of
the solution of (5) lost due to a bifurcation or to the appearance of isolated solutions, far
away from the symmetric branch? This uncertainty also occurs for (possibly inhomogeneous)
Dirichlet problems, see Théorème 3.3 in [14] and the subsequent picture therein.

• Do the results obtained in the present paper hold in more general situations? That is, can
Theorems 1 and 2 be extended to any planar bounded domain Ω, and to more general forces
f? Can the same technique be extended to 3D domains?

• Is it possible to find g ∈ L2(Ω) such that equation (5) with f = αg admits a unique solution
for all α ∈ [0,+∞)? This problem is related to Conjecture 1.

• The bifurcation branches obtained in Theorem 5 only contain non-symmetric solutions. Is it
possible to obtain multiplicity of symmetric solutions satisfying (8)? Alternatively, if f satis-
fies (7), is there always a unique symmetric solution? This problem appears quite challenging
also from a numerical point of view: in a symmetric channel containing a circular cylinder,
Sahin-Owens [29, Fig.6] (see branches 1, 3, 5 therein) numerically found different symmetric
solutions for suitable Reynolds numbers, but for different ratio between the width of the
channel and the diameter of the cylinder. Form a theoretical point of view, the answer to this
question would enable to understand whether the bifurcation from the symmetric solution is
both a necessary and a sufficient condition for the appearance of a lift force on a symmetric
obstacle immersed in the fluid, see [17].

• Can the construction of eigenvectors of the Stokes problem, as described in Remark 1, be
extended to more general domains? Here we exploited the geometry of the square Ω, while
in general domains this issue appears to be much more involved. Let us mention that also
under the no-slip boundary conditions (2), explicit eigenvalues and eigenfunctions are known
only in special domains, see [28] and references therein.
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