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Abstract

With the help of time-dependent scattering theory on the observable algebra of in-
finitely extended quasifree fermionic chains, we introduce a general class of so-called
right mover/left mover states which are inspired by the nonequilibrium steady states for
the prototypical nonequilibrium configuration of a finite sample coupled to two thermal
reservoirs at different temperatures. Under the assumption of spatial translation invari-
ance, we relate the 2-point operator of such a right mover/left mover state to the asymp-
totic velocity of the system and prove that the system is thermodynamically nontrivial in
the sense that its entropy production rate is strictly positive. Our study of these not neces-
sarily gauge-invariant systems covers and substantially generalizes well-known quasifree
fermionic chains and opens the way for a more systematic analysis of the heat flux in such
systems.

Mathematics Subject Classifications (2010) 46L60, 47B15, 82C10, 82C23.

Keywords Open systems; nonequilibrium quantum statistical mechanics; quasifree fermions;
Hilbert space scattering theory; right mover/left mover state; nonequilibrium steady state;
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1 Introduction

The rigorous study, from first principles, of open quantum systems is of fundamental im-
portance for a deepened understanding of their thermodynamic properties in and out of
equilibrium. Since, by definition, open quantum systems have a very large number of de-
grees of freedom and since the finite accuracy of any feasible experiment does not allow
an empirical distinction between an infinite system and a finite system with sufficiently many
degrees of freedom, a powerful strategy consists in approximating (in a somewhat reversed
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sense) the actual finite system by an idealized one with infinitely many degrees of freedom
(see [26] for an extensive discussion of this idealization and its implications). Furthermore, it
is conceptually more appealing and often mathematically more rigorous to treat the idealized
system from the outset in a framework designed for infinite systems rather than taking the
thermodynamic limit at an intermediate or the final stage.

One of the most important axiomatic frameworks for the study of such idealized infinite
systems is the so-called algebraic approach to quantum mechanics based on operator al-
gebras. Indeed, after having been heavily used from as early as the 1960s on, in particular
for the quantum statistical description of quantum systems in thermal equilibrium (see, for
example, [16, 28, 14]), the benefits of this framework have again started to unfold more
recently in the physically much more general situation of open quantum systems out of equi-
librium. Although the most interesting phenomena which emerge on the macroscopic level
are not restricted to systems in thermal equilibrium but, quite the contrary, often occur out of
equilibrium, our general theoretical understanding of nonequilibrium order and phase transi-
tions is substantially less developed since, in particular, the effect of the dynamics becomes
much more important out of equilibrium.

Most of the rather scarce mathematically rigorous results have been obtained for the
so-called nonequilibrium steady states (NESSs) introduced by Ruelle in [27] by means of
scattering theory on the algebra of observables. An important role in the construction of
such NESSs is played by the so-called quasifree fermionic systems, and this is true not only
because of their mathematical accessibility but also when it comes to real physical appli-
cations. Indeed, from a mathematical point of view, these systems allow for a simple and
powerful representation independent description since scattering theory on the fermionic
algebra of observables boils down to scattering theory on the underlying 1-particle Hilbert
space over which the fermionic algebra is constructed. This restriction of the dynamics to the
1-particle sector opens the way for a rigorous mathematical analysis of many purely quan-
tum mechanical properties which are of fundamental physical interest. But, beyond their
importance due to their mathematical accessibility, quasifree fermionic systems effectively
describe nature: aside from the various electronic systems in their independent electron ap-
proximation, they also play an important role in the rigorous approach to physically realizable
spin systems. An important member of the family of Heisenberg spin chains is the so-called
XY model, introduced in 1961 in [21] (see also [24] for the so-called isotropic case), for which
a physical realization has already been identified in the late 1960s (see [15] for example).
The impact of the XY model on the experimental, numerical, theoretical, and mathematical
research activity in the field of low-dimensional magnetic systems is ongoing ever since (see
[23] for example).

In the present paper, we consider a 1-dimensional quantum mechanical system whose
configuration space is the 2-sided infinite discrete line Z and whose algebra of observables
is the CAR (canonical anticommutation relations) algebra over the 1-particle Hilbert space
of the square-summable functions over Z. Using scattering theory on the 1-particle Hilbert
space, we then introduce a class of states over the CAR algebra which we call the class
of right mover/left mover states (R/L movers). For a given Hamiltonian on the 1-particle
Hilbert space, an R/L mover is specified by a 2-point operator whose main part consists of
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a mixture of two independent species stemming from the asymptotic right and left side of Z,
carrying the inverse temperatures βR and βL, respectively, of the right and left reservoir with
configuration spaces

ZR := {x ∈ Z |x ≥ xR + 1}, (1)
ZL := {x ∈ Z |x ≤ xL − 1}, (2)

where xR, xL ∈ Z are fixed and satisfy xL ≤ xR. Moreover, the finite piece

ZS := {x ∈ Z |xL ≤ x ≤ xR}, (3)

containing nS := xR − xL + 1 ≥ 1 sites, plays the role of the configuration space of the
confined sample. The prototypical example of such an R/L-mover is the NESS constructed
as the large time limit of the averaged trajectory of a time-evolved initial state which is the
decoupled product of three thermal equilibrium states over the corresponding configuration
spaces (as somewhat degenerate examples, thermal equilibrium states and ground states
are also covered by our setting). The first rigorous construction of such a NESS by means
of time-dependent scattering theory has been carried out in [11] for the XY model (see also
[5] for the special case of the so-called isotropic XY model [or XX model] using different
asymptotic approximation methods) and, to the best of our knowledge, very few models
have been rigorously studied within the framework of Ruelle’s scattering approach since
then (see, for example, [22, 10, 7, 8, 9]). The setting of the present paper, being thus kept,
at various places, at a mathematically rather general level in order to highlight the structural
dependence on the different ingredients (and in view of future generalizations), allows for the
study of more general and not necessarily gauge-invariant fermionic systems covering and
generalizing several well-known models of spin chains (as, for example, the NESS for the
XY model from [11], the Suzuki model, etc.). Furthermore, under the additional assumption
of translation invariance of the Hamiltonian (whose breaking will be studied elsewhere, but
see also [7, 8, 9]) and substantially generalizing the approach of [11], the 2-point operator
of the R/L mover is explicitly linked to the asymptotic velocity of the system allowing for a
rigorous and detailed study of the heat flux in general quasifree R/L mover systems whose
sample is coupled to the reservoirs through short range forces across the boundaries. As a
consequence of the structural form of the heat flux, we obtain strict positivity of the entropy
production, i.e., thermodynamical nontriviality, for the whole class of such quasifree R/L
mover systems.

The paper is organized as follows.
Section 2 (Infinite fermionic systems) We introduce the framework for the systems to

be studied, i.e., the CAR algebra of observables, its selfdual generalization, the quasifree
dynamics generated by selfdual Hamiltonians, and the states on the observable algebra with
their corresponding 2-point operators.

Section 3 (Right mover/left mover states) In order to be able to define R/L movers, we
introduce the asymptotic projections for the underlying right/left geometry and general Fermi
functions. The class of R/L mover 2-point operators is defined under simple assumptions on
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the selfdual Hamiltonian and for general so-called initial 2-point operators. We also discuss
thermal equilibrium and ground states with respect to this framework and the special case
of states with gauge-invariant 2-point operators which frequently occurs in practice.

Section 4 (Nonequilibrium steady states) This section is devoted to the definition and the
construction of NESSs, in the nonequilibrium setting at hand, using Ruelle’s time-dependent
scattering approach. This class of states serves as the main motivation for the introduction
of the R/L movers of Section 3.

Section 5 (Asymptotic velocity) Using the fundamental assumption of translation invari-
ance for the selfdual Hamiltonian, we rigorously determine the asymptotic velocity of the
system. The latter is the key ingredient of the so-called R/L mover generator which, together
with the selfdual Hamiltonian, determines the main part of the 2-point operator of the R/L
mover.

Section 6 (Heat flux) We introduce the notion of heat flux and entropy production rate in
the R/L mover state. Under the additional assumption that the range of the selfdual Hamil-
tonian is bounded by the size of the sample, i.e., that there is no direct coupling between
the two reservoirs, the R/L mover heat flux is explicitly determined in general and for typical
special cases appearing in practice. We also provide examples of several well-known mod-
els of spin chains covered by the formalism and explicitly determine instances of new ones.
Moreover, under suitable monotonicity conditions on the Fermi function, we prove that the
R/L mover heat flux is nonvanishing and the entropy production strictly positive, i.e., that the
system under consideration is thermodynamically nontrivial.

Appendix A (Spectral theory) We present a brief summary of the somewhat different
approach to spectral theory used in the main body of the paper. Due to the attempt to be,
at least conceptually, self-contained, we rather explicitly carry out most of the necessary
arguments in this appendix (and also in the main body of the text).

Appendix B (Matrix multiplication operators) Based on Appendix A, we study the func-
tional calculus for the matrix multiplication operators describing selfdual translation invariant
observables and derive a criterion for their absolute continuity.

Appendix C (Real trigonometric polynomials) We carry out the computations in the ring of
real trigonometric polynomials which, in particular, are needed in the study of the examples
in Section 6.

Appendix D (Heat flux contributions) This appendix contains some of the lengthy com-
putations from the proof of the main theorem.

Appendix E (Hamiltonian densities) We display the selfdual second quantization of the
local first, second, and third Pauli coefficient of H in the fermionic and the spin picture (the
selfdual second quantization of the zeroth Pauli coefficient of H is given in the main body of
the paper).

2 Infinite fermionic systems

In this section, we introduce the operator algebraic setting used to describe the fermionic
system under consideration whose extension is infinite. Recall that, in the operator algebraic
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approach to quantum statistical mechanics, the three fundamental ingredients of a physical
system, i.e., the observables, the time evolution, and the states, are given by a C∗-algebra,
by a 1-parameter group of ∗-automorphisms, and by normalized positive linear functionals on
the observable algebra, respectively (see [16, 28, 14] for example). In order to introduce the
notation, let H be any separable complex Hilbert space and let L(H) stand for the bounded
linear operators on H. Moreover, L∞(H), L1(H), and L0(H) denote the compact operators,
the trace class operators, and the operators of finite rank onH, respectively, and ‖·‖1 stands
for the trace norm on L1(H). Furthermore, if aij ∈ L(H) for all i, j ∈ 〈1, 2〉, we denote by
A := [aij]i,j∈〈1,2〉 ∈ L(H ⊕ H) the operator on H ⊕ H whose entries are given by aij, where
here and in the following, for all x, y ∈ Z with x ≤ y, we set

〈x, y〉 :=

{
{x, x+ 1, . . . , y}, x < y,

{x}, x = y.
(4)

Instead of using the standard basis, it is often useful to expand with respect to the Pauli
matrices, i.e., if aα ∈ L(H) for all α ∈ 〈0, 3〉, we define the operator A ∈ L(H⊕H) by

A := a0σ0 + aσ, (5)

where {σ0, σ1, σ2, σ3} ⊆ C2×2 stands for the Pauli basis of C2×2 which consists of the usual
Pauli matrices σ1, σ2, σ3 ∈ C2×2 and the identity σ0 ∈ C2×2,

σ0 :=

[
1 0
0 1

]
, σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
. (6)

Here and in the following, for all n ∈ N := {1, 2, . . .}, we denote by Cn×n the complex n × n
matrices and by Cn×n

a the skew-symmetric complex n × n matrices. Moreover, a ∈ L(H)3

and σ ∈ (C2×2)3 are written as a := [a1, a2, a3] and σ := [σ1, σ2, σ2], and we set aσ :=
a1σ1+a2σ2+a3σ3, where, for all b ∈ L(H) and allM ∈ C2×2 having entriesmij with i, j ∈ 〈1, 2〉,
the operator bM ∈ L(H ⊕ H) is defined by (bM)ij := mijb for all i, j ∈ 〈1, 2〉 (and we have
(bM)(cN) = (bc)(MN) for all b, c ∈ L(H) and M,N ∈ C2×2). Conversely, any A ∈ L(H⊕H)
can be written uniquely in the form (5) which we call the Pauli expansion of A. Moreover, if
A,B ∈ L(H⊕H) have the Pauli expansions A = a0σ0 + aσ and B = b0σ0 + bσ, respectively,
their product has the Pauli expansion

AB = (a0b0 + ab)σ0 + (a0b+ ab0 + ia ∧ b)σ, (7)

where we set ab := a1b1 + a2b2 + a3b3, a0b := [a0b1, a0b2, a0b3], ab0 := [a1b0, a2b0, a3b0], and the
vector a ∧ b ∈ L(H)3 is given by (a ∧ b)i :=

∑
j,k∈〈1,3〉 εijk ajbk for all i ∈ 〈1, 3〉, and εijk with

i, j, k ∈ 〈1, 3〉 is the usual Levi-Civita symbol. Of course, all the foregoing considerations can
be analogously applied to the case of antilinear operators which we denote by L̄(H). Finally,
`2(Z) will stand for the usual separable complex Hilbert space of square-summable complex-
valued functions on Z, and for elements A and B in the various sets in question below, the
commutator and the anticommutator of A and B are denoted as usual by [A,B] := AB−BA
and {A,B} := AB +BA, respectively.
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In the following, we will make use of the so-called selfdual setting. For our case, the
1-particle Hilbert space in the selfdual setting is the direct sum of the usual 1-particle Hilbert
space with itself. Here and there, we will make brief remarks about this underlying general
framework.

Definition 1 (Observables)

(a) The 1-particle position Hilbert space and its doubling are defined by

h := `2(Z), (8)
H := h⊕ h. (9)

Abusing notation, the usual scalar products, the corresponding induced norms (as well
as the corresponding operator norms) on both h and H are all denoted by (·, ·) and ‖·‖,
respectively.

(b) Let the map ζ ∈ L̄(h) be given by ζf := f̄ for all f ∈ h, where f̄ is the usual complex
conjugation of f . The antiunitary involution Γ ∈ L̄(H), defined by the block anti-diagonal
lifting of ζ to H as

Γ := ζσ1, (10)

is called the conjugation of H.

(c) The algebra of observables, denoted by A, is defined to be the CAR algebra over h,

A := CAR(h). (11)

The generators are denoted, as usual, by 1, a(f), and a∗(f) for all f ∈ h (and the
C∗-norm of A, as many other norms within their context, by ‖ · ‖).

(d) The complex linear map B : H→ A, defined, for all F := f1 ⊕ f2 ∈ H, by

B(F ) = a∗(f1) + a(ζf2), (12)

satisfies the selfdual CARs

B∗(F ) = B(ΓF ), (13)
{B∗(F ), B(G)} = (F,G)1. (14)

The elements B(F ) for all F ∈ H are called the selfdual generators of A.

(e) The complex linear map b : L1(H) → A, called the selfdual second quantization, is
defined, for all A ∈ L0(H), by

b(A) :=
m∑
i=1

B(Gi)B
∗(Fi), (15)
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where m ∈ N and {Fi, Gi}i∈〈1,m〉 ⊆ H are such that A :=
∑m

i=1(Fi, · )Gi. Moreover, for
all A ∈ L1(H), the selfdual second quantization is defined by

b(A) := lim
n→∞

b(An), (16)

where the sequence (An)n∈N in L0(H) is such that limn→∞ ‖A− An‖1 = 0.

Remark 2 The algebra of observables A is ∗-isomorphic to SDC(H,Γ), the completed (with
respect to the C∗-norm) selfdual CAR algebra over H and Γ. The selfdual setting is a very
useful general framework which has been introduced and developed in [1, 2, 4] for general
H and Γ not necessarily of the form (9) and (10) (see there for a more detailed description
of the selfdual objects used in the following). In particular, the selfdual setting allows for the
description of general non gauge-invariant quasifree fermionic systems such as, for example,
the prominent XY model from [21] whose Hamiltonian density has the form

(1 + γ)σ
(x)
1 σ

(x+1)
1 + (1− γ)σ

(x)
2 σ

(x+1)
2 , (17)

where the superscripts denote the sites in Z of the local Hilbert space of the spin chain
on which the Pauli matrices act. In order to establish a bridge between the spin picture
and the fermionic picture, the generalization from [3] of the Jordan-Wigner transformation
for 1-dimensional systems whose configuration space extends infinitely in both directions
makes use of the so-called crossed product of the algebra P of the Pauli spins over Z (a
Glimm or UHF [i.e., uniformly hyperfinite] algebra as is A) by the involutive automorphism
α ∈ Aut(P) describing the rotation around the 3-axis by an angle of π of the observables on
the nonpositive sites (and, thereby, makes it mathematically rigorous for the Jordan-Wigner
transformation to be anchored at minus infinity). Up to ∗-isomorphism equivalence, it is given
by the C∗-subalgebra {[

A B
α(B) α(A)

] ∣∣∣∣A,B ∈ P

}
⊆ P2×2, (18)

where P2×2 stands for the C∗-algebra of all 2 × 2 matrices with entries in P (with respect
to the naturally generalized matrix operations and the Hilbert C∗-module norm). Using this
bridge, (17) can be expressed in the fermionic picture and becomes (up to a global prefactor)

a∗xax+1 + a∗x+1ax + γ(a∗xa
∗
x+1 + ax+1ax), (19)

where we set ax := a(δx) and a∗x := a∗(δx) for all x ∈ Z. In order to treat the anisotropic
case γ 6= 0, i.e., the case in which there is an asymmetry between the first and the second
term in (17), the selfdual setting is most natural since gauge invariance is broken in (19).
Hence, due to the presence of the γ-term, the anisotropy Hamiltonian acquires non-diagonal
components with respect to H = h⊕ h (see Example 67 in Section 6). In many respects, the
truly anisotropic XY model is substantially more complicated than the isotropic one (see [9]
for example).



8 Walter H. Aschbacher

Remark 3 For all F ∈ H, the selfdual generator B(F ) ∈ A has the norm (see [4])

‖B(F )‖ =
1√
2

√
‖F‖2 +

√
‖F‖4 − |(F,ΓF )|2, (20)

from which we can infer that

1√
2
‖F‖ ≤ ‖B(F )‖ ≤ ‖F‖. (21)

Furthermore, the selfdual second quantization (15) is well-defined since b(A) does not de-
pend on the choice of the functions F1, . . . , Gm ∈ H which represent A ∈ L0(H). As to (16),
the limit exists and is independent of the sequence (An)n∈N in L0(H) which approximates
A ∈ L1(H) in the trace norm (such a sequence exists since L0(H) is dense in L1(H) with
respect to the trace norm). Moreover, for all A ∈ L1(H), it holds that b(A)∗ = b(A∗) (and
L1(H) is a 2-sided ∗-ideal of L(H)). If A ∈ L1(H) satisfies the condition ΓAΓ = −A∗, we have

1

4
‖A‖1 ≤ ‖b(A)‖ ≤ ‖A‖1. (22)

If, in addition, A is selfadjoint, we even have ‖b(A)‖ = ‖A‖1.

In the following, the set of ∗-automorphisms on the algebra of observables A is denoted
by Aut(A).

The so-called Bogoliubov ∗-automorphism to be defined next play an important role in
the theory of quasifree fermionic systems.

Definition 4 (Bogoliubov ∗-automorphism)

(a) A unitary operator U ∈ L(H) is called a Bogoliubov operator if [U,Γ] = 0.

(b) Let U ∈ L(H) be a Bogoliubov operator. The ∗-automorphism τU ∈ Aut(A) defined, for
all F ∈ H, by

τU(B(F )) := B(UF ), (23)

and suitably extended to the whole of A, is called the Bogoliubov ∗-automorphism
(induced by U ).

Remark 5 Note that τU preserves the properties of Definition 1 (d), i.e., B′ := τU ◦B : H→ A
is complex linear and satisfies the selfdual CARs (13)-(14).

The following 1-particle Hilbert space isometries will be frequently used in the sequel.

Definition 6 (Isometries)

(a) The (right) translation θ ∈ L(h) is defined by (θf)(x) := f(x − 1) for all f ∈ h and all
x ∈ Z. Its lifting to H is given by the Bogoliubov operator Θ := θσ0 ∈ L(H).
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(b) The parity ξ ∈ L(h) is defined by (ξf)(x) := f(−x) for all f ∈ h and all x ∈ Z.

(c) For all ϕ ∈ R, the Bogoliubov operator Uϕ ∈ L(H) defined by

Uϕ := eiϕ1⊕ e−iϕ1, (24)

is called a gauge transformation.

In the following, the map τ : R→ Aut(A), written as t→ τ t, is called a dynamics on A if it
is a group homomorphism between the additive group R and the group Aut(A) (with respect
to composition) and if, for all A ∈ A, the map R 3 t 7→ τ t(A) ∈ A is continuous with respect
to the C∗-norm on A (the pair (A, τ) is a sometimes called a C∗-dynamical system).

Definition 7 (Quasifree dynamics)

(a) An operator H ∈ L(H) is called a selfdual observable if

H∗ = H, (25)
ΓHΓ = −H. (26)

(b) Let H ∈ L(H) be a selfdual observable. The dynamics τ : R → Aut(A) defined, for all
t ∈ R and all F ∈ H, by

τ t(B(F )) := B(eitHF ), (27)

and suitably extended to the whole of A, is called the quasifree dynamics (generated
by H) and H is called a Hamiltonian.

Remark 8 Due to (25)-(26), the map R 3 t 7→ τ t ∈ Aut(A) given by (27) is a 1-parameter
group of Bogoliubov ∗-automorphisms induced by the 1-parameter group of Bogoliubov op-
erators R 3 t 7→ eitH ∈ L(H) (see (50) in the proof of Proposition 17 (b) below).

The following class of operators characterizes the expectation values of all the quadratic
observables in the states we are interested in. The set of states over the observable algebra
A is denoted by EA.

Definition 9 (2-point operator) An operator T ∈ L(H) having the properties

T ∗ = T, (28)
ΓTΓ = 1− T, (29)
0 ≤ T ≤ 1, (30)

is called a 2-point operator.
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π = (123456)
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��# # 

π = (123546)

+ u u u u u u
��' $��
π = (123645)

− . . .

Figure 1: Some of the 15 pairings for m = 3. The total number of intersections I relates to
the signature of the permutation π as sgn(π) = (−1)I .

Remark 10 Since, by definition, a state ω ∈ EA is a normalized positive linear functional on
A, (21) yields |ω(B∗(F )B(G))| ≤ ‖F‖‖G‖ for all F,G ∈ H. Hence, the map H×H 3 (F,G) 7→
ω(B∗(F )B(G)) ∈ C is a bounded sesquilinear form on H×H and Riesz’s lemma implies that
there exists a unique T ∈ L(H) such that, for all F,G ∈ H, we have

ω(B∗(F )B(G)) = (F, TG). (31)

Moreover, due to the positivity of ω, we get T ≥ 0 and, hence, T ∗ = T . Since ω is normalized,
(13)-(14) yield ΓTΓ = 1 − T . Finally, since T ≥ 0, we have ΓTΓ ≥ 0, i.e., 1 − T ≥ 0, and
it follows that the operator T which characterizes the 2-point function in (31) is a 2-point
operator. If ω ∈ EA satisfies (31) for a 2-point operator T ∈ L(H), we use the notation ωT .

We next introduce the class of quasifree states, i.e., the states in EA whose many-point
correlation functions factorize in Pfaffian form. For this purpose, recall that, for all m ∈ N, the
Pfaffian pf : C2m×2m → C is defined, for all A ∈ C2m×2m, by

pf(A) :=
∑
π∈P2m

sgn(π)
∏

i∈〈1,m〉

Aπ(2i−1)π(2i), (32)

where the sum is running over all the (2m)!/(2mm!) pairings of the set 〈1, 2m〉, i.e., P2m :=
{π ∈ S2m |π(2i−1) < π(2i+1) for all i ∈ 〈1,m−1〉 and π(2i−1) < π(2i) for all i ∈ 〈1,m〉}, and
S2m stands for the symmetric group on 〈1, 2m〉, i.e., the set of all bijections (permutations)
〈1, 2m〉 → 〈1, 2m〉, see Figure 1. Moreover, for all n ∈ N, we denote by A = [aij]i,j∈〈1,n〉 the
matrix A ∈ Cn×n with entries aij ∈ C for all i, j ∈ 〈1, n〉.

Definition 11 (Quasifree state) Let ωT ∈ EA be a state with 2-point operator T ∈ L(H). If,
for all n ∈ N and all {Fi}i∈〈1,n〉 ⊆ H, it holds that

ωT

(∏
i∈〈1,n〉

B(Fi)
)

=

{
pf
(
[ωT (B(Fi)B(Fj))]i,j∈〈1,n〉

)
, n even,

0, n odd,
(33)

the state ωT is called the quasifree state (induced by T ).
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3 Right mover/left mover states

In this section, we introduce the R/L mover states whose definition is based on the geometric
decomposition of the configuration space into a right part, a central part, and a left part. To
begin with, this decomposition gives rise to the so-called R/L mover generator whose role
is to specify the temperatures carried by the R/L movers stemming from the corresponding
reservoirs.

In the following, let `∞(Z) stand for the usual complex Banach space of bounded complex-
valued functions on Z. For all u ∈ `∞(Z), the multiplication operator m[u] ∈ L(h) is defined,
for all f ∈ h, by

m[u]f := uf. (34)

In view of the Pauli expansion (5), we also write m[v] := [m[v1],m[v2],m[v3]] ∈ L(h)3 for all
v := [v1, v2, v3] ∈ `∞(Z)3. Moreover, for all M ⊆ R, we denote by 1M the usual characteristic
function of M , and we use the abbreviations 1L := 1ZL, 1S := 1ZS , and 1R := 1ZR , and
1λ := 1{λ} for all λ ∈ R. Finally, for all n ∈ N, the family {P1, . . . , Pn} ⊆ L(H) is called an
orthogonal family of projections if PiPj = δi,jPi for all i, j ∈ 〈1, n〉, where, for all r, s ∈ R, we
denote by δr,s the usual Kronecker symbol. If, in addition,

∑n
i=1 Pi = 1, the family is said to

be complete.

Definition 12 (1-sided projections) The operators qL, qR ∈ L(h) defined by

qL := m[1L], (35)
qR := m[1R], (36)

and their liftings to H by QL := qLσ0 and QR := qRσ0 are called the 1-sided projections.

Remark 13 Setting qS := m[1S] ∈ L(h) and QS := qSσ0, it follows that {QL, QS, QR} ⊆ L(H)
is a complete orthogonal family of orthogonal projections.

In the following, if H ∈ L(H) is a Hamiltonian, we denote by 1sc(H), 1ac(H), 1pp(H) ∈ L(H)
the orthogonal projections onto the singularly continuous, the absolutely continuous, and
the pure point subspace of H, respectively. Moreover, we denote by spec(H) and eig(H) the
spectrum and the set of all eigenvalues of H. Finally, for all κ, λ ∈ {L, S,R}, we write

Hκ := QκHQκ, (37)
Hκλ := QκHQλ. (38)

In the course of our study, one or several of the following conditions on the Hamiltonian
of the system will be used. For the case of a translation invariant system, i.e., if Assumption
14 (b) holds, we will also rely on further conditions which we will discuss in Section 5.
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Assumption 14 (Hamiltonian) Let H ∈ L(H) be a Hamiltonian.

(a) 1sc(H) = 0

(b) [H,Θ] = 0

(c) HLR ∈ L1(H)

(d) HLR = 0

(e) H 6= z1 for all z ∈ C

Remark 15 If Assumption 14 (e) does not hold, i.e., if there exists z ∈ C such that H = z1,
(25)-(26) imply that z = 0.

In the following, s− lim stands for the limit with respect to the strong operator topology
on L(H).

In order to define the R/L mover states, we make use of the large time asymptotic behav-
ior of the 1-sided projections.

Definition 16 (Asymptotic projections) Let H ∈ L(H) be a Hamiltonian satisfying As-
sumption 14 (c) and let βL, βR ∈ R be the inverse reservoir temperatures.

(a) The operators PL, PR ∈ L(H), defined by

PL := s− lim
t→∞

e−itHQLeitH1ac(H), (39)

PR := s− lim
t→∞

e−itHQReitH1ac(H), (40)

are called the asymptotic projections (for H).

(b) The operator ∆ ∈ L(H), defined by

∆ := βLPR + βRPR, (41)

is called the R/L mover generator (for H and βL, βR).

In the following, we call Kronecker basis of h the complete orthonormal system {δy}y∈Z ⊆
h, where, for all y ∈ Z, the function δy ∈ h is defined by δy(x) := δx,y for all x, y ∈ Z. We
also define px,y ∈ L0(H) by px,y := (δx, · ) δy ∈ L0(h) for all x, y ∈ Z. Moreover, the domain,
the range, and the kernel of a given map will be denoted by dom, ran , ker, respectively. For
any separable complex Hilbert space H, the commutant of any A ⊆ L(H) is defined by
A′ := {A ∈ L(H) | [A,B] = 0 for all B ∈ A}. Furthermore, B(R) stands for the Borel func-
tions and M(R) for the Borel sets on R as given in Definition 75 (c) (we frequently refer to
the appendices in the following). For any M ∈ M(R), we denote by |M | the (non-complete)
Borel-Lebesgue measure of M . Finally, for all M ⊆ R, we set −M := {−x |x ∈M}.
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Proposition 17 (Asymptotic projections) Let H ∈ L(H) be a Hamiltonian satisfying As-
sumption 14 (c). Then:

(a) The asymptotic projections PL, PR ∈ L(H) exist. Moreover, {PL, PR} is a (not neces-
sarily complete) orthogonal family of orthogonal projections satisfying

PL + PR = 1ac(H). (42)

(b) For all κ ∈ {L,R}, we have

[Pκ, H] = 0, (43)
[Pκ,Γ] = 0. (44)

(c) If, in addition, Assumption 14 (b) is satisfied, we also have

[Pκ,Θ] = 0. (45)

Proof. (a) Let dom(µH) := {A ∈ L(H) | s− limt→∞ e−itHA eitH1ac(H) exists} be the so-called
wave algebra (see [12] for example) and let the so-called the wave morphism µH : dom(µH) ⊆
L(H)→ L(H) be defined, for all A ∈ dom(µH), by

µH(A) := s− lim
t→∞

e−itHA eitH1ac(H). (46)

Due to Remark 13, we can write

H = HL +HS +HR +HLS +HSL +HRS +HSR +HLR +HRL, (47)

from which it follows that QLH = HL +HLS +HLR and HQL = HL +HSL +HRL. Hence, due
to Assumption 14 (c) (and since L0(H) is a 2-sided ∗-ideal of L(H), too), we get

[QL, H] = HLS +HLR − (HSL +HRL)

∈ L1(H), (48)

where we used that HLS ∈ L0(H) since QS ∈ L0(H) (and analogously for [QR, H] ∈ L1(H)).
Hence, the Kato-Rosenblum theorem from the trace class approach to scattering theory
implies that QL, QR ∈ dom(µH), i.e., we get the first conclusion of part (a).

We next show that {PL, PR} ⊆ L(H) is an orthogonal family of orthogonal projections
(which, in general, is incomplete). For this purpose, we note that, since Q2

κ = Q∗κ = Qκ

for all κ ∈ {L,R} due to Remark 13, since µH is an algebra homomorphism, and since
µH(A∗) = µH(A)∗ for allA ∈ dom(µH) for whichA∗ ∈ dom(µH) (note that, in general, µH is not
a ∗-algebra homomorphism because dom(µH) is not a ∗-algebra), we find that Pκ = µH(Qκ)
is an orthogonal projection for all κ ∈ {L,R}. Moreover, since QLQR = 0, we also get



14 Walter H. Aschbacher

PLPR = 0. Finally, since QL + QR = 1 − QS and since µH(QS) = 0 because we know that
QS ∈ L0(H) ⊆ L∞(H) ⊆ ker(µH), we get

PL + PR = µH(1)− µH(QS)

= 1ac(H). (49)

(b) If B ∈ ran (µH), there exists A ∈ L(H) such that B = µH(A) and, since the strong
limit is translation invariant, we get B = µH(e−isHAeisH) for all s ∈ R. Hence, e−isHBeisH =
e−isHµH(A)eisH = µH(e−isHAeisH) = B for all s ∈ R and it follows that ran (µH) ⊆ {H}′ (we
actually know that ran (µH) = {B ∈ {H}′ | 1ac(H)B = B1ac(H) = B}), i.e., we get (43). As
for (44), we first note that Lemma 83 (a) and Remark 85 yield ΓEH(et)Γ = EΓHΓ(ζet) =
E−H(e−t) = EH(et) for all t ∈ R, where, for all t ∈ R, the function et ∈ B(R) is defined
by et(x) := eitx for all x ∈ R (and EA stands for resolution of the identity of the selfadjoint
operator A as discussed in Appendix A), i.e., we get, for all t ∈ R,

[eitH ,Γ] = 0. (50)

Moreover, we also note that, for all κ ∈ {L,R},

[Qκ,Γ] = 0. (51)

Finally, since the absolutely continuous subspace of H is given by ran (1ac(H)) = {F ∈
H | (F, 1M(H)F ) = 0 for all M ∈ M(R) with |M | = 0}, since, again due to Lemma 83 (a)
and Remark 85, we can write that (ΓF, 1M(H)ΓF ) = (ΓEH(1M)ΓF, F ) = (F, 1−M(H)F ) for
all M ∈ M(R) and all F ∈ H, and since the Borel-Lebesgue measure is reflexion invariant,
i.e., since −M ∈ M(R) and |−M | = |M | for all M ∈ M(R), we get ΓF ∈ ran (1ac(H))
for all F ∈ ran (1ac(H)). This implies that 1ac(H)Γ1ac(H) = Γ1ac(H), and since the (anti-
linear) adjoints of 1ac(H)Γ1ac(H),Γ1ac(H) ∈ L̄(H) are given by 1ac(H)Γ1ac(H) and 1ac(H)Γ,
respectively, we get

[1ac(H),Γ] = 0. (52)

Hence, using (50)-(52), we arrive at (44).
(c) We first note that Assumption 14 (b) and the proof of Lemma 83 (d) imply that

[χ(H),Θ] = 0 for all χ ∈ B(R). Hence, since et ∈ B(R) for all t ∈ R and since we know
that 1ac(H) = EH(1Mac

) for some Mac ∈ M(R), we get [eitH ,Θ] = 0 for all t ∈ R and
[1ac(H),Θ] = 0. This implies that, for all κ ∈ {L,R},

[Pκ,Θ] = µH([Qκ,Θ]). (53)

Now, since [Qκ,Θ] = [qκ, θ]σ0 for all κ ∈ {L,R} and since [qL, θ] = −pxL−1,xL
∈ L0(h) and

[qR, θ] = pxR,xR+1 ∈ L0(h), we get [Qκ,Θ] ∈ L0(H) ⊆ ker(µH) as in part (a). �

In the following, we also denote by ξ the parity operation from Definition 6 (b) when
applied to a function χ : M → C, where M ⊆ R satisfies M = −M . Moreover, the even and
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odd parts of such a χ are written as

Ev(χ) :=
1

2
(χ+ ξχ), (54)

Od(ρ) :=
1

2
(χ− ξχ). (55)

In order to define our L/R mover states, we introduce the following class of functions.

Definition 18 (Fermi function) If ρ ∈ B(R) has the properties

ρ ≥ 0, (56)

Ev(ρ) =
1

2
, (57)

it is called a Fermi function.

Remark 19 Since ρ = Ev(ρ) + Od(ρ) for all ρ ∈ B(R) and since B(R) is a ∗-algebra due to
Definition 75 (b), ρ is a Fermi function if and only if there exists an odd function µ ∈ B(R)
with −1 ≤ µ ≤ 1 such that ρ = (1 + µ)/2.

The following assumption will be used at the end of Section 6.

Assumption 20 (Strict positivity) Let ρ ∈ B(R) be a Fermi function and let βL, βR ∈ R be
the inverse reservoir temperatures.

(a) ρ(x) > ρ(y) for all x, y ∈ R with x > y

(b) ρ′(x) ≥ c for some c > 0 and almost all x ∈ R

(c) βL < βR

Remark 21 Due to Lebesgue’s theorem on the differentiability of monotone functions, ρ′

exists almost everywhere on R if Assumption 20 (a) holds.

For the following, recall that, since H is a separable Hilbert space, eig(H) is a countable
subset of R, and we write

eig(H) = {λi}i∈I , (58)

where the index set I is empty, finite, or countably infinite (in the following notations, we stick
to the case of a countably infinite number of eigenvalues, i.e., we set I = N). Also recall
Definition 16 (b) for the R/L generator ∆.

With the help of the asymptotic projections and the class of Fermi functions, we next
define what we call the R/L mover states.
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Definition 22 (R/L mover state) Let H ∈ L(H) be a Hamiltonian satisfying Assumption 14
(a) and (c). Moreover, let T0 ∈ L(H) be a 2-point operator, called the initial 2-point operator,
let ρ ∈ B(R) be a Fermi function, and let βL, βR ∈ R be the inverse reservoir temperatures.

(a) An operator T ∈ L(H) of the form T := Tac + Tpp, where Tac, Tpp ∈ L(H) are given by

Tac := ρ(∆H)1ac(H), (59)

Tpp :=
∑

λ∈eig(H)

1λ(H)T0 1λ(H), (60)

is called an R/L mover 2-point operator (for H, T0, ρ, and βL, βR). Moreover, the right
hand side of (60) is defined by s− limN→∞

∑
n∈〈1,N〉 1λn(H)T0 1λn(H).

(b) A state whose 2-point operator is an R/L mover 2-point operator is called an R/L mover
state.

Remark 23 First, note that (59) is well-defined since, due to Proposition 17 (a) and (43), we
have ∆∗ = ∆ and [∆, H] = 0, i.e., ∆H is selfadjoint. As for (60), since, for all N ∈ N, we
have χN := 1{λ1,...,λN} ∈ B(R) and |χN |∞ ≤ 1, we get B − limN→∞ χN = 1eig(H) ∈ B(R) and,
hence, Proposition 76 (b) yields

s− lim
N→∞

χN(H) = 1eig(H)(H). (61)

Moreover, since χN(H) =
∑

i∈〈1,N〉 1λi(H) and since {1λi(H)}i∈N is an orthogonal family of
orthogonal projections, we can write ‖χN(H)F − χM(H)F‖2 =

∑
i∈〈M+1,N〉 ‖1λi(H)F‖2 for all

N,M ∈ N with N > M and all F ∈ H. Hence, due to (61),
∑

i∈〈M+1,N〉 ‖1λi(H)F‖2 vanishes
for sufficiently largeN andM , i.e., the series

∑
i∈N ‖1λi(H)F‖2 := limN→∞

∑
i∈〈1,N〉 ‖1λi(H)F‖2

converges absolutely and, hence, unconditionally. Settting SπN :=
∑

i∈〈1,N〉 1λπ(i)(H)T0 1λπ(i)(H) ∈
L(H) for all N ∈ N and all π ∈ SN, where SN denotes the symmetric group of N, we can write,
for all N,M ∈ N with N > M , all π ∈ SN, and all F ∈ H, that

‖SπNF − SπMF‖2 =
∑

i∈〈M+1,N〉

‖1λπ(i)(H)T01λπ(i)(H)F‖2

≤ ‖T0‖2
∑

i∈〈M+1,N〉

‖1λπ(i)(H)F‖2, (62)

where we used that, for all π ∈ SN, the family {1λπ(i)(H)}i∈N is again an orthogonal family
of orthogonal projections. Since the series

∑
i∈N ‖1λi(H)F‖2 is unconditionally convergent,

the right hand side of (62) vanishes for sufficiently large N and M . Hence, the strong limit
of (SπN)N∈N exists for all π ∈ SN. Since, in addition, we know that it is independent of π, the
notation on the right hand side of (60) is well-motivated.
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Remark 24 Due to Proposition 17 (a), (43), and (361) in the proof of Lemma 83 (c), we can
write ρ(∆H) = ρ(βLHPL + βRHPR) = ρ(βLH)PL + ρ(βRH)PR + ρ(0)(1− 1ac(H)). Hence, we
get

Tac − ρ(∆H) = −1

2
1pp(H), (63)

where we used Assumption 14 (a), the fact that the family {1pp(H), 1ac(H), 1sc(H)} is a com-
plete orthogonal family of orthogonal projections, and ρ(0) = 1/2 from (57).

Proposition 25 (R/L mover 2-point operator) Let H ∈ L(H) be a Hamiltonian satisfying
Assumption 14 (a) and (c), T0 ∈ L(H) an initial 2-point operator, ρ ∈ B(R) a Fermi function,
and βL, βR ∈ R the inverse reservoir temperatures. Moreover, let T ∈ L(H) be the R/L mover
2-point operator for H, T0, ρ, and βL, βR. Then:

(a) T is a 2-point operator.

(b) [T,H] = 0

Proof. (a) We have to verify (28)-(30) for T = Tac+Tpp, where Tac and Tpp are defined in (59)
and (60), respectively. As for (28), we first note that, due to (357) from Lemma 83 (d),

[1ac(H), ρ(∆H)] = 0, (64)

where we used that 1ac(H) = EH(1Mac
) for some Mac ∈ M(R) as in the proof of Proposition

17 (b) (and that [∆, H] = 0 as discussed at the beginning of Remark 23). Hence, we get
T ∗ac = 1ac(H)ρ(∆H) = Tac. As for the selfadjointness of Tpp, since Tpp = s− limN→∞ SN ,
where SN :=

∑
i∈〈1,N〉 1λi(H)T0 1λi(H) ∈ L(H) for all N ∈ N, and since S∗N = SN for all

N ∈ N, we have (T ∗ppF,G) = (F, TppG) = limN→∞(SNF,G) = (TppF,G) for all F,G ∈ H, i.e.,
T ∗pp = Tpp. Hence, T satisfies (28). As for (29), using Lemma 83 (a), Remark 85, and applying
(44) and (56)-(57), we get Γρ(∆H)Γ = EΓ∆HΓ(ζρ) = E−∆H(ρ) = E∆H(1 − ρ) = 1 − ρ(∆H).
Hence, with the help of (52), we get

ΓTacΓ = 1ac(H)− Tac. (65)

As for the contribution Tpp, since we know that 1pp(H) = EH(1eig(H)), (61) yields

1pp(H) =
∑

λ∈eig(H)

1λ(H), (66)

where we used the notation
∑

λ∈eig(H) 1λ(H) := s− limN→∞
∑

i∈〈1,N〉 1λi(H) (and, as in Re-
mark 23, we note that the strong convergence of the corresponding series is unconditional).
Next, using again Lemma 83 (a) and (b), we get, for all λ ∈ eig(H),

Γ1λ(H)Γ = 1−λ(H). (67)
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Moreover, since H(ΓF ) = −ΓHF = −λ(ΓF ) for all F ∈ ran (1λ(H)) with F 6= 0 (and, hence,
ΓF 6= 0 because ‖ΓF‖ = ‖F‖ for all F ∈ H), we find

eig(H) = −eig(H). (68)

Therefore, using (67), the property (29) for T0, (68), and (66), we get

ΓTppΓ = s− lim
N→∞

∑
i∈〈1,N〉

1−λi(H)(1− T0)1−λi(H)

= 1pp(H)− Tpp. (69)

Due to Assumption 14 (a), we have 1 = 1ac(H) + 1pp(H) and, hence, T also satisfies (29).
Finally, we turn to (30). Using (64), we get, for all F ∈ H,

(F, TacF ) = (1ac(H)F, ρ(∆H)1ac(H)F ), (70)

(F, TppF ) = lim
N→∞

∑
i∈〈1,N〉

(1λi(H)F, T01λi(H)F ). (71)

Hence, with the help of (56) and Proposition 76 (a) for ρ(∆H) in (70), and (30) for T0 in (71),
we arrive at T ≥ 0. Furthermore, since, as shown above, (28) and (29) hold for T , we can
write (F, (1 − T )F ) = (F,ΓTΓF ) = (TΓF,ΓF ) = (ΓF, TΓF ) ≥ 0 for all F ∈ H, i.e., we also
find T ≤ 1.

(b) With the help of the first part in the proof of Lemma 83 (d), we can write [Tac, H] =
ρ(∆H)[1ac(H), H] + [ρ(∆H), H]1ac(H) = 0. Moreover, for all λ ∈ eig(H), Remark 85 yields
H1λ(H) = EH(κ11spec(H)1λ) = λ1λ(H) and [H, 1λ(H)] = 0 and, hence, for all F ∈ H, we get

[Tpp, H]F = lim
N→∞

∑
i∈〈1,N〉

[1λi(H)T01λi(H), H]F

= lim
N→∞

∑
i∈〈1,N〉

[1λi(H)T01λi(H), λi1]F

= 0. (72)

�

We next give some examples of important states which fit into the foregoing framework of
R/L mover states. However, the prototypical example of a non degenerate R/L mover state
will be treated separately in Section 4.

Example 26 (Thermal equilibrium state) Let H be a Hamiltonian satisfying Assumption
14 (a) and (c). Moreover, set βL := β and βR := β for some β ∈ R, let ρ be a Fermi function,
and let the initial 2-point operator be defined by T0 := ρ(βH) (it can be verified as in the
proof of Proposition 25 (a) that T0 is indeed a 2-point operator). Then, the R/L mover 2-point
operator T (for H, T0, ρ, and βL, βR) has the form

T = ρ(βH), (73)
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where we made use of Lemma 83 (c) yielding Tac = EβH1ac(H)(ρ)1ac(H) = ρ(βH)1ac(H).
Moreover, with the help of Lemma 83 (d) and (66), we get Tpp = ρ(βH)1pp(H). The so-called
(τ, β)-KMS state, or thermal equilibrium state, where τ is the quasifree dynamics generated
by H from Definition 7 (b) and where β plays the role of an inverse physical temperature
(if β > 0 and the Boltzmann constant kB set to unity), is the quasifree state whose 2-point
operator has the form (73) and the Fermi function is given, for all x ∈ R, by the classical
Fermi-Dirac (Pauli) distribution

ρ(x) :=
1

1 + e−x
. (74)

Moreover, the (τ, β)-KMS state is unique if 10(H) = 0 (see [2] for the foregoing and other
sufficient conditions).

Note that, in contrast to the gauge-invariant case discussed next (which frequently occurs
in practice), there is a minus sign in (74) (see Lemma 28 (d) below).

Definition 27 (Gauge invariance) A state ω ∈ EA is called gauge-invariant if it is invariant
under the 1-parameter group of Bogoliubov ∗-automorphisms R 3 ϕ 7→ τUϕ ∈ Aut(A) in-
duced by the 1-parameter group of Bogoliubov operators R 3 ϕ 7→ Uϕ ∈ L(H) given in
Definition 6 (c), i.e., if ω ◦ τUϕ = ω for all ϕ ∈ R.

Gauge invariance leads to the following properties.

Lemma 28 (Gauge-invariant 2-point operator) Let T ∈ L(H). Then:

(a) If ω ∈ EA is a gauge-invariant state with 2-point operator T , we have, for all ϕ ∈ R,

[T, Uϕ] = 0. (75)

Any T ∈ L(H) satisfying (75) is called gauge-invariant.

(b) T is a gauge-invariant 2-point operator if and only if there exists an operator s ∈ L(h)
with 0 ≤ s ≤ 1 such that

T = (1− s)⊕ ζsζ. (76)

(c) If ω ∈ EA is a state with 2-point operator T and if η ∈ EA satisfies, for some s ∈ L(h)
with 0 ≤ s ≤ 1 and all f, g ∈ h,

η(a∗(f)a(g)) = (g, sf), (77)

we have, for all F,G ∈ H,

ω(B∗(F )B(G)) = η(B∗(F )B(G)), (78)

if and only if T has the form (76).
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(d) Let T = ρ(βH), where ρ ∈ B(R) has the form (74), H ∈ L(H) is a Hamiltonian, and
β ∈ R \ {0}. If T is gauge invariant, there exists h ∈ L(h) with h∗ = h such that

H = h⊕ (−ζhζ). (79)

Moreover, if (79) holds, T has the form (76) and

s = ρ(−βh). (80)

Remark 29 Note that, if s ∈ L(h) with 0 ≤ s ≤ 1 and if ωs ∈ EA is a state having the property
ωs(a

∗(f)a(g)) = (g, sf) for all f, g ∈ h, we have, for all F,G ∈ H, that

ωs(B
∗(F )B(G)) = ωT (B∗(F )B(G)), (81)

where ωT ∈ EA is a state whose 2-point operator T ∈ L(H) has the form (76).

Proof. (a) Since ω(τUϕ(B∗(F )B(G))) = ω(B∗(F )B(G)) for all ϕ ∈ R and all F,G ∈ H, (31)
yields [T, Uϕ] = 0 for all ϕ ∈ R.

(b) If we write T = [tij]i,j∈〈1,2〉, where tij ∈ L(h) for all i, j ∈ 〈1, 2〉, (75) is equivalent to

t12 = 0, (82)
t21 = 0, (83)

since [T, Uϕ] = 2i sin(ϕ)

[
0 −t12

t21 0

]
for all ϕ ∈ R. Moreover, since T is a 2-point operator, it

satisfies (28), (29), and (30), respectively equivalent to t∗11 = t11, t
∗
22 = t22, and t∗12 = t21, to

t22 = 1− ζt11ζ, (84)
t21 = −ζt21ζ, (85)

and to the two conditions that, for all f1, f2 ∈ h,

0 ≤ (f1, t11f1 + t12f2) + (f2, t21f1 + t22f2), (86)
0 ≤ (f1, (1− t11)f1 − t12f2)− (f2, t21f1 − (1− t22)f2). (87)

Hence, setting s := 1 − t11 ∈ L(h), (82)-(85) are equivalent to T = (1 − s) ⊕ ζsζ. Moreover,
(86) and (87) are equivalent to 0 ≤ s ≤ 1.

(c) Note that (78) is equivalent to the condition that, for all f1, f2, g1, g2 ∈ h,

(f1, t11g1 + t12g2) + (f2, t21g1 + t22g2) = (f1, (1− s)g1) + (ζg2, sζf2), (88)

where we used the same notation as in part (b). Hence, plugging f2 = g2 = 0 into (88), we
get t11 = 1 − s, and (84) implies that t22 = ζsζ. Moreover, plugging f2 = g1 = 0 into (88),
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we get t12 = 0, and (85) yields t21 = 0. Conversely, if T has the form (76), since s∗ = s and
(f, ζg) = (g, ζf) for all f, g ∈ h, (88) is satisfied.

(d) If T satisfies (75), part (b) implies that there exists s ∈ L(h) with 0 ≤ s ≤ 1 such that
T has the form (76). Next, note that ρ : R → (0, 1) is strictly monotonically increasing and
let ρ−1 : (0, 1) → R be its inverse function (i.e., ρ−1(x) = log(x/(1 − x)) for all x ∈ (0, 1)).
Since 1 = EβH(1spec(βH)) and since spec(βH) ⊆ [−|β|r, |β|r], where r := ‖H‖, we can write
T = EβH(ρ1[−|β|r,|β|r]). Defining ψ ∈ B(R) by ψ(x) := ρ−1(x) for all x ∈ [ρ(−|β|r), ρ(|β|r)] and
ψ(x) := 0 for all x ∈ R \ [ρ(−|β|r), ρ(|β|r)], Lemma 83 (b) yields, on one hand,

ψ(T ) = EβH(ψ ◦ (ρ1[−|β|r,|β|r]))

= βH, (89)

where we used that ψ ◦ (ρ1[−|β|r,|β|r]) = κ11[−|β|r,|β|r]. On the other hand, since, for all χ ∈ B(R)
and all selfadjoint a, b ∈ L(h), we have χ(a ⊕ b) = χ(a) ⊕ χ(b) (which can be proven as, for
example, in the proof of Lemma 83 (c)), we get ψ(T ) = ψ((1− s)⊕ ζsζ) = ψ(1− s)⊕ψ(ζsζ),
i.e., H is block diagonal. Hence, writing H = [hij]i,j∈〈1,2〉 and setting h := h11 ∈ L(h), the
fact that H∗ = H implies that h∗ = h. Moreover, since ΓHΓ = −H (which is equivalent to
h22 = −ζh11ζ and h21 = −ζh12ζ), we get h22 = −ζhζ, i.e., H has the form (79).

Moreover, if H is given by (79) for some h ∈ L(h) with h∗ = h, (56)-(57) imply

T = Eβh(ρ)⊕ E−βζhζ(ρ)

= Eβh(1− ξρ)⊕ E−βζhζ(ρ)

= (1− Eβh(ξρ))⊕ ζE−βh(ρ)ζ

= (1− E−βh(ρ))⊕ ζE−βh(ρ)ζ, (90)

where we used that ζχ(a)ζ = (ζχ)(ζaζ) for all selfadjoint a ∈ L(h) and all χ ∈ B(R) (which
follows from Lemma 83 (a) for the case A = a⊕ 0) and Remark 85 for ξρ = ρ−1. �

Example 30 (Ground state) Let H be as in Example 26. The so-called τ -ground state is
the quasifree state whose 2-point operator has the form (73) (with β = 1), where the Fermi
function, denoted by ρ∞, is given by

ρ∞ := 1(0,∞) +
1

2
10. (91)

Moreover, the τ -ground state is unique if 10(H) = 0 (if 10(H) 6= 0, a 2-point operator of the
form T = 1(0,∞)(H) + 10(H)S10(H), where S ∈ L(H) is any 2-point operator, specifies a
τ -ground state, see [6]). Furthermore, note that B − limβ→∞ ρ(β · ) = ρ∞, where ρ is given by
(74). Hence, Proposition 76 (b) yields

s− lim
β→∞

ρ(βH) = ρ∞(H), (92)

i.e., if 10(H) = 0, the 2-point operator of the unique (τ, β)-KMS state converges strongly to
the 2-point operator of the unique τ -ground state.
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4 Nonequilibrium steady states

In this section, we construct a special class of R/L movers, the so-called nonequilibrium
steady states (NESSs) discussed in the introduction. They serve as the main motivation for
the introduction of the R/L mover states in the foregoing section.

For the following, recall the definitions (37)-(38) from Section 3.

Definition 31 (Initial system) Let H ∈ L(H) be a Hamiltonian, let ρ ∈ B(R) be a Fermi
function, and let βL, βR ∈ R the inverse reservoir temperatures. Moreover, let βS ∈ R be the
inverse sample temperature.

(a) The operator H0 ∈ L(H), defined by

H0 := HL +HS +HR, (93)

is called the initial Hamiltonian (for H).

(b) The quasifree dynamics generated by H0 ∈ L(H) is called the initial dynamics.

(c) The quasifree state ω0 ∈ EA whose 2-point operator T0 ∈ L(H) has the form

T0 := ρ(∆0H0), (94)

where ∆0 ∈ L(H) is defined by

∆0 := βLQL + βSQS + βRQR, (95)

is called the initial state (for ρ and βL, βS, βR).

Remark 32 Since, due to Remark 13, the family {QL, QS, QR} ⊆ L(H) is a complete orthog-
onal family of orthogonal projections and since [Qκ,Γ] = 0 for all κ ∈ {L, S,R}, the operators
HL, HS, HR, and H0 are selfdual observables. Moreover, ∆0H0 ∈ L(H) is selfadjoint and, as
in the proof of Proposition 25 (a), property (57), Definition 77, Lemma 83 (a), and Remark
85 yield that T0 is a 2-point operator.

For the setting at hand, the NESS discussed in the introduction is defined as follows.

Definition 33 (NESS) Let H ∈ L(H) be a Hamiltonian, let ρ ∈ B(R) be a Fermi function,
and let βL, βR ∈ R be the inverse reservoir temperatures. Moreover, let βS ∈ R be the
inverse sample temperature, let ω0 ∈ EA be the initial state for ρ and βL, βS, βR, and let
R 3 t 7→ τ t ∈ Aut(A) be the quasifree dynamics generated by H. The state ω ∈ EA defined,
for all A ∈ A, by

ω(A) := lim
t→∞

1

t

∫ t

0

ds ω0(τ s(A)), (96)

is called the NESS (for H, ρ, and βL, βS, βR).
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Remark 34 The general definition stems from [27] and defines the NESSs as the limit points
in the weak-∗ topology of the net defined by the ergodic mean between 0 and t > 0 of the
given initial state time-evolved by the dynamics of interest (note that, due to the Banach-
Alaoglu theorem, the set of such NESSs is not empty). In general, the averaging procedure
enables us to treat a nonvanishing contribution to the point spectrum of the Hamiltonian
which generates the full time evolution (see Theorem 36 below).

The following ingredients from the time-dependent approach to Hilbert space scattering
theory will be used for the construction of our NESS.

Definition 35 (Wave operators) Let H ∈ L(H) be a Hamiltonian satisfying Assumption 14
(c) and let H0 ∈ L(H) be the initial Hamiltonian for H.

(a) The operator W ∈ L(H), defined by

W := s− lim
t→∞

e−itH0eitH1ac(H), (97)

is called the wave operator (for H and H0).

(b) The operators WL,WR ∈ L(H), defined by

WL := s− lim
t→∞

e−itHLQLeitH1ac(H), (98)

WR := s− lim
t→∞

e−itHRQReitH1ac(H), (99)

are called the partial wave operators (for H and HL, and H and HR, respectively).

For the following, let us denote by AP (R) the complex-valued functions on R which
are almost-periodic (in the sense of H. Bohr). Also recall the definitions of the asymptotic
projections PL, PR and of the R/L mover generator ∆ from Definition 16. Moreover, for all
A = [aij]i,j∈〈1,n〉 ∈ Cn×n, the Euclidean matrix norm is denoted by |A|2 := (

∑
i,j∈〈1,n〉 |aij|

2)1/2.

Theorem 36 (NESS) Let H ∈ L(H) be a Hamiltonian satisfying Assumption 14 (a) and (c),
let ρ ∈ B(R) be a Fermi function, and let βL, βR ∈ R be the inverse reservoir temperatures.
Moreover, let βS ∈ R be the inverse sample temperature, let ω0 ∈ EA be the initial state for
ρ and βL, βS, βR, and let R 3 t 7→ τ t ∈ Aut(A) be the quasifree dynamics generated by H.
Then:

(a) The NESS ω ∈ EA for H, ρ, and βL, βS, βR exists.

(b) The 2-point operator T ∈ L(H) of ω is given by

T = Tac + Tpp, (100)

where Tac, Tpp ∈ L(H) are defined by

Tac := ρ(∆H)1ac(H), (101)

Tpp :=
∑

λ∈eig(H)

1λ(H)T0 1λ(H). (102)
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Proof. (a) We start off by studying (96) for elements of A of the form
∏

i∈〈1,2n〉B(Fi) for all
n ∈ N and all {Fi}i∈〈1,2n〉 ⊆ H. Since ω0 is quasifree, the expectation value with respect to ω0

of such elements propagated in time by means of the quasifree dynamics generated by H
has the Pfaffian factorization property from Definiton 11, i.e.,

ω0

(∏
i∈〈1,2n〉

τ t
(
B(Fi)

))
= pf(Ω(t)), (103)

where, for all n ∈ N and all {Fi}i∈〈1,2n〉 ⊆ H, the entries of the matrix-valued map Ω : R →
C2n×2n are defined, for all i, j ∈ 〈1, 2n〉 and all t ∈ R, by

Ωij(t) := (ΓeitHFi, T0eitHFj). (104)

In the following, let n ∈ N and {Fi}i∈〈1,2n〉 ⊆ H be fixed. Since, due to Assumption 14 (a), we
can write 1 = 1ac(H) + 1pp(H) ∈ L(H), we have, for all i, j ∈ 〈1, 2n〉 and all t ∈ R, that

Ωij(t) = Ωaa
ij (t) + Ωap

ij (t) + Ωpa
ij (t) + Ωpp

ij (t), (105)

where the entries of the matrix-valued maps Ωaa,Ωap,Ωpa,Ωpp : R → C2n×2n are defined, for
all i, j ∈ 〈1, 2n〉 and all t ∈ R, by

Ωaa
ij (t) := (eitH1ac(H)ΓFi, T0eitH1ac(H)Fj), (106)

Ωap
ij (t) := (eitH1ac(H)ΓFi, T0eitH1pp(H)Fj), (107)

Ωpa
ij (t) := (eitH1pp(H)ΓFi, T0eitH1ac(H)Fj), (108)

Ωpp
ij (t) := (eitH1pp(H)ΓFi, T0eitH1pp(H)Fj), (109)

and we used (50) and (52). We next study the large time averages of (106)-(109).
As for (106), since the family {QL, QS, QR} ⊆ L(H) is complete, we can insert 1 = QL +

QS + QR in front of the propagators on both sides of (106). Hence, for all i, j ∈ 〈1, 2n〉 and
all t ∈ R, we get

Ωaa
ij (t) =

∑
κ∈{L,S,R}

Ωaa,κ
ij (t), (110)

where, for all κ ∈ {L, S,R}, the entries of the matrix-valued maps Ωaa,κ : R → C2n×2n are
defined, for all i, j ∈ 〈1, 2n〉 and all t ∈ R, by

Ωaa,κ
ij (t) := (Qκe

itH1ac(H)ΓFi, T0Qκe
itH1ac(H)Fj), (111)

and we used that, since [Qκ,∆0H0] = [Qκ, βLHL + βSHS + βRHR] = 0 for all κ ∈ {L, S,R},
Lemma 83 (d) yields [Qκ, T0] = 0 for all κ ∈ {L, S,R}. In order to determine the large time
limit of Ωaa,L, we note that, again due to Lemma 83 (d), we have [e−itH0 , T0] = 0 for all t ∈ R
since [H0,∆0H0] = 0. Hence, for all i, j ∈ 〈1, 2n〉 and all t ∈ R, we can write

Ωaa,L
ij (t) = (e−itH0QLeitH1ac(H)ΓFi, T0e−itH0QLeitH1ac(H)Fj)

= (e−itHLQLeitH1ac(H)ΓFi, ρ(βLHL)e−itHLQLeitH1ac(H)Fj), (112)
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where we used that ρ(∆0H0)QL = ρ(βLHL)QL which follows from Lemma 83 (c). Since, due
to Assumption 14 (c), we have

HLQL −QLH = −(HLS +HLR)

∈ L1(H), (113)

the Kato-Rosenblum theorem guarantees the existence of the partial wave operator WL as
in the proof of Proposition 17 (a). Moreover, the Kato-Rosenblum theorem also implies the
existence of the wave operator W ′

L ∈ L(H) given by

W ′
L := s− lim

t→∞
e−itHQLeitHL1ac(HL). (114)

Hence, since the adjoint property for wave operators yields W ∗
L = W ′

L, since Remark 85 and
the intertwining property for wave operators imply that W ′

Lρ(βLHL) = ρ(βLH)W ′
L, and since

the chain rule for wave operators results in W ′
LWL = PL, we get, for all i, j ∈ 〈1, 2n〉,

lim
t→∞

Ωaa,L
ij (t) = (WLΓFi, ρ(βLHL)WLFj)

= (ΓFi,W
′
Lρ(βLHL)WLFj)

= (ΓFi, ρ(βLH)W ′
LWLFj)

= (ΓFi, ρ(βLH)PLFj). (115)

Interchanging L and R, we also get limt→∞Ωaa,R
ij (t) = (ΓFi, ρ(βRH)PRFj) for all i, j ∈ 〈1, 2n〉.

Moreover, since, for all i, j ∈ 〈1, 2n〉 and all t ∈ R, we have

|Ωaa,S
ij (t)| ≤ ‖T0QSeitH1ac(H)Fj‖‖Fi‖, (116)

and since T0QS ∈ L0(H), we know that limt→∞Ωaa,S
ij (t) = 0 for all i, j ∈ 〈1, 2n〉. Therefore,

(110), (115), and the foregoing arguments yield, for all i, j ∈ 〈1, 2n〉,

lim
t→∞

Ωaa
ij (t) = (ΓFi, (ρ(βLH)PL + ρ(βRH)PR)Fj)

= (ΓFi, ρ(∆H)1ac(H)Fj), (117)

where, in the last equality, we used Lemma 83 (c) and (42).
We next turn to (107). First, we note that, since H is separable, there exists a se-

quence (ηN)N∈N ⊆ L0(H) of orthogonal projections satisfying [ηN , H] = 0 for all N ∈ N and
s− limN→∞ ηN = 1pp(H) (pick an orthonormal basis {En}n∈N of eigenvectors of H for the
closed subspace ran (1pp(H)) of H and set ηN :=

∑
n∈〈1,N〉(En, ·)En ∈ L

0(H) for all N ∈ N).
Inserting 1 = ηN + (1− ηN) for any N ∈ N after the second propagator on the right hand side
of (107), we get, for all i, j ∈ 〈1, 2n〉, all t ∈ R, and all N ∈ N,

Ωap
ij (t) = Ωap,N

ij (t) + Ωap,N⊥
ij (t), (118)
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where the entries of the matrix-valued maps Ωap,N ,Ωap,N⊥ : R → C2n×2n are defined, for all
i, j ∈ 〈1, 2n〉, all N ∈ N, and all t ∈ R, by

Ωap,N
ij (t) := (eitH1ac(H)ΓFi, T0eitHηN1pp(H)Fj), (119)

Ωap,N⊥
ij (t) := (eitH1ac(H)ΓFi, T0eitH(1− ηN)1pp(H)Fj). (120)

Using that [ηN , H] = 0 for all N ∈ N and Lemma 83 (d) for (119), we get, for all i, j ∈ 〈1, 2n〉,
all N ∈ N, and all t ∈ R,

|Ωap,N
ij (t)| ≤ ‖ηNT0eitH1ac(H)ΓFi‖‖Fj‖, (121)

|Ωap,N⊥
ij (t)| ≤ ‖(1− ηN)1pp(H)Fj‖‖T0‖‖Fi‖. (122)

As above, since ηNT0 ∈ L0(H) for all N ∈ N, (121) implies that limt→∞Ωap,N
ij (t) = 0 for all

i, j ∈ 〈1, 2n〉 and all N ∈ N. Moreover, limN→∞Ωap,N⊥
ij (t) = 0 for all i, j ∈ 〈1, 2n〉 and all t ∈ R

due to (122). Hence, for all i, j ∈ 〈1, 2n〉, we get

lim
t→∞

Ωap
ij (t) = 0. (123)

The term (108) is treated analogously leading to limt→∞Ωpa
ij (t) = 0 for all i, j ∈ 〈1, 2n〉.

We finally turn to (109). Setting χN :=
∑

n∈〈1,N〉 1λn(H) for all N ∈ N, we know from (61)
in Remark 23 and from 1pp(H) = 1eig(H)(H) that s− limN→∞ χN = 1pp(H). Next, we define
the entries of the matrix-valued map Ωpp,N : R → C2n×2n, for all i, j ∈ 〈1, 2n〉, all N ∈ N, and
all t ∈ R, by

Ωpp,N
ij (t) := (eitHχNΓFi, T0eitHχNFj), (124)

and we note Ωpp,N
ij ∈ AP (R) for all i, j ∈ 〈1, 2n〉 and all N ∈ N because (124) defines a

trigonometric polynomial on R due to the fact that eitH1λ(H) = eitλ1λ(H) for all t ∈ R and all
λ ∈ eig(H). Moreover, since, for all i, j ∈ 〈1, 2n〉, all N ∈ N, and all t ∈ R, we have

|Ωpp,N
ij (t)− Ωpp

ij (t)| ≤ ‖T0‖‖χNFj‖‖(χN − 1pp(H))Fi‖+ ‖T0‖‖Fi‖‖(χN − 1pp(H))Fj‖, (125)

and since the sequence (‖χNF‖)N∈N is bounded for all F ∈ H, we get, for all i, j ∈ 〈1, 2n〉,

lim
N→∞

|Ωpp,N
ij − Ωpp

ij |∞ = 0, (126)

which implies that Ωpp
ij ∈ AP (R) for all i, j ∈ 〈1, 2n〉 since AP (R) is closed with respect to the

norm | · |∞ (given in (344) of Appendix A). Since the argument of the Pfaffian on the right
hand side of (103) has the form Ω(t) = Λaa + Ωpp(t) for all t ∈ R, where the entries of the
matrix Λaa ∈ C2n×2n are defined by the right hand side of (117), i.e., for all i, j ∈ 〈1, 2n〉, by

Λaa
ij := (ΓFi, ρ(∆H)1ac(H)Fj), (127)

since the Pfaffian is a polynomial function of the entries of the matrix on which it acts, and
since AP (R) is an algebra (with respect to the usual pointwise addition, scalar multiplication,
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and multiplication), the function ϑ : R → C, defined by ϑ(t) := pf(Λaa + Ωpp(t)) for all t ∈ R,
satisfies ϑ ∈ AP (R). Therefore, we know that the large time average limt→∞

∫ t
0
dsϑ(s)/t

exists, and we want to show that it is equal to the large time average of (103). To this end,
let the entries of the range of the linear map C2n×2n 3 A = [aij]i,j∈〈1,2n〉 7→ Aa ∈ C2n×2n

a be
defined, for all i, j ∈ 〈1, 2n〉, by [Aa]ij := aij if i < j, [Aa]ii := 0, and [Aa]ij := −aji if i > j.
Using Hadamard’s inequality | det(A)| ≤

∏
i∈〈1,n〉(

∑
j∈〈1,n〉 |aij|

2)1/2 for all A ∈ Cn×n and the
Cayley-Muir lemma (pf(A))2 = det(A) for all A ∈ C2n×2n

a , we get |pf(A)| ≤ |A|n2 for all A ∈
C2n×2n
a . Hence, since the function [0,∞) 3 r 7→ rn ∈ R is monotonically increasing, we know

that |pf(A)− pf(B)| ≤ |A−B|2(|A|2 + |B|2 + 1)n for all A,B ∈ C2n×2n
a (see [29] for example).

Moreover, we note that pf(A) = pf(Aa) due to (32) and that |Aa|22 = 2
∑

i,j∈〈1,2n〉, i<j |aij|
2 ≤

2|A|22 for all A ∈ C2n×2n. Hence, since, for all t ∈ R, we have |Ω(t)|2 ≤ C1 and |Λaa+Ωpp(t)|2 ≤
C2, where C1 := ‖T0‖(

∑
i,j∈〈1,2n〉 ‖Fi‖

2‖Fj‖2)1/2 and C2 :=
√

2(
∑

i,j∈〈1,2n〉 |Λ
aa
ij |2 + C2

1)1/2, we
get, for all t ∈ R,

|pf(Ω(t))− pf(Λaa + Ωpp(t))| ≤ C(|Ωaa(t)− Λaa|2 + |Ωap(t)|2 + |Ωpa(t)|2), (128)

where C :=
√

2(1 +
√

2(C1 +C2))n. Therefore, since the right hand side of (128) vanishes for
t→∞, its large time average also vanishes and we get

lim
t→∞

1

t

∫ t

0

ds ω0

(∏
i∈〈1,2n〉

τ s
(
B(Fi)

))
= lim

t→∞

1

t

∫ t

0

ds pf(Ω(s))

= lim
t→∞

1

t

∫ t

0

ds pf(Λaa + Ωpp(s)). (129)

Finally, we have to show that the limit on the right hand side of (96) exists for all A ∈ A.
Let A ∈ A be fixed. Since, by definition, A is the completion (with respect to the C∗-norm
‖·‖) of the ∗-algebra generated by the selfdual generators from Definition 1 (d), there exists a
sequence (Pn)n∈N of polynomials in these generators such that limn→∞ ‖A−Pn‖ = 0. For all
B ∈ A, defining the function FB : (0,∞) → C by FB(t) :=

∫ t
0
dsω0(τ s(B))/t for all t ∈ (0,∞)

and noting that |ω0(τ t(B))| ≤ ‖B‖ for all t ∈ R and all B ∈ A, we get, for all t, t′ ∈ R and all
n ∈ N,

|FA(t)− FA(t′)| ≤ 2‖A− Pn‖+ |FPn(t)− FPn(t′)|. (130)

Hence, since the limit for t→∞ of FPn(t) exists for all n ∈ N due to (129), (130) implies the
existence of the desired limit on the right hand side of (96).

(b) Let F1, F2 ∈ H be fixed. Due to (96), (129), and (31), we have

(ΓF1, TF2) = ω(B(F1)B(F2))

= lim
t→∞

1

t

∫ t

0

ds ω0(τ s(B(F1)B(F2)))

= (ΓF1, ρ(∆H)1ac(H)F2) + lim
t→∞

1

t

∫ t

0

ds Ωpp
12(s), (131)
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where we recall that Ωpp
12 from (109) satisfies Ωpp

12 ∈ AP (R) and that the limit on the right hand
side of (131) thus exists. Moreover, we have, for all t ∈ R+ := (0,∞) and all N ∈ N,

1

t

∫ t

0

ds Ωpp,N
12 (t) =

∑
n∈〈1,N〉

(ΓF1, 1λn(H)T01λn(H)F2)

+
∑

n,m∈〈1,N〉
n6=m

eit(λm−λn) − 1

it(λm − λn)
(ΓF1, 1λn(H)T01λm(H)F2), (132)

from which it follows that, for all N ∈ N,

lim
t→∞

1

t

∫ t

0

ds Ωpp,N
12 (s) =

(
ΓF1,

∑
n∈〈1,N〉

1λn(H)T01λn(H)F2

)
. (133)

Hence, due to (133), and since (126) implies that the sequence of functions R+ 3 t 7→∫ t
0
ds Ωpp,N

12 (s)/t converges, for N → ∞, uniformly in t ∈ R+ to the function R+ 3 t 7→∫ t
0
ds Ωpp

12(s)/t, the limit operations for t → ∞ and N → ∞ can be interchanged and the
second term on the right hand side of (131) becomes

lim
t→∞

1

t

∫ t

0

ds Ωpp
12(s) = lim

t→∞

1

t

∫ t

0

ds lim
N→∞

Ωpp,N
12 (s)

= lim
t→∞

lim
N→∞

1

t

∫ t

0

ds Ωpp,N
12 (s)

= lim
N→∞

lim
t→∞

1

t

∫ t

0

ds Ωpp,N
12 (s)

= lim
N→∞

(
ΓF1,

∑
n∈〈1,N〉

1λn(H)T01λn(H)F2

)
=
(

ΓF1,
∑

λ∈eig(H)
1λ(H)T01λ(H)F2

)
, (134)

where, in the last equality, we used Definition 22 (a). �

Remark 37 Due to Assumption 14 (c), we have H −H0 = HLS +HSL +HRS +HSR +HLR +
HRL ∈ L1(H). Hence, the Kato-Rosenblum theorem again implies the existence of the wave
operator W ∈ L(H) from Definition 35 (a). Moreover, as in the proof of Theorem 36 (b) (or
by noting that W = WL + WR and by using Lemma 83 (c)), inserting 1 = eitH0e−itH0 for all
t ∈ R in front of T0 in (106) and using that [e−itH0 , T0] = 0 for all t ∈ R directly leads to

Tac = W ∗T0W. (135)

5 Asymptotic velocity

In this section, we implement translation invariance and study its consequences. In particu-
lar, we construct the so-called asymptotic velocity and derive the action of the R/L generator
as a matrix multiplication operator.
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In the following, we will resort to the usual Fourier Hilbert space isomorphism f between
the 1-particle position Hilbert space h over Z and the 1-particle momentum Hilbert space ĥ
over T := [−π, π] defined by

ĥ := L2(T). (136)

Here and in the following, for all p ∈ R with p ≥ 1, we denote by Lp(T) the space of equiv-
alence classes of functions ϕ : T → C which are measurable with respect toM(T) and for
which |ϕ|p is integrable with respect to the Borel-Lebesgue measure (and analogously if T is
replaced by another subinterval of R). As usual, the equivalence relation identifies functions
which coincide almost everywhere with respect to the Borel-Lebesgue measure (i.e., on the
complement of a subset of a set of Borel-Lebesgue measure zero). Moreover,M(T) is de-
fined to be the restriction ofM(R) to T, i.e., we haveM(T) := {M∩T |M ∈M(R)} = {M ⊆
T |M ∈ M(R)}, and we recall thatM(R) is given in Definition 75 (c). Abusing notation, for
all M ∈ M(T), we write |M | for the (restriction toM(T) of the) Borel-Lebesgue measure of
M . Moreover, we denote by L∞(T) the space of equivalence classes of functions ϕ : T→ C
which are measurable with respect toM(T) and almost everywhere bounded on T, and the
norm on L∞(T) is denoted by ‖ · ‖∞.

For all f ∈ h, the Fourier transform is given by the limit (in ĥ) ff := limN→∞
∑
|x|≤N f(x)ex,

where, for all x ∈ Z, the plane wave functions ex ∈ ĥ are given by ex(k) := eikx for all k ∈ T.
Furthermore, for all f ∈ h and all a ∈ L(h), we set f̂ := ff ∈ ĥ and â := faf∗ ∈ L(ĥ) and,
sometimes, we also write ϕ̌ := f∗ϕ for all ϕ ∈ ĥ. On H = h ⊕ h, we define F := fσ0 : H → Ĥ,
where the doubled 1-particle momentum Hilbert space is given by

Ĥ := ĥ⊕ ĥ, (137)

and we set F̂ := FF ∈ Ĥ for all F ∈ H and Â := FAF∗ ∈ L(Ĥ) for all A ∈ L(H) (the usual
scalar products and the corresponding induced norms and operator norms, on both ĥ and
Ĥ, are again all denoted by (·, ·) and ‖ · ‖, respectively).

Furthermore, similarly to (34) on position space, for all u ∈ L∞(T), the multiplication
operator m[u] ∈ L(ĥ) on momentum space is defined by m[u]ϕ := uϕ for all ϕ ∈ ĥ. Moreover,
for all u := [u1, u2, u3] ∈ L∞(T)3, we define m[u] ∈ L(ĥ)3 by

m[u] := [m[u1],m[u2],m[u3]], (138)

and we note that, for all Φ ∈ Ĥ on which it is defined, the operator U := m[u0]σ0 + m[u]σ
(using the same matrix operator notation as the one introduced in (5)) satisfies the bound

‖UΦ‖ ≤ CU‖Φ‖, (139)

where we set CU :=
∑

α∈〈0,3〉 ‖uα‖∞ (in particular, if U is defined on the whole of Ĥ, we have
U ∈ L(Ĥ)). Finally, for all u ∈ L∞(T), we denote the real, imaginary, even, and odd part of u
(defined almost everywhere) by Re(u), Im(u), Ev(u), and Od(u), respectively.

We next determine the properties of the Pauli coefficients specifying a translation invari-
ant Hamiltonian in momentum space.
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Proposition 38 (Translation invariance) Let H ∈ L(H) be a Hamiltonian satisfying As-
sumption 14 (b).Then:

(a) There exist u0 ∈ L∞(T) and u = [u1, u2, u3] ∈ L∞(T)3 such that

Ĥ = m[u0]σ0 +m[u]σ. (140)

(b) For all α ∈ 〈0, 3〉, we have

Im(uα) = 0. (141)

Moreover, the even and odd parts have the properties, for all α ∈ 〈0, 2〉,

Ev(uα) = 0, (142)
Od(u3) = 0. (143)

Proof. (a) Let us first note that, since the Hamiltonian can be written in the form H =
h0σ0 + hσ with the Pauli coefficients h0 ∈ L(h) and h := [h1, h2, h3] ∈ L(h)3, (25) and (26)
respectively yield, for all α ∈ 〈0, 3〉,

h∗α = hα, (144)

ζhαζ =

{
−hα, α ∈ 〈0, 2〉,
hα, α = 3.

(145)

On the other hand, Assumption 14 (b) implies, for all α ∈ 〈0, 3〉, that

[hα, θ] = 0. (146)

Hence, we know (see [13] for example) that, for all α ∈ 〈0, 3〉, there exist uα ∈ L∞(T) with

ĥα = m[uα], (147)

i.e., we can write Ĥ = m[u0]σ0 +m[u]σ, where we set u := [u1, u2, u3] ∈ L∞(T)3.
(b) Using (144) and (147), we have ūα = uα for all α ∈ 〈0, 3〉, where ϕ̄ is the complex

conjugation of ϕ ∈ ĥ. Moreover, since fζf = ξ̂
¯̂
f for all f ∈ h, we get, for all α ∈ 〈0, 3〉,

ξ̂uα =

{
−uα, α ∈ 〈0, 2〉,
uα, α = 3,

(148)

and we note that (ξ̂ϕ)(k) = ϕ(−k) for all ϕ ∈ ĥ and almost all k ∈ T. �
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Remark 39 Let α ∈ 〈0, 3〉. Due to a theorem by Bernstein, if, and only if, (the 2π-periodic
extension of) uα is real-analytic, there exist constants C, a > 0 such that, for all x ∈ Z,

|ǔα(x)| ≤ Ce−a|x|. (149)

Moreover, under these conditions, the number of zeros of uα on T is finite. In Section 6, we
will study the special case for which ǔα has finite support.

In the following, for all functions T 3 k 7→ u(k) ∈ C and all k0 ∈ T, we denote by u′(k0) not
only the derivative of u with respect to k at the point k0 if k0 ∈ T\{±π} but also the one-sided
derivatives if k0 ∈ {±π} (if all the derivatives in question exist). In this sense, for all m ∈ N,
we denote by Cm(T) the m times continuously differentiable complex-valued functions on T.
Moreover, C(T) stands for the continuous and C∞(T) for the infinitely differentiable complex-
valued functions on T. The analogous notations are used if T is replaced by R and/or the
target space C by another Banach space (which is then explicitly indicated).

The following conditions will be used at various places in the sequel.

Assumption 40 (Pauli coefficient functions) Let uα ∈ L∞(T) for all α ∈ 〈0, 3〉.

(a) Im(uα) = 0 for all α ∈ 〈0, 3〉
(b) uα ∈ C1(T) with uα(π) = uα(−π) and u′α(π) = u′α(−π) for all α ∈ 〈0, 3〉

In the following, for all m ∈ N and all u := [u1, . . . , um] ∈ L∞(T)m with real-valued en-
tries, we define the Euclidean norm function |u| ∈ L∞(T) by |u| :=

√∑
i∈〈1,m〉 u

2
i and the

generalized zero set Zu ∈M(T) (up to subsets of sets of Borel-Lebesgue measure zero) by

Zu := {k ∈ T | |u|(k) = 0} (150)

=
⋂

i∈〈1,m〉

Zui , (151)

and we use the notation Zcu := T \ Zu ∈ M(T). Moreover, for all i ∈ 〈1,m〉, the functions
ũi ∈ L∞(T) are defined by

ũi :=


ui
|u|
, on Zcu,

0, on Zu,
(152)

and we set ũ := [ũ1, . . . , ũm] ∈ L∞(T)m. Moreover, for all u := [u1, . . . , um] ∈ L∞(T)m and
v := [v1, . . . , vm] ∈ L∞(T)m with real-valued entries, the Euclidean scalar product function
uv ∈ L∞(T) is defined by uv :=

∑
i∈〈1,m〉 uivi and we set u2 := uu. Finally, for all u0 ∈ L∞(T)

and all u := [u1, . . . , um] ∈ L∞(T)m, we set u0u := [u0u1, . . . , u0um] ∈ L∞(T)m.
The following functions are the basic ingredients in the diagonalization of the Hamiltonian

(see Proposition 86 and Remark 87).
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Definition 41 (Eigenvalue functions) Let u0 ∈ L∞(T) and u := [u1, u2, u3] ∈ L∞(T)3 satisfy
Assumption 40 (a) and (b). The eigenvalue functions e± ∈ C(T) ∩ C1(Zcu) are defined by

e± := u0 ± |u|. (153)

Moreover, we define the set Z± ∈M(T) by

Z± := {k ∈ Zcu | e′±(k) = 0}, (154)

and, on Zcu, we have e′± = u′0 ± ũu′.

Remark 42 Since, due to Assumption 40 (b), we have uα ∈ C(T) for all α ∈ 〈1, 3〉, the set Zu
is closed relative to T (and R) and, hence, Zcu is open relative to T.

In the following, whenever the symbol ± appears several times in the same equation, the
latter stands for two equations, one of which corresponds to all the upper signs and the other
one to all the lower signs (no cross terms).

The following conditions will be used in Section 6 and Appendix B.

Assumption 43 (Zero sets) Let u0 ∈ L∞(T) and u := [u1, u2, u3] ∈ L∞(T)3 satisfy Assump-
tion 40 (a) and (b) and let M ∈M(R).

(a) |Zu ∩ e−1
± (M)| = 0

(b) |Z± ∩ e−1
± (M)| = 0

In the following, `0(Z) stands for the subspace of h of all the complex-valued functions on
Z with finite support. Moreover, let dom(q) be the subspace of h defined by

dom(q) :=
{
f ∈ h

∣∣∣ ∑
x∈Z

x2 |f(x)|2 <∞
}
, (155)

and note that dom(q) is dense in h since the Kronecker basis satisfies {δx}x∈Z ⊆ `0(Z) ⊆
dom(q). Moreover, let q : dom(q) ⊆ h → h stand for the usual position operator on the
position space h whose action is given, for all f ∈ dom(q) and all x ∈ Z, by

(qf)(x) := xf(x). (156)

Recall that q is unbounded since, if, for any f ∈ dom(q) with f /∈ `0(Z), we set fn :=
(f − 1〈−n,n〉f)/‖f − 1〈−n,n〉f‖ ∈ dom(q) for all n ∈ N, we have ‖qfn‖ ≥ n + 1 for all n ∈ N.
Moreover, since f/(κ1 ± i) ∈ dom(q) for all f ∈ h, where κ1(x) = x for all x ∈ R stems from
(346), we have ran (q ± i1) = h. Hence, since, due to (156), q is symmetric, the standard
criterion for selfadjointness implies that q∗ = q. Furthermore, its lifting to the doubled 1-
particle Hilbert space H is defined by

dom(Q) := dom(q)⊕ dom(q), (157)
Q := qσ0, (158)
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where, for the case of unbounded operators, we use the same matrix operator notation as
the one introduced in (5) for the bounded operators (but acting on the domain of definition
of the unbounded operator in question). From the foregoing considerations for q, we obtain
that dom(Q) is a dense subspace of H and that Q∗ = Q.

Next, let dom(p) be the subspace of ĥ defined by

dom(p) := {ϕ ∈ AC(T) |ϕ′ ∈ ĥ and ϕ(π) = ϕ(−π)}, (159)

where AC(T) stands for the complex-valued absolutely continuous functions on T. Recall
that if ϕ ∈ AC(T), then ϕ′(k) exists for almost all k ∈ T, ϕ′ ∈ L1(T), and ϕ(k) = ϕ(−π) +∫

[−π,k]
ds ϕ′(s) for all k ∈ T. Conversely, if ψ ∈ L1(T), then the function T 3 k → ϕ(k) :=∫

[−π,k]
ds ψ(s) satisfies ϕ ∈ AC(T) and ϕ′(k) = ψ(k) for almost all k ∈ T. Now, note that

f∗ϕ ∈ dom(q) for all ϕ ∈ dom(p) since, for all ϕ ∈ dom(p) and all x ∈ Z, we have

x(f∗ϕ)(x) = −i(f∗ϕ′)(x), (160)

where we used partial integration in AC(T) (and, for example, that C1(T) ⊆ AC(T)). More-
over, we also have ff ∈ dom(p) for all f ∈ dom(q) because, on one hand, ff ∈ W 1,2(T)
due to the fact that {ϕ ∈ ĥ | f∗ϕ ∈ dom(q)} = W 1,2(T) ((160) also holds for ϕ ∈ W 1,2(T)),
where W 1,2(T) stands for the usual (periodic) Sobolev space, and, on the other hand, since
we know that W 1,2(T) = dom(p). Hence, since f∗ϕ ∈ dom(q) for all ϕ ∈ dom(p) and since
ff ∈ dom(p) for all f ∈ dom(q), the restriction of the unitary operator f : h→ ĥ to dom(q) is a
bijection between dom(q) and dom(p). Therefore, dom(p) being a dense subspace of ĥ, we
define the position operator on momentum space p : dom(p) ⊆ ĥ→ ĥ, for all ϕ ∈ dom(p), by

pϕ := −iϕ′. (161)

Moreover, due to (160), we can write pϕ = fqf∗ϕ for all ϕ ∈ dom(p) which implies that p is an
unbounded selfadjoint operator on momentum space. Finally, as for Q above, the lifting to
the doubled 1-particle momentum space Ĥ is defined by

dom(P ) := dom(p)⊕ dom(p), (162)
P := pσ0, (163)

and we again get that dom(P ) is a dense subspace of Ĥ and that P ∗ = P . Moreover, F is a
bijection between dom(Q) and dom(P ) and PΦ = FQF∗Φ for all Φ ∈ dom(P ).

We now arrive at the definition of the asymptotic velocity of the system.

Definition 44 (Asymptotic velocity) Let u0 ∈ L∞(T) and u := [u1, u2, u3] ∈ L∞(T)3 satisfy
Assumption 40 (a) and define U ∈ L(Ĥ) by

U := m[u0]σ0 +m[u]σ. (164)

If eitUdom(P ) ⊆ dom(P ) for all t ∈ R and if, for all Φ ∈ dom(P ), the limit for t → ∞ of
e−itUP eitUΦ/t exists in Ĥ, the operator V : dom(P )→ Ĥ defined, for all Φ ∈ dom(P ), by

V Φ := lim
t→∞

1

t
e−itUP eitUΦ, (165)

is called asymptotic velocity (with respect to U ).
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Remark 45 Under Assumption 40 (a), the operator U from (164) is bounded on Ĥ (due to
(139)) and symmetric. Hence, U∗ = U and the propagator eitU is well-defined for all t ∈ R.

Under a simple regularity assumption specific to Section 6, we get the natural explicit
form of the asymptotic velocity.

Proposition 46 (Asymptotic velocity) Let u0 ∈ L∞(T) and u := [u1, u2, u3] ∈ L∞(T)3 sat-
isfy Assumption 40 (a) and (b) and define U ∈ L(Ĥ) by U := m[u0]σ0 +m[u]σ. Then:

(a) The asymptotic velocity V with respect to U exists and is a bounded symmetric opera-
tor on dom(P ).

(b) The bounded extension V̄ ∈ L(Ĥ) of V to Ĥ is selfadjoint and has the form

V̄ = m[v0]σ0 +m[v]σ, (166)

where v0 ∈ L∞(T) and v ∈ L∞(T)3 are defined by

v0 := u′0, (167)

v :=

{
(ũu′)ũ, on Zcu,

u′, on Zu.
(168)

Proof. (a) We first want to show that eitUdom(P ) ⊆ dom(P ) for all t ∈ R. To this end, we
make use of Proposition 86 (a) which asserts that, for all t ∈ R,

eitU = m[exp ◦(itu0)Ct]σ0 + itm[exp ◦(itu0)Stu]σ, (169)

where the maps R 3 t→ Ct ∈ L∞(T) and R 3 t→ St ∈ L∞(T) are given, for all t ∈ R, by

Ct := cos ◦(t|u|), (170)
St := sinc ◦(t|u|), (171)

and sinc ∈ C∞(R) stands for the usual cardinal sine function. In order to verify the first prop-
erty in (159) (and (162)), we note that, for all t ∈ R, the functions Ct and St are differentiable
with respect to k for all k ∈ T. Moreover, for all t ∈ R, the derivatives have the form

C ′t = −t2 sinc ◦(t|u|)(uu′), (172)

S ′t = −t
2

2

(
sinc ◦(t|u|) + sinc′′ ◦(t|u|)

)
(uu′), (173)

where, in (173), we used that x sinc′′(x) + 2 sinc′(x) + x sinc(x) = 0 for all x ∈ R. Due to the
first part of Assumption 40 (b), (172) and (173) yield Ct, St ∈ C1(T) for all t ∈ R. Hence,
since C1(T) ⊆ AC(T) and since AC(T) is a ∗-algebra, we get from (169) that eitUΦ ∈ AC(T)2
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for all t ∈ R and all Φ ∈ dom(P ). As for the second property in (159), we note that, for all
t ∈ R and all Φ ∈ dom(P ), we have (almost everywhere in T)(

eitUΦ
)′

=
(
m[exp ◦(itu0)(itu′0Ct + C ′t)]σ0 + itm[exp ◦(itu0)((itu′0St + S ′t)u+ Stu

′)]σ
)
Φ

+ eitUΦ′, (174)

where we set Φ′ := ϕ′1 ⊕ ϕ′2 if Φ = ϕ1 ⊕ ϕ2. Hence, since C(T) ⊆ L∞(T) ⊆ ĥ, the first part of
Assumption 40 (b) implies that (eitUΦ)′ ∈ Ĥ for all t ∈ R and all Φ ∈ dom(P ). Finally, due to
(169) and the second part of Assumption 40 (b), we also get the third property in (159).

Next, let Φ ∈ dom(P ) be fixed, let the map X : R→ Ĥ be defined, for all t ∈ R, by

X t := e−itUP eitUΦ, (175)

and let us show that X ∈ C1(R, Ĥ). To this end, let t ∈ R, let s ∈ I := [−1, 1] \ {0}, and
consider the difference quotient

X t+s −X t

s
= Ds

1,t +Ds
2,t, (176)

where, for all i ∈ 〈1, 2〉 and all t ∈ R, the maps Di,t : I → Ĥ are given, for all s ∈ I, by

Ds
1,t := e−itU e−isU − 1

s
P eitUΦ, (177)

Ds
2,t := e−itUe−isUP

eisU − 1

s
eitUΦ. (178)

Now, since U ∈ L(Ĥ), the limit (in Ĥ) for s→ 0 of (177) yields, for all t ∈ R,

lim
s→0

Ds
1,t = −ie−itUUP eitUΦ. (179)

In order to determine the limit for s→ 0 of (178), we make use of (174) and get, for all s ∈ I
and all Ψ ∈ dom(P ),

P
eisU − 1

s
Ψ =

(
m

[
exp ◦(isu0)

(
u′0Cs − i

C ′s
s

)]
σ0 + m[exp ◦(isu0)((isu′0Ss + S ′s)u+ Ssu

′)]σ

)
Ψ

− i
eisU − 1

s
Ψ′. (180)

Moreover, since (UΨ)′ = (m[u′0]σ0 + m[u′]σ)Ψ + UΨ′ for all Ψ ∈ dom(P ), we get, as above,
that UΨ ∈ dom(P ) for all Ψ ∈ dom(P ). Hence, for all s ∈ I and all Ψ ∈ dom(P ), the
decomposition (180) leads to∥∥∥∥P eisU − 1

s
Ψ− iPUΨ

∥∥∥∥ ≤ ∑
i∈〈1,6〉

Ai(s), (181)
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where, for all i ∈ 〈1, 6〉, the functions Ai : I → R are defined, for all s ∈ I, by

A1(s) := ‖m[(exp ◦(isu0)Cs − 1)u′0]σ0Ψ‖, (182)

A2(s) :=
1

|s|
‖m[C ′s]σ0Ψ‖, (183)

A3(s) := |s|‖m[u′0Ssu]σΨ‖, (184)
A4(s) := ‖m[S ′su]σΨ‖, (185)
A5(s) := ‖(m[(exp ◦(isu0)Ss − 1)u′]σΨ‖, (186)

A6(s) :=

∥∥∥∥eisU − 1

s
Ψ′ − iUΨ′

∥∥∥∥, (187)

and, in (183)-(185), we used that | exp ◦(isu0)| = 1 for all s ∈ R. In order to estimate (182)-
(187), we next write Ψ = ψ1 ⊕ ψ2 for all Ψ ∈ dom(P ). As for (182)-(183), we have, for all
n ∈ 〈1, 2〉 and all s ∈ I, that An(s)2 =

∑
i∈〈1,2〉 ‖f

s
n,i‖2, where, for all n, i ∈ 〈1, 2〉 and all s ∈ I,

we define f sn,i ∈ ĥ by

f s1,i := (exp ◦(isu0)Cs − 1)u′0ψi, (188)

f s2,i :=
C ′s
s
ψi. (189)

Using (172) and the bound | sinc(x)| ≤ 1 for all x ∈ R for (189) (which follows from the repre-
sentation sinc(x) =

∫ 1

0
dλ cos(λx) for all x ∈ R), we get, for all n, i ∈ 〈1, 2〉, that lims→0 f

s
n,i(k) =

0 for all k ∈ T. Since, in addition, for all n, i ∈ 〈1, 2〉, we have |f sn,i|2 ≤ Cn|ψi|2 ∈ L1(T) for
all s ∈ I, where C1 := 4‖u′0‖2

∞ and C2 := 3
∑

α∈〈1,3〉 ‖uα‖
2
∞‖u′α‖2

∞, Lebesgue’s dominated
convergence theorem implies that lims→0An(s) = 0 for all n ∈ 〈1, 2〉. As for (184)-(186), for
all n ∈ 〈3, 5〉 and all s ∈ I, we can write An(s)2 ≤ 3

∑
i∈〈1,2〉

∑
α∈〈1,3〉 ‖f

s
n,i,α‖2, where, for all

n ∈ 〈3, 5〉, all i ∈ 〈1, 2〉, all α ∈ 〈1, 3〉, and all s ∈ I, we define f sn,i,α ∈ ĥ by

f s3,i,α := su′0Ssuαψi, (190)
f s4,i,α := S ′suαψi, (191)
f s5,i,α := (exp ◦(isu0)Ss − 1)u′αψi. (192)

Using (173) and | sinc′′(x)| ≤ 1/3 for all x ∈ R for (191), we get, for all n ∈ 〈3, 5〉, all i ∈ 〈1, 2〉,
and all α ∈ 〈1, 3〉, that lims→0 f

s
n,i,α(k) = 0 for all k ∈ T. Since, in addition, for all n ∈ 〈3, 5〉, all

i ∈ 〈1, 2〉, and all α ∈ 〈1, 3〉, we have |f sn,i,α|2 ≤ Cn,α|ψi|2 ∈ L1(T) for all s ∈ I, where, for all
α ∈ 〈1, 3〉, we set C3,α := ‖u′0‖2

∞‖uα‖2
∞, C4,α := 3(

∑
β∈〈1,3〉 ‖uβ‖

2
∞‖u′β‖2

∞)‖uα‖2
∞, and C5,α :=

4‖u′α‖2
∞, Lebesgue’s dominated convergence theorem again implies that lims→0An(s) = 0 for

all n ∈ 〈3, 5〉. Moreover, we have lims→0A6(s) = 0 as in (179). Finally, since, for all t ∈ R and
all s ∈ I, we can write Ds

2,t − ie−itUPUeitUΦ = ie−itU(e−isU − 1)PUeitUΦ + e−itUe−isU(P (eisU −
1)eitUΦ/s− iPUeitUΦ), we get, for all t ∈ R and all s ∈ I,∥∥Ds

2,t − ie−itUPUeitUΦ
∥∥ ≤ ∥∥(e−isU − 1

)
PUeitUΦ

∥∥+

∥∥∥∥P eisU − 1

s
eitUΦ− iPUeitUΦ

∥∥∥∥, (193)
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which, using (181) and the strong continuity of the propagator, implies that, for all t ∈ R,

lim
s→0

Ds
2,t = ie−itUPUeitUΦ. (194)

Therefore, it follows from (176), (179), and (194), that the map X is differentiable in Ĥ at any
point in R and that its derivative Ẋ : R → Ĥ, defined, for all t ∈ R, by Ẋ t := lims→0(X t+s −
X t)/s, reads, for all t ∈ R, as

Ẋ t = e−itUU ′eitUΦ, (195)

where the commutator U ′ : dom(P ) → Ĥ is defined by U ′Φ := −i(UPΦ − PUΦ) for all
Φ ∈ dom(P ). Since, for all Φ ∈ dom(P ), we have

U ′Φ = (m[u′0]σ0 +m[u′]σ)Φ, (196)

(139) implies that ‖U ′Φ‖ ≤ CU ′‖Φ‖ for all Φ ∈ dom(P ) with CU ′ :=
∑

α∈〈0,3〉 ‖u
′
α‖∞. Moreover,

since, as above, Ẋ t+s−Ẋ t = e−itU(e−isU−1)U ′eitUΦ+e−itUe−isUU ′eitU(eisU−1)Φ for all s, t ∈ R,
we get, for all s, t ∈ R,∥∥Ẋ t+s − Ẋ t

∥∥ ≤ ∥∥(e−isU − 1
)
U ′eitUΦ

∥∥+ CU ′
∥∥(eisU − 1

)
Φ
∥∥. (197)

The strong continuity of the propagator and (197) now imply that Ẋ ∈ C(R, Ĥ), i.e., we find
that X ∈ C1(R, Ĥ) as desired.

We next want to compute the limit (in Ĥ) for t→∞ ofX t/t. In order to do so, we note that,
due to Ẋ ∈ C(R, Ĥ) and (195), the second fundamental theorem of Banach space-valued
Riemann integral calculus yields, for all t ∈ R+,

X t = X0 +

∫ t

0

ds Ẋs

= PΦ +

∫ t

0

ds e−isUU ′eisUΦ. (198)

Using (169), (196), and (7), we compute that e−isUU ′eisUΦ = (m[u′0]σ0+m[as]σ)Φ for all s ∈ R,
where the map R 3 s 7→ as ∈ L∞(T)3 has the form as =

∑
i∈〈1,3〉 a

s
i , and, for all i ∈ 〈1, 3〉, the

maps R 3 s 7→ asi ∈ L∞(T)3 are defined, for all s ∈ R, by

as1 := C2su
′, (199)

as2 := 2sCsSs(u ∧ u′), (200)

as3 := 2s2S2
s (uu′)u. (201)

As for (199), since for all i ∈ 〈1, 2〉, all α ∈ 〈1, 3〉, and all t ∈ R+, the Riemann integral∫ t
0
ds C2su

′
αϕi exists in ĥ due to the fact that Ẋ ∈ C(R, Ĥ), since, for all i ∈ 〈1, 2〉, all α ∈ 〈1, 3〉,

all k ∈ T, and all t ∈ R+, the Riemann integral
∫ t

0
ds C2s(k)u′α(k)ϕi(k) exists in C, and
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since every sequence which converges in ĥ to a limit has a subsequence which converges
pointwise always everywhere to the same limit, we get, for all t ∈ R+,∫ t

0

ds (m[as1]σ)Φ = t (m[S2tu
′]σ)Φ. (202)

The terms (200) and (201) are treated analogously. We find, for all t ∈ R+,∫ t

0

ds (m[as2]σ)Φ = t2(m[S2
t (u ∧ u′)]σ)Φ, (203)∫ t

0

ds (m[as3]σ)Φ = t (m[(1− S2t)(ũu
′)ũ]σ)Φ, (204)

where ũ is given after (152). Hence, using (198) and (202)-(204), we get, for all t ∈ R+,

X t

t
=
PΦ

t
+ (m[u′0]σ0)Φ + (m[S2tu

′]σ)Φ + t(m[S2
t (u ∧ u′)]σ)Φ + (m[(1− S2t)(ũu

′)ũ]σ)Φ.

(205)

Since, on Zu, the fourth and fifth term on the right hand side of (205) satisfy tS2
t (u ∧ u′) =

(1−S2t)(ũu
′)ũ = 0 whereas, for the third term, we have S2tu

′ = u′ on Zu, we decompose the
latter as S2tu

′ = 1Zuu
′ + S2t1Zcuu

′. Hence, we get, for all t ∈ R+,∥∥∥∥X t

t
−
(
(m[u′0]σ0)Φ + (m[1Zuu

′]σ)Φ + (m[(ũu′)ũ]σ)Φ
)∥∥∥∥ ≤ ∑

i∈〈1,4〉

Bi(t), (206)

where, for all i ∈ 〈1, 4〉, we define Bi : R+ → R, for all t ∈ R+, by

B1(t) :=
1

t
‖PΦ‖, (207)

B2(t) := ‖(m[S2t1Zcuu
′]σ)Φ‖, (208)

B3(t) := t‖(m[S2
t (u ∧ u′)]σ)Φ‖, (209)

B4(t) := ‖(m[S2t(ũu
′)ũ]σ)Φ‖. (210)

Setting Φ = ϕ1 ⊕ ϕ2 and proceeding as above, we have, for all n ∈ 〈2, 4〉 and all t ∈ R+, that
Bn(t)2 ≤ 3

∑
i∈〈1,2〉

∑
α∈〈1,3〉 ‖g

t
n,i,α‖2, where, for all n ∈ 〈2, 4〉, all i ∈ 〈1, 2〉, all α ∈ 〈1, 3〉, and

all t ∈ R+, we define gtn,i,α ∈ ĥ by

gt2,i,α := S2t1Zcuu
′
αϕi, (211)

gt3,i,α := tS2
t

∑
β,γ∈〈1,3〉

εαβγuβu
′
γϕi, (212)

gt4,i,α := S2t(ũu
′)ũαϕi. (213)
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Since, for all x ∈ R \ {0}, we have limt→∞ sinc(tx) = 0 and limt→∞ t sinc2(tx) = 0, we get, for
all n ∈ 〈2, 4〉, all i ∈ 〈1, 2〉, and all α ∈ 〈1, 3〉, that limt→∞ g

t
n,i,α(k) = 0 for all k ∈ T. Moreover,

for all n ∈ 〈2, 4〉, all i ∈ 〈1, 2〉, and all α ∈ 〈1, 3〉, we have |gtn,i,α|2 ≤ Dn,α|ϕi|2 ∈ L1(T) for all
t ∈ R+, where, for all α ∈ 〈1, 3〉, we set D2,α := ‖u′α‖2

∞ and, using |ũα| ≤ 1 for all α ∈ 〈1, 3〉,
we also have D3,α := 27

∑
γ∈〈1,3〉 ‖u

′
γ‖2
∞ and D4,α := 3

∑
β∈〈1,3〉 ‖u

′
β‖2
∞ (independent of α).

Hence, Lebesgue’s dominated convergence theorem again implies that limt→∞Bn(t) = 0 for
all n ∈ 〈2, 4〉 and since limt→∞B1(t) = 0 holds, too, (206) yields the limit in Ĥ for t → ∞ of
X t/t, i.e., we get, for all Φ ∈ dom(P ),

V Φ = lim
t→∞

X t

t
= (m[v0]σ0 +m[v]σ)Φ, (214)

where v0 ∈ L∞(T) and v ∈ L∞(T)3 are defined by v0 := u′0 and v := 1Zuu
′ + 1Zcu(ũu′)ũ.

Finally, due to (214) and (139), V is a bounded operator on dom(P ) and, due to Assump-
tion 40 (a), V is also symmetric.

(b) Since V is bounded on the dense domain dom(P ), we know that the unique bounded
extension of V to Ĥ is given by V̄ := V ∗∗ ∈ L(Ĥ). Moreover, since V is symmetric due to part
(a), i.e., since V ⊆ V ∗, we get V̄ = V ∗∗ ⊆ V ∗∗∗ = V̄ ∗ and, hence, V̄ ∗ = V̄ . Finally, since the
right hand side of (214) defines a bounded operator on Ĥ, the uniqueness of the bounded
extension implies that the action of V̄ on Ĥ is also given by (214). �

Remark 47 Using the usual group homomorphism between SU(2) and SO(3) which, for all
θ ∈ R, all a = [a1, a2, a3] ∈ R3 with

∑
i∈〈1,3〉 a

2
i = 1, and all x ∈ R3, is given by

e−i θ
2

(aσ)(xσ)ei θ
2

(aσ) = (R(a, θ)x)σ, (215)

where R(a, θ)x := (ax)a+ cos(θ)(x− (ax)a) + sin(θ)a ∧ x stands for the positive rotation of x
by the angle θ around the axis a, we obtain the geometric interpretation of (199)-(201).

The following condition will be used in the sequel.

Assumption 48 (Asymptotic velocity) Let H ∈ L(H) be a Hamiltonian satisfying Assump-
tion 14 (b), let the Pauli coefficient functions u0 ∈ L∞(T) and u ∈ L∞(T)3 of Ĥ satisfy
Assumption 40 (b), and let V̄ ∈ L(Ĥ) be the bounded extension of the asymptotic velocity
with respect to Ĥ.

(a) 0 /∈ eig(V̄ )

In the following, we use the sign function sign : R→ {−1, 0, 1} which is defined according
to the convention that sign(x) := −1 if x < 0, sign(0) := 0, and sign(x) := 1 if x > 0.
Moreover, recall Definition 16 (b) for the R/L generator ∆, Definition 41 for e′±, and define the
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mean inverse temperature β ∈ R and (half) the affinity δ ∈ R, driving the heat flux between
the reservoirs, by

β :=
βR + βL

2
, (216)

δ :=
βR − βL

2
. (217)

The R/L generator has the following form.

Proposition 49 (R/L generator) Let H ∈ L(H) be a Hamiltonian satisfying Assumption 14
(b) and let the Pauli coefficient functions u0 ∈ L∞(T) and u ∈ L∞(T)3 of Ĥ satisfy Assumption
40 (b). Moreover, let the bounded extension V̄ ∈ L(Ĥ) of the asymptotic velocity with respect
to Ĥ satisfy Assumption 48 (a) and let βL, βR ∈ R be the inverse reservoir temperatures.
Then:

(a) In momentum space, the R/L generator for H and βL, βR has the form

∆̂ = (β1 + δsign(V̄ ))1ac(Ĥ). (218)

(b) The sign function of the asymptotic velocity can be written as

sign(V̄ ) = m[w0]σ0 +m[w]σ, (219)

where w0 ∈ L∞(T) and w ∈ L∞(T)3 are defined by

w0 :=
1

2

{
sign ◦ e′+ + sign ◦ e′−, on Zcu,
sign ◦ f+ + sign ◦ f−, on Zu,

(220)

w :=
1

2

{
(sign ◦ e′+ − sign ◦ e′−)ũ, on Zcu,
(sign ◦ f+ − sign ◦ f−)ũ′, on Zu,

(221)

and f± ∈ L∞(T) is defined by f± := u′0 ± |u′|.

In the following proof, sr− lim stands for the convergence in the strong resolvent sense.

Proof. (a) We first note that, due to (42), the R/L generator can be written as

∆ = β1ac(H) + δPRL, (222)

where PRL := PR − PL ∈ L(H). Since f0 := (1R − 1L)− sign�Z∈ `0(Z), we have m[f0] ∈ L0(h)
and, hence, using (35)-(36) and (39)-(40), we get

PRL = s− lim
t→∞

e−itH(m[1R − 1L]σ0)eitH1ac(H)

= s− lim
t→∞

e−itH(m[sign�Z]σ0)eitH1ac(H), (223)
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where, with (46), we used that L0(H) ⊆ ker(µH), i.e., we have µH(m[f0]σ0) = 0. In or-
der to express (223) be means of the position operator in momentum space, we use the
uniqueness property of the resolution of the identity stated in Theorem 80 (a) and define
the map Em : B(R) → L(H) by Em(χ) := m[χ�Z]σ0 for all χ ∈ B(R). In order to obtain
Em = EQ, Theorem 80 (a) asserts that it is enough to verify that Ēm(κ1) = Q since Em

is a resolution of the identity. Using (351)-(352), we have dom(Ēm(κ1)) = ran (Em(κ−1)) =
{m[κ−1 �Z]f1 ⊕ m[κ−1 �Z]f2 | f1, f2 ∈ h} = dom(Q) because ran (m[κ−1 �Z]) = dom(q), i.e.,
for all F = f1 ⊕ f2 ∈ dom(Q), there exists G = g1 ⊕ g2 ∈ H with F = Em(κ−1)G, and
Ēm(κ1)F = Ēm(κ1)Em(κ−1)G = Em(κ1κ−1)G = (m[(κ1κ−1) �Z]σ0)G = m[κ1�Z]m[κ−1�Z]g1 ⊕
m[κ1�Z]m[κ−1�Z]g2 = qf1 ⊕ qf2 = QF . Therefore, since sign ∈ B(R), (223) and Theorem 80
(a) imply that

PRL = s− lim
t→∞

e−itHsign(Q)eitH1ac(H). (224)

Note that, here and at various other analogous places, we could have used Theorem 80 (b)
and Remark 81 instead of Theorem 80 (a) (see the proof of Lemma 83 (c) for example).
Applying Lemma 82 to H = H, K = Ĥ, and U = F, we get B = P and FEQ(χ)F∗ = EP (χ) for
all χ ∈ B(R) if A = Q and, likewise, B = Ĥ and FEH(χ)F∗ = EĤ(χ) for all χ ∈ B(R) if A = H.
Hence, since et ∈ Cb(R) for all t ∈ R (where et(x) := eitx for all x ∈ R stems from Theorem
80 (b)) and using that there exists Mac ∈M(R) such that 1ac(H) = EH(1Mac

), (224) leads to

P̂RL = s− lim
t→∞

e−itĤsign(P )eitĤ1ac(Ĥ). (225)

Now, recall from the proof of Proposition 46 (a) that eitĤdom(P ) ⊆ dom(P ) for all t ∈ R.
Hence, for all t ∈ R+, we set dom(V t) := dom(P ), we define the operator V t : dom(V t)→ Ĥ,
for all Φ ∈ dom(V t), by

V tΦ :=
1

t
e−itĤP eitĤΦ, (226)

and we note that V t is unbounded for all t ∈ R+ (since, for all t ∈ R+ and all n ∈ N, we have
‖V tΦn‖ ≥

√
2(n + 1)/t, where Φn := e−itĤ f̂n ⊕ f̂n ∈ dom(P ) and fn ∈ dom(q) is given after

(156)). In order to express (225) be means of (226), we again use Lemma 82 forH = K = Ĥ,
U = e−itĤ for all t ∈ R+, and A = P , and obtain B = tV t and e−itĤEP (χ)eitĤ = EtV t(χ) for all
t ∈ R+ and all χ ∈ B(R). Moreover, Remark 85 yields EtV t(χ) = EV t(χt) for all t ∈ R+ and
all χ ∈ B(R) and, hence, we get

P̂RL = s− lim
t→∞

sign(V t)1ac(Ĥ), (227)

where we used that signt = sign for all t ∈ R+. Since dom(V t) = dom(P ) for all t ∈ R \ {0},
since dom(P ) is a core for V̄ because the closure of V is equal to the bounded extension V̄
of V , and since limt→∞ V

tΦ = V̄ Φ for all Φ ∈ dom(P ) , due to Proposition 46, we have

sr− lim
t→∞

V t = V̄. (228)
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Finally, since sign = κ0− 1(−∞,0]− 1(−∞,0), where κ0 is the unity function from (345), we have
sign(V t) = EV t(sign) = 1−EV t(1(−∞,0])−EV t(1(−∞,0)). Hence, since we know that, under As-
sumption 48 (a) (which is equivalent to EV̄ (1{0}) = 0), (228) implies s− limt→∞EV t(1(−∞,0]) =
EV̄ (1(−∞,0]) and s− limt→∞EV t(1(−∞,0)) = EV̄ (1(−∞,0)), we arrive at

s− lim
t→∞

sign(V t) = sign(V̄ ). (229)

(b) Using Proposition 86 (b) and the Pauli coefficient functions v0 ∈ L∞(T) and v ∈
L∞(T)3 of V̄ from (167)-(168), we can write sign(V̄ ) = m[w0]σ0 + m[w]σ, where w0 ∈ L∞(T)
and w ∈ L∞(T)3 are given by

w0 :=
1

2
(sign ◦ (v0 + |v|) + sign ◦ (v0 − |v|)), (230)

w :=
1

2
(sign ◦ (v0 + |v|)− sign ◦ (v0 − |v|))ṽ, (231)

and we have v0 = u′0 and

|v| =

{
|ũu′|, on Zcu,
|u′|, on Zu.

(232)

In order to simplify (230)-(231), we make the decomposition T = (Zv ∩ Zcu) ∪ (Zv ∩ Zu) ∪
(Zcv ∩ Zcu) ∪ (Zcv ∩ Zu), where we have Zv ∩ Zcu = {k ∈ Zcu | (uu′)(k) = 0} and Zv ∩ Zu =
{k ∈ Zu | |u′|(k) = 0}. As for (230), we get w0 = sign ◦ u′0 on Zv ∩ Zcu and Zv ∩ Zu. Moreover,
making the further decomposition Zcv ∩Zcu = (Zcv ∩Zcu)+∪ (Zcv ∩Zcu)− with (Zcv ∩Zcu)± := {k ∈
Zcv ∩ Zcu | ± (uu′)(k) > 0}, we can write, on Zcv ∩ Zcu,

w0 =
1

2
(sign ◦ (u′0 + |ũu′|) + sign ◦ (u′0 − |ũu′|))

=
1

2

{
sign ◦ (u′0 + ũu′) + sign ◦ (u′0 − ũu′), on (Zcv ∩ Zcu)+,

sign ◦ (u′0 − ũu′) + sign ◦ (u′0 + ũu′), on (Zcv ∩ Zcu)−

=
1

2
(sign ◦ e′+ + sign ◦ e′−), (233)

where we recall from Definition 41 that e′± = u′0 ± ũu′ on Zcu. On the other hand, on Zcv ∩ Zu,
we can write w0 = (sign ◦ (u′0 + |u′|) + sign ◦ (u′0 − |u′|))/2. Hence, since e′± = u′0 on Zv ∩ Zcu
and since f± = u′0 ± |u′| = u′0 on Zv ∩ Zu, we arrive at (220). As for (231), we first note that

ṽ =


sign ◦ (ũu′)ũ, on Zcv ∩ Zcu,

u′

|u′|
, on Zcv ∩ Zu,

0, on Zv.

(234)
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Hence, w = 0 on Zv ∩ Zcu and Zv ∩ Zu and, on Zcv ∩ Zcu, we have

w =
1

2
(sign ◦ (u′0 + |ũu′|)− sign ◦ (u′0 − |ũu′|))sign ◦ (ũu′)ũ

=
1

2

{
(sign ◦ (u′0 + ũu′)− sign ◦ (u′0 − ũu′))ũ, on (Zcv ∩ Zcu)+,

−(sign ◦ (u′0 − ũu′)− sign ◦ (u′0 + ũu′))ũ, on (Zcv ∩ Zcu)−

=
1

2
(sign ◦ e′+ − sign ◦ e′−)ũ. (235)

Moreover, on Zcv ∩Zu, we have w = (sign ◦ f+ − sign ◦ f−)ũ′/2. Therefore, we arrive at (221)
as above. �

6 Heat flux

In this section, we determine the expectation value of the macroscopic heat flux observable
in general R/L mover states. Moreover, we prove strict positivity of the entropy production in
such states and provide examples of physically important models for such systems.

In the following, we make use of the selfdual second quantization b introduced in Defini-
tion 1 (e). Moreover, for any separable complex Hilbert space H, we denote by tr : L1(H)→
C the usual trace on L1(H) (as a special case, the same notation will be used on Cn×n for
all n ∈ N) and, for all A ∈ L(H), we set Re(A) := (A+ A∗)/2 and Im(A) := (A− A∗)/(2i).

Definition 50 (R/L mover heat flux) Let H ∈ L(H) be a Hamiltonian satisfying Assumption
14 (a) and (c), and let T0 ∈ L(H) be an initial 2-point operator, ρ ∈ B(R) a Fermi function,
and βL, βR ∈ R the inverse reservoir temperatures. Moreover, let T ∈ L(H) be the R/L mover
2-point operator for H, T0, ρ, and βL, βR, and let ωT ∈ EA be an R/L mover state.

(a) The 1-particle observable Φ ∈ L1(H) describing the heat flux from the left reservoir into
the sample is defined by

Φ := −1

2

d

dt

∣∣∣∣
t=0

eitHHL e−itH . (236)

(b) The R/L mover heat flux is defined to be the expectation value of the macroscopic heat
flux observable in the R/L mover state ωT , i.e.,

J := ωT (b(Φ)). (237)

Moreover, we set Jpp := −tr(TppΦ) and Jac := −tr(TacΦ).

(c) The entropy production rate σ ∈ R in the R/L mover state is defined by

σ := (βR − βL)J. (238)
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Remark 51 Since, for all s ∈ R \ {0}, we have (eisHHLe−isH − HL)/s − i[H,HL] = ([(eisH −
1)/s − iH]HL −HL[(eisH − 1)/s − iH])e−isH + i[H,HL](e−isH − 1) and ‖(eisH − 1)/s − iH‖ ≤
‖H‖(e|s|‖H‖ − 1), the map Ψ : R → L(H), defined by Ψt := −eitHHLe−itH/2 for all t ∈ R, has
a well-defined derivative with respect to the operator norm at all points t ∈ R, i.e., due to the
fact that H ∈ L(H), the limit defining the derivative in (236) exists with respect to the uniform
topology on L(H) (note that, since spec(H) is compact and since the exponential series
converges compactly, the estimate of Proposition 76 (a) leads to the same conclusion).

Remark 52 Applying Remark 13, the 1-particle heat flux observable reads

Φ = − i

2
[H,HL] (239)

= − Im(HL(HLS +HLR)). (240)

Hence, since HLR ∈ L1(H) by Assumption 14 (c), we get Φ ∈ L1(H) as stated in Definition
50 (a). Moreover, (239), and (26) for H and (51), respectively, imply

Φ∗ = Φ, (241)
ΓΦΓ = −Φ, (242)

i.e., Φ is a selfdual observable. Next, we know (see [2]) that, if T ∈ L(H) is a 2-point operator,
ωT ∈ EA a state with 2-point operator T , and A ∈ L1(H) with ΓAΓ = −A∗, we have

ωT (b(A)) = − tr(TA), (243)

where b(A) ∈ A is the selfdual second quantization of A from Definition 1 (e). Due to (241)-
(242) and the fact that Ψ̇0 = Φ and Ψ̇t = eitHΦe−itH for all t ∈ R, where Ψ stems from Remark
51 (and the dot stands for the derivative with respect to t), we have Ψ̇t ∈ L1(H), (Ψ̇t)∗ = Ψ̇t,
and ΓΨ̇tΓ = −Ψ̇t for all t ∈ R. Hence, (243) yields, for all t ∈ R,

ωT (b(Ψ̇t)) = − tr(e−itHT eitHΦ)

= ωT (b(Φ)), (244)

where we used the cyclicity of the trace, [T,H] = 0 from Proposition 25 (b), and the first part
of the proof of Lemma 83 (d). Therefore, the R/L mover heat flux (237) is independent of the
choice t = 0 in (236).

Remark 53 Since ωT (A∗) = ωT (A) for all A ∈ EA, (241) and the fact that b(A)∗ = b(A∗) for all
A ∈ L1(H) from Remark 3 imply that J ∈ R.

Remark 54 Let us denote by JR the expectation value in the R/L mover state of the macro-
scopic heat flux observable b(ΦR) whose 1-particle observable ΦR describes the heat flux
from the right reservoir into the sample, i.e., ΦR is defined as in (236) but with HL replaced



Heat flux in quasifree R/L mover systems 45

by HR. Setting Q := H − (HL + HR), we get Q ∈ L1(H) due to (47) and Assumption 14 (c).
Moreover, since Φ + ΦR = i[H,Q]/2, (243) and Proposition 25 (b) yield

J + JR = − i

2
tr(T [H,Q])

= − i

2
tr([T,H]Q)

= 0, (245)

i.e., we obtain the first law of thermodynamics in the R/L mover state. Moreover, due to
(245), the definition of the entropy production rate from (238) boils down to the usual one,
i.e., we have σ = −(βLJ + βRJR).

In the following, we make use of Assumption 14 (d) which means that there is no direct
coupling between the two reservoirs, i.e., that the range of the Hamiltonian is bounded by
the finite number nS of the sites in the configuration space ZS of the confined sample. This
assumption is physically meaningful since the coupling interaction of a real physical sample
to a thermal reservoir usually acts by short-range forces across the boundaries of the sample
(for a lattice spacing of the order of 10−10m and a sample dimension of the order of 10−3m
[see [30] for example], we get nS ∼ 107). Under the additional Assumption 14 (d), the
Hamiltonian can be written as follows.

Lemma 55 (Finite range) Let H ∈ L(H) be a Hamiltonian satisfying Assumption 14 (b), (d),
and (e) and let u0 ∈ L∞(T) and u = [u1, u2, u3] ∈ L∞(T)3 be the Pauli coefficient functions of
Ĥ. Then, there existst ν ∈ 〈1, nS〉 such that the Pauli coefficients of H read, for all α ∈ 〈0, 3〉,

hα =

{
−2
∑

n∈〈1,ν〉 Im(ǔα(n)) Im(θn), α ∈ 〈0, 2〉,
Re(ǔ3(0))1 + 2

∑
n∈〈1,ν〉Re(ǔ3(n))Re(θn), α = 3.

(246)

The smallest number ν such that (246) holds is called the range of the Hamiltonian H.

Proof. Recall that the Pauli coefficients h0 ∈ L(h) and h = [h1, h2, h3] ∈ L(h)3 of the Hamil-
tonian H = h0σ0 + hσ satisfy (144)-(145). Therefore, since Qκ = qκσ0 for all κ ∈ {L, S,R},
Assumption 14 (d) is equivalent to the fact that, for all α ∈ 〈0, 3〉,

qLhαqR = 0. (247)

Using Assumption 14 (b), which is equivalent to the fact that, for all α ∈ 〈0, 3〉,

[hα, θ] = 0, (248)

and using that δx = θxδ0 and (θx)∗ = θ−x for all x ∈ Z (where we set θ0 := 1 and θ−x := (θ−1)x

for all x ∈ N), we can write, for all x ∈ ZL, all y ∈ ZR, and all α ∈ 〈0, 3〉, that (δx−y, hαδ0) =
(δx, hαδy) = (qLδx, hαqRδy) = (δx, qLhαqRδy) = 0, and then, with (144), that (δy−x, hαδ0) = 0,
too. Moreover, we have x − y ≥ nS + 1 ≥ 2 for all x ∈ ZR and all y ∈ ZL, and any z ∈ Z
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with z ≥ nS + 1 can be written as z = x − y with x ∈ ZR and y ∈ ZL (and analogously if
z ≤ −(nS + 1)). Hence, since, for all α ∈ 〈0, 3〉, the function ǔα ∈ h is given, for all x ∈ Z, by

ǔα(x) = (ex,m[uα]e0)

= (δx, hαδ0), (249)

we get ǔα(x) = 0 for all α ∈ 〈0, 3〉 and all x ∈ Z with |x| ≥ nS + 1. Therefore, there exists a
smallest number ν ∈ 〈1, nS〉 such that, for all α ∈ 〈0, 3〉 and all x ∈ Z with |x| ≥ ν + 1,

ǔα(x) = 0, (250)

and ν = 0 is excluded due to Assumption 14 (e). Hence, (250) implies that, for all α ∈ 〈0, 3〉
and all y ∈ Z, we have hαδy = θyhαδ0 = θy

∑
x∈〈−ν,ν〉 ǔα(x)δx =

∑
x∈〈−ν,ν〉 ǔα(x)θxδy, i.e., we

get, for all α ∈ 〈0, 3〉,

hα =
∑

x∈〈−ν,ν〉

ǔα(x)θx (251)

= ǔα(0)1 + 2
∑

n∈〈1,ν〉

Re(ǔα(n)θn) (252)

=

{
−2
∑

n∈〈1,ν〉 Im(ǔα(n)) Im(θn), α ∈ 〈0, 2〉,
Re(ǔ3(0))1 + 2

∑
n∈〈1,ν〉Re(ǔ3(n))Re(θn), α = 3,

(253)

where we used (144) for (252) and (145) for (253). �

Remark 56 Let A ∈ L1(H) with ΓAΓ = −A∗. Then, for all B ∈ A, we define the map fB :

R → A by f tB := eitb(A)/2Be−itb(A)/2 for all t ∈ R, where the exponential is defined through its
absolutely convergent series with respect to the C∗-norm of A. Hence, the Cauchy product
in A yields (as in Remark 51) that, for all s ∈ R \ {0},

f t+sB − f tB
s

− f ti
2

[b(A),B] = eit 1
2
b(A)

[
eis 1

2
b(A) − 1

s
− i

2
b(A), B

]
e−i(t+s) 1

2
b(A)

+ eit 1
2
b(A) i

2
[b(A), B]

(
e−is 1

2
b(A) − 1

)
e−it 1

2
b(A). (254)

Since, due to (22), we again have ‖(eisb(A)/2 − 1)/s − ib(A)/2‖ ≤ ‖A‖1(e|s|‖A‖1 − 1), the map
fB is differentiable everywhere on R (the dot again stands for the derivative with respect to
t) and, for all t ∈ R, we get

ḟ tB = f ti
2

[b(A),B]. (255)

Hence, fB is infinitely differentiable on R, and since the n-th derivative of fB at the point
s ∈ R is bounded by ‖B‖e|s|‖A‖1‖A‖n1 for all n ∈ N, Taylor’s theorem for A implies that fB is
real analytic on R. Moreover, since Definition 1 (d) and (e) imply that [b(A), B(F )] = 2B(AF )



Heat flux in quasifree R/L mover systems 47

for all F ∈ H and all A ∈ L1(H) with ΓAΓ = −A∗, the Taylor series for fB(F ) in A and for the
map R 3 t 7→ eitAF ∈ H yield, for all t ∈ R, all F ∈ H, and all A ∈ L1(H) with ΓAΓ = −A∗,

eit 1
2
b(A)B(F )e−it 1

2
b(A) = B(eitAF ). (256)

Similarly, since [b(A), b(B)] = 2b([A,B]) for all A,B ∈ L1(H) with ΓAΓ = −A∗ and ΓBΓ =
−B∗, the Taylor series for fb(B) in A and for the map R 3 t 7→ eitABe−itA ∈ L1(H) yield, for all
t ∈ R and all A,B ∈ L1(H) with ΓAΓ = −A∗ and ΓBΓ = −B∗,

eit 1
2
b(A)b(B)e−it 1

2
b(A) = b(eitABe−itA). (257)

Next, for all N ∈ N, let us define qN := m[1〈−N,N〉] and QN := qNσ0 ∈ L0(H), and set
HN := QNHQN for all N ∈ N. Moreover, for all κ, λ ∈ {L, S,R} and all N ∈ N, we
set Hκ,N := QNHκQN and Hκλ,N := QNHκλQN . Using (7), we note that all the Pauli co-
efficients of HLHLS are linear combinations of operators of the form qLhαqLhβqS, where
α, β ∈ 〈0, 3〉 (see also (284)-(285) below). With the help of (251), we can write qLhαqLhβqS =∑

x,y∈〈−ν,ν〉 ǔα(x)ǔβ(y)qL(θxqL)m[1〈xL+x+y,xR+x+y〉]θ
x+y for all α, β ∈ 〈0, 3〉. Similarly, we get

qN(qLhαqL)qN(qLhβqS)qN =
∑

x,y∈〈−ν,ν〉 ǔα(x)ǔβ(y)qL(θxqL)m[1N,x,y]m[1〈xL+x+y,xR+x+y〉]θ
x+y for

all α, β ∈ 〈0, 3〉 and all N ∈ N, where, for all N ∈ N and all x, y ∈ 〈−ν, ν〉, the function
1N,x,y ∈ `∞(Z) is defined by 1N,x,y := 1〈−N,N〉1〈−N+x,N+x〉1〈−N+x+y,N+x+y〉. If we assume that

N ≥ |xL|+ |xR|+ 2ν, (258)

we have 1N,x,y1〈xL+x+y,xR+x+y〉 = 1〈xL+x+y,xR+x+y〉 for all x, y ∈ 〈−ν, ν〉. Therefore, we can
write HL,NHLS,N = HLHLS, i.e., using (240), we get, for all N ∈ N satisfying (258),

[HN , HL,N ] = −2iIm(HL,NHLS,N)

= −2iIm(HLHLS)

= [H,HL], (259)

where, in the first equality, we used the fact that [Qκ, QN ] = 0 for all κ ∈ {L, S,R} and all
N ∈ N (and Assumption 14 (d)). Now, due to (256), we note that the quasifree dynamics
generated by the local Hamiltonian HN ∈ L0(H) on the 1-particle Hilbert space H is induced,
macroscopically, by the selfdual second quantization of HN/2 and the local macroscopic
Hamiltonian of the left reservoir is given by b(HL,N)/2. Hence, using (255), the commutator
identity after (256), (259), and (239), we get, for all N ∈ N satisfying (258),

−d

dt

∣∣∣∣
t=0

eit 1
2
b(HN ) 1

2
b(HL,N)e−it 1

2
b(HN ) = b

(
− i

2
[HN , HL,N ]

)
= b(Φ), (260)

i.e., the fact that macroscopic dynamics is generated by the selfdual second quantization of
HN/2 explains the existence of the factor 1/2 in (236).
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Remark 57 Let ωT ∈ EA be a gauge-invariant state with 2-point operator T ∈ L(H) and let
H ∈ L(H) be a gauge-invariant Hamiltonian. Then, due to Lemma 28 (b) (and its proof),
there exist s, h ∈ L(h) with 0 ≤ s ≤ 1 and h∗ = h such that T = (1 − s) ⊕ ζsζ and H =
h⊕ (−ζhζ). Hence, the heat flux observable (236) has the form

Φ =
1

2
ϕ⊕ (−ζϕζ), (261)

where ϕ ∈ L(h) is given by ϕ := −i[h, qLhqL]. Due to Assumption 14 (d), we then have
ϕ = −i[qLhqS + qShqL, qLhqL] ∈ L0(h) and, hence, Φ ∈ L0(H). Moreover, Φ∗ = Φ and
ΓΦΓ = −Φ which implies, with (243), that

ωT (b(Φ)) =
1

2
tr(sϕ) +

1

2
tr(ζsϕζ)− 1

2
tr(ϕ)

= tr(sϕ), (262)

where we used that ζδx = δx for all x ∈ Z, the commutator form of ϕ, and the cyclicity of the
trace on h. Note that ωs(dΓ(ϕ)) = tr(sϕ), where ωs ∈ EA is the state defined in Remark 29
and dΓ is the usual second quantization.

We next clarify the effect of Assumption 14 (d) on the assumptions used in the foregoing
sections.

Lemma 58 (Assumptions) Let H ∈ L(H) be a Hamiltonian satisfying Assumption 14 (b),
(d), and (e). Moreover, let u0 ∈ L∞(T) and u = [u1, u2, u3] ∈ L∞(T)3 be the Pauli coefficient
functions of Ĥ and let us define the following mutually exclusive, exhaustive, and non-empty
cases:

Case



1, u0 = 0, u 6= 0, and uu′ = 0

2, u0 = 0 and uu′ 6= 0

3, u0 6= 0 and u = 0

4, u0 6= 0, u 6= 0, and uu′ = 0

5, u0 6= 0, uu′ 6= 0, and u2
0 6= u2

6, u0 6= 0 and u2
0 = u2

(263)

Then:

(a) In all cases, Assumptions 14 (c), 40 (a) and (b) are satisfied.

(b) We have

[1pp(H), 1ac(H), 1sc(H)] =


[1, 0, 0], Case 1,
[0, 1, 0], Case 2, 3, 4, and 5,

[10(H), 1− 10(H), 0], Case 6,
(264)

where, in Case 6, dim(ran (10(H))) = ∞ but 10(H) 6= 1. In particular, in all cases,
Assumption 14 (a) is satisfied.
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(c) The bounded extension V̄ ∈ L(Ĥ) of the asymptotic velocity with respect to Ĥ satisfies

eig(V̄ ) ∩ {0} =

{
{0}, Case 1 and 6,
∅, Case 2, 3, 4, and 5.

(265)

In particular, in Case 2, 3, 4, and 5, Assumption 48 (a) holds.

Remark 59 If Assumption 14 (e) does not hold, Remark 15 yieldsH = 0, i.e., we have uα = 0
for all α ∈ 〈0, 3〉. Hence, Assumptions 14 (c), 40 (a) and (b) are satisfied. Moreover, since
1pp(H) = 1 and since {1pp(H), 1ac(H), 1sc(H)} is a complete orthogonal family of orthogonal
projections, Assumption 14 (a) is also satisfied. Finally, due to (167)-(168) (or directly from
(165)), we have V̄ = 0, i.e., Assumption 48 (a) does not hold.

Remark 60 Since u0u
′
0 = uu′ if u2

0 = u2, the first and the third condition of Case 4 imply
u2

0 6= u2 (see Case 3 in the proof of Lemma 58 (b)). Hence, the six cases are mutually
exclusive and exhaust all the possibilities.

In the following, we denote by TP (T) the real trigonometric polynomials on T (for the
structure of this ring, see [25] for example). Note that, due to the fundamental theorem of
algebra, we have, for all v ∈ TP (T),

card(Zv) <∞ if and only if v 6= 0. (266)

Proof. Due to Assumption 14 (b), (d), and (e) and Lemma 55, the Pauli coefficients of Ĥ
have the form ĥα = m[uα] for all α ∈ 〈0, 3〉, where the Pauli coefficient functions u0 ∈ L∞(T)
and u = [u1, u2, u3] ∈ L∞(T)3 are given, for all α ∈ 〈0, 3〉, by

uα =

{
−2
∑

n∈〈1,ν〉 cα,n sin(n ·), α ∈ 〈0, 2〉,
c3,0 + 2

∑
n∈〈1,ν〉 c3,n cos(n ·), α = 3,

(267)

i.e., we have uα ∈ TP (T) for all α ∈ 〈0, 3〉. Here, for all α ∈ 〈0, 2〉 and all x ∈ Z, we set

cα,x := Im(ǔα(x)), (268)
c3,x := Re(ǔ3(x)), (269)

and we note that, due to (142)-(143), we have ǔα(x) = icα,x and ǔ3(x) = c3,x for all α ∈ 〈0, 2〉
and all x ∈ Z, respectively.

(a) In all cases, Assumption 14 (d) implies Assumption 14 (c). Moreover, since uα ∈
TP (T) for all α ∈ 〈0, 3〉, Assumptions 40 (a) and (b) are satisfied.

(b) Using part (a), (385) from Remark 89 yields

spec(Ĥ) = ran (e+) ∪ ran (e−). (270)
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Moreover, for all λ ∈ R, we define pλ ∈ TP (T) by pλ := det([Ĥ] − λ1), where [Ĥ] ∈
L∞(T,C2×2) is the identification specified in Remark 89. Hence, for all λ ∈ R, we have

pλ = (u0 − λ)2 − u2, (271)

and we know that λ ∈ eig(Ĥ) if and only if |Zpλ| > 0 (see [17] for example), i.e., with (266),

λ ∈ eig(Ĥ) if and only if pλ = 0. (272)

Furthermore, due to Lemma 90, we can write

u2 = a0 + 2
∑

m∈〈1,2ν〉

am cos(m ·), (273)

where we set an :=
∑

α∈〈1,3〉 aα,n for all n ∈ 〈0, 2ν〉 and the coefficients aα,n ∈ R for all
α ∈ 〈0, 3〉 and all n ∈ 〈0, 2ν〉 are given in Lemma 90.

Case 1 Since uu′ = (u2)′/2 and since we know that {1, 2 sin(n ·), 2 cos(n ·)}n∈N consti-
tutes an orthonormal basis of ĥ, (273) implies that u2 = a0, and a0 > 0 because u 6= 0.
Hence, we get e± = ±√a0 and, due to (270),

spec(Ĥ) = {−√a0,
√
a0}. (274)

Moreover, since the points ±√a0 are isolated in spec(Ĥ), we know that ±√a0 ∈ eig(Ĥ) (or
by directly using (272)) and, hence, we get spec(Ĥ) = eig(Ĥ). Therefore, since EĤ(1eig(Ĥ)) =

1pp(Ĥ), since EĤ(1spec(Ĥ)) = 1, and since {1pp(Ĥ), 1ac(Ĥ), 1sc(Ĥ)} is a complete orthogonal
family of orthogonal projections, we get 1pp(Ĥ) = 1 and, hence, 1ac(Ĥ) = 1sc(Ĥ) = 0.
Since 1µ(Ĥ) = F1µ(H)F∗ for all µ ∈ {pp, ac, sc} (which follows from Lemma 82), we arrive at
1pp(H) = 1 and 1ac(H) = 1sc(H) = 0.

Case 2 Since u 6= 0 due to uu′ 6= 0, (266) and (151) imply card(Zu) < ∞. Moreover,
since e′± = ±uu′/|u| on Zcu, we get Z± = {k ∈ Zcu | (uu′)(k) = 0} and, since uu′ ∈ TP (T),
(266) leads to card(Z±) < ∞. Therefore, Assumption 43 (a) and (b) are satisfied for M =

spec(Ĥ) ∈ M(R) and Proposition 88 and Remark 89 yield 1ac(Ĥ) = 1. Hence, we get
1pp(Ĥ) = 1sc(Ĥ) = 0.

Case 3 We have Zu ∩ e−1
± (M) = u−1

0 (M) for all M ∈ M(R). Hence, there exists no
M ∈ M(R) with spec(Ĥ) = ran (u0) ⊆ M such that Assumption 43 (a) holds (compare
with Remark 89). But note that ran (1ac(Ĥ)) = ran (1ac(m[u0]) ⊕ 1ac(m[u0])) and, hence,
1ac(Ĥ) = 1ac(m[u0])⊕ 1ac(m[u0]). Since u0 ∈ TP (T) has the form (267), we also have u′0 6= 0,
and (266) yields card(Zu′0) < ∞. Hence, for the scalar multiplication operator m[u0] ∈ L(ĥ),
we know that 1ac(m[u0]) = 1 (we can also readily adapt the proof of Proposition 88 by
replacing (388) by e−1

± (A′) = u−1
0 (A′) = (u−1

0 (A′) ∩Zu′0) ∪ (u−1
0 (A′) ∩Zc

u
′
0
) and by carrying out

the further decompositions of u−1
0 (A′) ∩ Zc

u
′
0

analogously). Hence, we get 1ac(Ĥ) = 1 and
1pp(Ĥ) = 1sc(Ĥ) = 0.
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Case 4 Since u2 ∈ TP (T) and u2 6= 0, (266) yields card(Zu) < ∞. Moreover, we have
e′± = u′0 on Zcu and, as in Case 3, u′0 ∈ TP (T) satisfies u′0 6= 0. Hence, (266) implies
card(Z±) <∞. Therefore, Assumption 43 (a) and (b) are satisfied for M = spec(Ĥ) ∈M(R)

and Proposition 88 and Remark 89 yield 1ac(Ĥ) = 1. Hence, we get 1pp(Ĥ) = 1sc(Ĥ) = 0.
Case 5 As in Case 4, we have card(Zu) <∞. We next want to show that card(Z±) <∞.

To this end, we make the following three steps which require u0 6= 0 and u 6= 0 to hold only.
First, since card(Zu) < ∞, there exists N ∈ N and {ai, bi}i∈〈1,N〉 ⊆ R with ai < bi for all
i ∈ 〈1, N〉 such that (ai, bi)∩ (aj, bj) = ∅ for all i, j ∈ 〈1, N〉 with i 6= j and Zcu =

⋃
i∈〈1,N〉(ai, bi)

if u2(π) = 0 and Zcu = (
⋃
i∈〈1,N〉(ai, bi)) ∪ {−π, π} if u2(π) 6= 0. Let a, b ∈ R with a < b,

let I := (a, b) ⊆ (ai, bi) for some i ∈ 〈1, N〉, and let κ ∈ {±} be fixed. The function eκ is
differentiable on I and if e′κ = 0 on I, there exists λ ∈ R such that pλ = 0 on I (see (271)).
Hence, due to (266), we get pλ = λ2 − 2λu0 + u2

0 − u2 = 0 on T. Using (142)-(143), we thus
find λu0 = 0 on T which implies λ = 0 since u0 6= 0. Hence, we arrive at p0 = 0 (on T).
Second, let p ∈ TP (T) be defined by

p := u′20 u
2 − (uu′)2, (275)

and let us show that, in general, p = 0 if and only if p0 = 0. If p0 = 0, we have p′0 =
2(u0u

′
0 − uu′) = 0 which implies p = −u′20 p0 = 0. Conversely, if p = 0, there exists a

function σ : Zcu → {−1, 1} such that u′0 = σuu′/|u| on Zcu and, in particular, u′0 = σuu′/|u|
on (ai, bi) for all i ∈ 〈1, N〉. Moreover, for all i ∈ 〈1, N〉, there exists ki ∈ (ai, bi) such
that u′0(ki) 6= 0 (assuming the opposite contradicts u0 6= 0) and, hence, (uu′)(ki) 6= 0. Let
i ∈ 〈1, N〉 be fixed and let u′0(ki) > 0 (the case u′0(ki) < 0 is completely analogous). Since u′0
is continuous on (ai, bi), there exists ε > 0 such that (ki − ε, ki + ε) ⊆ (ai, bi) and u′0(k) > 0
for all k ∈ (ki − ε, ki + ε). Since uu′ is continuous on (ai, bi), too, if (uu′)(ki) > 0, there exists
ε′ > 0 such that (ki − ε′, ki + ε′) ⊆ (ai, bi) and (uu)′(k) > 0 for all k ∈ (ki − ε′, ki + ε′). Setting
δ := min{ε, ε′}, we get σ = 1 on Ii := (ki − δ, ki + δ) and, hence, e′− = 0 on Ii. Then, the
first step yields p0 = 0 (if (uu′)(ki) < 0, we get e′+ = 0 on Ii and again p0 = 0 from the first
step). Third, let M ⊆ Zcu such that card(M) = ∞ (not finite) and let κ ∈ {±} be fixed. If
e′κ = 0 on M , we also have p = 0 on M since p = u2e′+e

′
− on Zcu. Since p ∈ TP (T) and since

card(M) =∞, (266) implies that p = 0. It then follows from the second step that p0 = 0.
Suppose now that card(Z±) = ∞. Then, it follows from the third step that p0 = 0 which

contradicts u2
0 6= u2. Hence, we have card(Z±) < ∞ and, as in Case 4, Assumption 43 (a)

and (b) are satisfied for M = spec(Ĥ) ∈ M(R) and Proposition 88 and Remark 89 yield
1ac(Ĥ) = 1 and, thus, 1pp(Ĥ) = 1sc(Ĥ) = 0.

Case 6 Since p0 = 0, (272) yields 0 ∈ eig(Ĥ). On the other hand, we know from the
end of the first step in Case 5 that pλ = 0 implies λ = 0 if u0 6= 0, i.e., eig(Ĥ) ⊆ {0} due to
(272). Hence, we get eig(Ĥ) = {0} and 1pp(Ĥ) = EĤ(1eig(Ĥ)) = 10(Ĥ). Moreover, we know
that ran (10(Ĥ)) is infinite dimensional (see [17] for example). But, due to (270), we have
|spec(Ĥ)| > 0 because (142)-(143) and u0 6= 0 imply that e± are non constant, i.e., we also
get 10(Ĥ) 6= 1. We next want to apply Proposition 88 for M = spec(Ĥ) \ {0} ∈ M(R). First,
as in Case 4, we have card(Zu) < ∞ and, hence, Assumption 43 (a) is satisfied. In order
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to verify Assumption 43 (b), we write Z± ∩ e−1
± (M) = {k ∈ Zcu | e±(k) 6= 0 and e′±(k) = 0}.

Since u2
0 = u2 implies u0u

′
0 = uu′, we get e′± = ±u′0e±/|u| on Zcu and, hence, Z± ∩ e−1

± (M) ⊆
Zcu ∩ Zu′0 . Since u0 6= 0, we have, as in Case 3, that card(Zu′0) < ∞, i.e., Assumption 43
(b) is satisfied. Therefore, Proposition 88 yields ran (1M(Ĥ)) ⊆ ran (1ac(Ĥ)), i.e., we have
1M(Ĥ) = 1ac(Ĥ)1M(Ĥ). On the other hand, we also have 1 = EĤ(1spec(Ĥ)) = 1pp(Ĥ)+1M(Ĥ)

since spec(Ĥ) = {0} ∪ M . Hence, we get 1M(Ĥ) = 1ac(Ĥ)(1 − 1pp(Ĥ)) = 1ac(Ĥ) since
1ac(Ĥ)1pp(Ĥ) = 0, and we arrive at 1sc(Ĥ) = 1− (1pp(Ĥ) + 1ac(Ĥ)) = 0.

(c) As above (see (272)), we use that 0 ∈ eig(V̄ ) if and only if |Zϕ0
| > 0, where ϕ0 ∈

L∞(T) is defined by ϕ0 := det([V̄ ]) = v2
0 − v2 and the Pauli coefficient functions are given by

v0 = u′0 and v = (ũu′)ũ on Zcu and v = u′ on Zu. Hence, we can write Zϕ0
= A ∪ B, where

A,B ∈ M(R) are defined by A := {k ∈ Zcu | p(k) = 0} and B := {k ∈ Zu | q(k) = 0} and
where p stems from (275) and q ∈ TP (T) is given by

q := u′20 − u′2. (276)

Case 1 Since u2 = a0 > 0 as in Case 1 of part (a), we have Zu = ∅. Hence, we get
v0 = 0, and v = 0 on Zcu = T, i.e., V̄ = 0 and 0 ∈ eig(V̄ ).

Case 2 Since p ∈ TP (T) and p = −(uu′)2 6= 0, (266) yields card(Zp) < ∞ and, hence,
card(A) < ∞. Moreover, since card(B) < ∞ because u 6= 0, we get card(Zϕ0

) < ∞, i.e.,
0 /∈ eig(V̄ ).

Case 3 Since u = 0, we have A = ∅ and q = u′20 . Hence, we get card(B) = card(Zq) =
card(Zu′0) and, as in Case 3 of part (a), we have card(Zu′0) <∞. This implies 0 /∈ eig(V̄ ).

Case 4 We have p = u′20 u
2 6= 0 and, hence, card(A) ≤ card(Zp) < ∞. Since card(B) ≤

card(Zu) <∞, we get 0 /∈ eig(V̄ ).
Case 5 Due to the second step in Case 5 of part (a), we have p = 0 if and only if

p0 = u2
0 − u2 = 0. Hence, p 6= 0 and card(A) ≤ card(Zp) < ∞. Since again card(B) ≤

card(Zu) <∞, we get 0 /∈ eig(V̄ ).
Case 6 Since p0 = 0, we have p = 0 and |A| = |Zcu| > 0 since u 6= 0, i.e., we get

0 ∈ eig(V̄ ).
Hence, for the bounded extension V̄ ∈ L(Ĥ) of the asymptotic velocity with respect to

Ĥ to satisfy Assumption 48 (a) is equivalent for the Pauli coefficient functions u0 ∈ L∞(T)

and u ∈ L∞(T)3 of Ĥ to belong to Case 2, 3, 4 or 5, i.e., due to part (b), to the absence of
eigenvalues of H (compare also directly with (165)). �

For the following, recall from Remark 85 that, for all χ ∈ B(R) and all r ∈ R, the function
χr ∈ B(R) is given by χr(x) = χ(rx) for all r, x ∈ R.

We now arrive at our main result. It asserts that the R/L mover heat flux has the following
properties.

Theorem 61 (R/L mover heat flux) Let H ∈ L(H) be a Hamiltonian satisfying Assumption
14 (b), (d), and (e) and let the bounded extension V̄ ∈ L(Ĥ) of the asymptotic velocity with
respect to Ĥ satisfy Assumption 48 (a). Moreover, let u0 ∈ L∞(T) and u ∈ L∞(T)3 be the
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Pauli coefficient functions of Ĥ, and let T ∈ L(H) be an R/L mover 2-point operator for H,
for an initial 2-point operator T0 ∈ L(H), for a Fermi function ρ ∈ B(R), and for the inverse
reservoir temperatures βL, βR ∈ R. Then, the heat flux in the R/L mover state ωT ∈ EA has
the decomposition J = Jpp + Jac, where:

(a) The pure point contribution satisfies Jpp = 0.

(b) The absolutely continuous contribution is given by

Jac =
1

2

∫ π

−π

dk

2π
e(k)|e′(k)|∆βL,βR

(e(k)), (277)

where ∆βL,βR
∈ B(R) reads

∆βL,βR
:= ρβR − ρβL , (278)

and e, e′ ∈ L∞(T) are defined by e := u0 + |u| and e′ := u′0 + ũu′.

Remark 62 If u 6= 0, i.e., in Case 2, 4 and 5 under Assumption 48 (a), we have have e = e+

on T and e′ = e′+ = u′0 + (uu′)/|u| on Zcu with card(Zu) <∞ (as discussed in the first step of
Case 5 of the proof of Lemma 58 (a)). Moreover, e+ ∈ C(T)∩C∞(T\Zu) and |e′+| ≤ |u′0|+|u′|
on Zcu. Therefore, due to Remark 84, the integrand of (277) satisfies |ee′|∆βL,βR

∈ L∞(T). In
Case 3, the only case with u = 0 under Assumption 48 (a), we have e = e+ = u0 and e′ = u′0
on T = Zu (see (152)), and the same conclusion holds again.

Remark 63 Since Assumption 48 (a) is equivalent with Case 2, 3, 4, and 5 of Lemma 58,
we get, in all these cases, that 1ac(H) = 1.

Remark 64 With the help of P := (1σ0 +m[ũ]σ)/2 ∈ L(Ĥ) (which is an orthogonal projection
if u 6= 0), we can write ĤV̄ P = (m[ee′]σ0 + m[ee′ũ]σ)/2 and, for all k ∈ Zcu in Case 2, 4, and
5 and for all k ∈ T in Case 3, we get tr([Ĥ2P ](k)) = e(k)2 and

tr([ĤV̄ P ](k)) = e(k)e′(k), (279)

where we used the notation of Remark 89. This expression highlights the dependence of
the absolutely continuous contribution Jac on the asymptotic velocity V̄ .

In the following, we set Ex := δx ⊕ 0 for all x ∈ Z. For all a ∈ L(h) and all b =
[b1, b2, b3] ∈ L(h)3, we also use the notations {a, b} := [{a, b1}, {a, b2}, {a, b3}] ∈ L(h)3 and
b2 := bb ∈ L(h), where the latter is defined after (7). Moreover, recall that, for all ϕ ∈ ĥ,
the function ϕ̌ ∈ h is given by ϕ̌(x) = (f∗ϕ)(x) = (ex, ϕ). If ϕ = [ϕ1, ϕ2, ϕ3] ∈ ĥ3, we set
ϕ̌(x) := [ϕ̌1(x), ϕ̌2(x), ϕ̌3(x)] ∈ C3 for all x ∈ Z.

Proof. Due to (240) and Assumption 14 (d), the 1-particle heat flux observable reads

Φ = − Im(HLHLS), (280)
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i.e., we have Φ ∈ L0(H) since HLS ∈ L0(H). Moreover, Definiton 50 (b) and (241)-(243)
imply that J = Jpp + Jac.

(a) Since we have 1ac(H) = 1 as discussed in Remark 63, we get Tpp = 0 and, hence,
from Definition 50 (b), Jpp = 0.

(b) Since tr(A Im(B)) = (tr(AB) − tr(A∗B))/(2i) for all A ∈ L(H) and all B ∈ L1(H) and
since T ∗ac = Tac due to Proposition 25 (a), Definition 50 (b) and (280) yield

Jac = − tr(TacΦ)

= tr(Tac Im((QLH)2QS))

= Im(tr(Tac(QLH)2QS))

=
∑
x∈ZS
α∈〈0,1〉

Im((ΓαEx, Tac(QLH)2ΓαEx)). (281)

Writing Tac = r0σ0 + rσ and (QLH)2 = s0σ0 + sσ with r0, s0 ∈ L(h) and r, s ∈ L(h)3, we get

Jac = 2
∑
x∈ZS

Im(jac(x)), (282)

where jac : ZS → C is defined, for all x ∈ ZS, by

jac(x) := (δx, (r0s0 + rs)δx), (283)

and we used that
∑

α∈〈0,1〉(Γ
αEx, (a0σ0 + aσ)(b0σ0 + bσ)ΓαEx) = 2(δx, (a0b0 + ab)δx) for all

x ∈ Z, all a0, b0 ∈ L(h), and all a, b ∈ L(h)3. Next, we want to compute (283). First, since
QLH = (qLh0)σ0 + (qLh)σ, we can write

s0 = (qLh0)2 + (qLh)2, (284)
s = {qLh0, qLh}+ i(qLh) ∧ (qLh). (285)

Using (251), for all α, β ∈ [0, 3] and all x ∈ ZS, the main ingredient of (284)-(285) reads

qLhαqLhβδx =
∑

y,z∈〈−ν,ν〉

1L(x+ y)1L(x+ y + z) ǔα(z)ǔβ(y)δx+y+z. (286)

As for r0 and r, since 1ac(H) = 1 as discussed in Remark 63, (59) yields Tac = ρ(∆H).
Moreover, due to (218), the R/L mover generator reads ∆̂ = β1 + δsign(V̄ ) and (229) leads
to sign(V̄ ) = m[w0]σ0 + m[w]σ, where w0 ∈ L∞(T) and w ∈ L∞(T)3 are given by (220) and
(221), respectively. We next discuss Case 2, 4, and 5 and Case 3 separately.

Case 2, 4, and 5 Since u 6= 0 in all these cases, we have card(Zu) < ∞. Hence,
(220)-(221) yield, on Zcu,

w0 =
1

2
(sign ◦ e′+ + sign ◦ e′−), (287)

w =
1

2
(sign ◦ e′+ − sign ◦ e′−)ũ. (288)
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Moreover, since Ĥ = m[u0]σ0 +m[u]σ, we get ∆̂Ĥ = m[b0]σ0 +m[b]σ, where b0 ∈ L∞(T) and
b ∈ L∞(T)3 have the form b0 := βu0 + δ(w0u0 + wu) and b := βu + δ(w0u + u0w + iw ∧ u).
Using (287)-(288) and noting that the wedge product vanishes, we get, on Zcu,

b0 = βu0 +
δ

2
((sign ◦ e′+)e+ + (sign ◦ e′−)e−), (289)

b = βu+
δ

2
((sign ◦ e′+)e+ − (sign ◦ e′−)e−)ũ. (290)

Since T̂ac = E∆̂Ĥ(ρ) (see Lemma 82), Proposition 86 (b) yields

T̂ac = m[a0]σ0 +m[a]σ, (291)

where a0 ∈ L∞(T) and a ∈ L∞(T)3 are given by a0 := (ρ ◦ b+ + ρ ◦ b−)/2 and a = (ρ ◦ b+− ρ ◦
b−)b̃/2, and b± := b0 ± |b|. Since b = (ũb)ũ due to (290), we get, on Zcu,

a0 =
1

2
(ρ+ + ρ−), (292)

a =
1

2
(ρ+ − ρ−)ũ, (293)

where ρ± ∈ L∞(T) is given by

ρ± := ρ ◦ ((β + δsign ◦ e′±)e±). (294)

Now, plugging (286) into (284)-(285), writing the resulting expression for (283) in momentum
space, and using that r̂α = m[aα] for all α ∈ 〈0, 3〉, we get jac(x) =

∑
y,z∈〈−ν,ν〉 1L(x+ y)1L(x+

y + z)G(y + z, z, y) for all x ∈ ZS, where G : Z3 → C is defined, for all x, y, z ∈ Z , by

G(x, y, z) := ǎ0(−x)(ǔ0(y)ǔ0(z) + ǔ(y)ǔ(z))

+ ǎ(−x)(ǔ0(y)ǔ(z) + ǔ0(z)ǔ(y) + iǔ(y) ∧ ǔ(z)), (295)

and we recall that ǔ(x)ǔ(y) for all x, y ∈ Z stands for the real Euclidean scalar product
between ǔ(x) ∈ C3 and ǔ(y) ∈ C3 (see after (7)). Hence, summing over all x ∈ ZS, we get∑

x∈ZS

jac(x) =
∑

(y,z)∈X

χ(y, z)G(y + z, z, y), (296)

where the staircase type function χ : Z2 → 〈0, nS〉 is defined by χ(y, z) :=
∑

x∈ZS 1L(x +
y)1L(x + y + z) for all y, z ∈ Z, and the summation on the right hand side of (296) is carried
out over the set X :=

⋃
n∈〈1,nS〉 χ

−1({n})∩〈−ν, ν〉2. Next, let us make the decomposition X =⋃
n∈〈1,ν〉(X1,n ∪X2,n), where, for all n ∈ 〈1, ν〉, we define X1,n := χ−1({n}) ∩ (〈−ν, ν〉 × 〈0, ν〉)

and X2,n := χ−1({n}) ∩ (〈−ν, ν〉 × 〈−ν,−1〉), see Figure 2.
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⋃
n∈〈1,ν〉X1,n

⋃
n∈〈1,ν〉X2,n

ν nS
y

z

Figure 2: The set X =
⋃
n∈〈1,ν〉(X1,n ∪X2,n).

Since, for all n ∈ 〈1, ν〉, we have y + z = −n for all (y, z) ∈ X1,n and y = −n for all
(y, z) ∈ X2,n, (282) becomes

Jac = 2
∑

n∈〈1,ν〉

n
∑

z∈〈0,ν−n〉

Im(G(−n, z,−n− z))

+ 2
∑

n∈〈1,ν〉

n
∑

z∈〈−ν,−1〉

Im(G(−n+ z, z,−n)). (297)

In order to determine the imaginary parts on the right hand side of (297), we first note
that, due to (141), we have ζǔα = ξǔα for all α ∈ 〈0, 3〉 (and the same holds for ǎα for all
α ∈ 〈0, 3〉 due to (292)-(293)). Moreover, (142) and (143) yield ξǔα = −ǔα for all α ∈ 〈0, 2〉
and ξǔ3 = ǔ3, respectively. Hence, we get ǔα = iIm(ǔα) for all α ∈ 〈0, 2〉 and ǔ3 = Re(ǔ3)
which implies, for all x, y, z ∈ Z,

Im(G(x, y, z)) = η0,−x(c0,yc0,−z + cyc−z) + η−x(c0,yc−z + c0,−z(Lcy) + cy ∧ (Lc−z)), (298)

where cα,x ∈ R for all α ∈ 〈0, 3〉 and all x ∈ Z are given in (268)-(269) and we set cx :=

[c1,x, c2,x, c3,x] ∈ R3 for all x ∈ Z. Moreover, the diagonal matrix L ∈ C3×3 is given by L :=
diag[1, 1,−1] and, for all x ∈ Z, we set ηα,x := Im(ǎα(x)) for all α ∈ 〈0, 2〉, η3,x := Re(ǎ3(x)),
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and ηx := [η1,x, η2,x, η3,x] ∈ R3. Hence, (297) can be written as

Jac = −
∫ π

−π

dk

2π

(
µ1(k) + µ2(k) +

1

|u(k)|
∑
i∈〈3,8〉

µi(k)

)
ρ+(k)

−
∫ π

−π

dk

2π

(
µ1(k) + µ2(k)− 1

|u(k)|
∑
i∈〈3,8〉

µi(k)

)
ρ−(k), (299)

where, for all i ∈ 〈1, 8〉, the explicit expressions of the functions µi ∈ L∞(T) are given in
Lemma 91. Furthermore, using (267), a direct computation yields

µ1 + µ2 = −1

2
(u0u

′
0 + uu′), (300)∑

i∈〈3,8〉

µi = −1

2
(u0(uu′) + u′0|u|2), (301)

where, in (408), (410), (412), and (414) of Lemma 91, we used that, for all families {fn}n∈〈1,ν〉
of functions fn : T→ R, we have

∑
n∈〈1,ν〉,l∈〈0,ν−n〉 fn(k)cα1,l

cα2,n+l =
∑

n∈〈1,ν〉,m∈〈0,n−1〉 fn−m(k)

cα1,m
cα2,n

for all k ∈ T and all α1, α2 ∈ 〈0, 3〉 (that cα,0 = 0 for all α ∈ 〈0, 2〉, and that all the
contributions in (410)-(415) involving a product of the form c1,nc2,mc3,l add up to zero, where
n,m ∈ 〈1, ν〉 and l ∈ 〈1, ν〉 or l = 0). Moreover, note that, due to (301), the modulus of∑

i∈〈3,8〉 µi/|u| in (299) is bounded from above by (|u0||u′| + |u′0||u|)/2. Plugging (300)-(301)
into (299), using that e±e

′
± = u0u

′
0 + uu′ ± (u0(ũu′) + u′0|u|) on Zcu and that card(Zu) < ∞,

(299) becomes

Jac =
1

2

∫ π

−π

dk

2π
(e+(k)e′+(k)ρ+(k) + e−(k)e′−(k)ρ−(k)) (302)

=

∫ π

−π

dk

2π
e+(k)e′+(k)ρ((β + δsign(e′+(k)))e+(k)), (303)

where, in (303), we also used that ξ̂e− = −e+ and ξ̂e′− = e′+ on Zcu due to (142)-(143), that
(57) holds, and that e+e

′
+ = (e2

+)′/2 on Zcu. Finally, plugging e+e
′
+ = (1Z++

+ 1Z+−
+ 1Z−+

+

1Z−−)e+e
′
+ into(303), where Z±± := {k ∈ Zcu | ±e+(k) > 0 and ±e′+(k) > 0} and Z±∓ := {k ∈

Zcu | ±e+(k) > 0 and ∓e′+(k) > 0}, the integrand in (303) can be written, on Zcu, as

e+e
′
+ρ((β + δsign ◦ e′+)e+) =

1

2
|e+e

′
+|(ρ ◦ (βR|e+|)− ρ ◦ (βL|e+|))

+
1

2
e+e

′
+(ρ ◦ (βRe+) + ρ ◦ (βLe+)). (304)

Since, due to Definition 18, the restriction of ρ to [−a, a] satisfies ρ ∈ L1([−a, a]), where
a := (1 + |βL| + |βR|)

∑
α∈〈0,3〉 ‖uα‖∞/2 > 0, the first fundamental theorem of calculus yields

that the function ρ1 : [−a, a] → R, defined by ρ1(x) :=
∫ x
−adt ρ(t) for all x ∈ [−a, a], is

absolutely continuous and an antiderivative of ρ almost everywhere on [−a, a]. Similarly, the
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function ρ2 : [−a, a]→ R, defined by ρ2(x) :=
∫ x
−adt ρ1(t) for all x ∈ [−a, a], is an antiderivative

of ρ1 on [−a, a]. Hence, for all κ ∈ {L,R} for which βκ 6= 0, using twice partial integration
(for absolutely continuous functions), the property e+(−π) = e+(π), and the fact that e+e

′
+ρ ◦

(βκe+) = e+(ρ1 ◦ (βκe+))′/βκ and e′+ρ1 ◦ (βκe+) = (ρ2 ◦ (βκe+))′/βκ, the integral of each
term in the second expression on the right hand side of (304) vanishes (if βκ = 0 for some
κ ∈ {L,R}, (57) yields e+e

′
+ρ ◦ (βκe+) = e+e

′
+/2 = (e2

+)′/4). Therefore, (303) takes the form

Jac =
1

2

∫ π

−π

dk

2π
|e+(k)e′+(k)|∆βL,βR

(|e+(k)|), (305)

where ∆βL,βR
∈ B(R) stems from (278) and, with the help of (57), we arrive at (277).

Case 3 If u = 0 (and u0 6= 0), due to (220)-(221), (287)-(288) become w0 = sign◦u′0 and
w = 0, respectively. Moreover, we get b0 = βu0 + δ(sign ◦ u′0)u0 and b = 0, and a0 = ρ ◦ b0

and a = 0 instead of (289)-(293). Formula (299) then reads as Jac =
∫ π
−πdk u0(k)u′0(k)ρ((β +

δsign(u′0(k)))u0(k))/(2π) and the same arguments apply to its integrand as the ones used for
(304). Hence, since we defined e′ = u0 + ũu′ on T, (277)-(278) also hold for Case 3. �

Remark 65 Since, for all b ∈ L(h) and all A = a0σ0 + aσ ∈ L(H) with a0 ∈ L(h) and a =
[a1, a2, a3] ∈ L(h)3, we have [A, bσ3] = [a3, b]σ0 + [i{a2, b},−i{a1, b}, [a0, b]]σ, we get

u0 = 0 if and only if [H, ξσ3] = 0, (306)

where we used (142)-(143) and the fact that [m[uα], ξ̂] = 2m[Od(uα)]ξ̂ and {m[uα], ξ̂} =
2m[Ev(uα)]ξ̂ for all α ∈ 〈0, 3〉. Hence, in this special case, which occurs frequently in practice,
the R/L mover heat flux has the form

J =
1

2

∫ π

−π

dk

2π
|(uu′)(k)|∆βL,βR

(|u|(k)). (307)

Remark 66 For all x, y ∈ Z, we have px,yσ0 = (Ex, ·)Ey + (ΓEx, ·)ΓEy, px,yσ1 = (ΓEx, ·)Ey +
(Ex, ·)ΓEy, px,yσ2 = −i(ΓEx, ·)Ey + i(Ex, ·)ΓEy, and px,yσ3 = (Ex, ·)Ey − (ΓEx, ·)ΓEy, where
we recall that px,y = (δx, · ) δy ∈ L0(h) for all x, y ∈ Z and Ex = δx⊕ 0 for all x ∈ Z. Therefore,
the selfdual second quantization (15) yields, for all x, y ∈ Z,

b(px,yσ0) = a∗yax + aya
∗
x, (308)

b(px,yσ1) = a∗ya
∗
x + ayax, (309)

b(px,yσ2) = −i(a∗ya
∗
x − ayax), (310)

b(px,yσ3) = a∗yax − aya∗x, (311)

where we used the notation of Remark 2. Since, for all N ∈ N satisfying (258), we have
qNθ

nqN =
∑

x∈〈−N,N−n〉 px,x+n for all n ∈ 〈1, ν〉, where qN stems from Remark 56, we get for
the local zeroth Pauli coefficient of H and for all N ∈ N satisfying (258),

b((qNh0qN)σ0) = −2i
∑

n∈〈1,ν〉

c0,n

∑
x∈〈−N,N−n〉

(a∗xax+n − a∗x+nax). (312)
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Moreover, using the generalized Jordan-Wigner transformation (see again Remark 2), we
can write, for all x ∈ Z and all n ∈ N,

a∗xax+n − a∗x+nax =

{
i
2

(
σ

(x)
1 σ

(x+1)
2 − σ(x)

2 σ
(x+1)
1

)
, n = 1,

i
2

(
σ

(x)
1

(∏
i∈〈1,n−1〉 σ

(x+i)
3

)
σ

(x+n)
2 − σ(x)

2

(∏
i∈〈1,n−1〉 σ

(x+i)
3

)
σ

(x+n)
1

)
, n ≥ 2,

(313)

i.e., we get (generalized) Dziyaloshinskii-Moriya type interactions. For the sake of complete-
ness, we display the selfdual second quantization of the local first, second, and third Pauli
coefficient of H in the fermionic and the spin picture in Appendix E.

We next illustrate the R/L mover heat flux for two well-known examples. The first example
is the prominent XY spin chain (see Remark 2).

Example 67 (XY model) Let c2,1, c3,0 ∈ R. The XY model with anisotropy c2,1 and spatially
homogeneous exterior magnetic field c3,0 is specified by

h0 = 0, (314)
h1 = 0, (315)
h2 = −2c2,1Im(θ), (316)
h3 = c3,01 + Re(θ). (317)

Hence, we have ν = 1 and, for all c2,1, c3,0 ∈ R, Assumptions 14 (b), (d), and (e) are satisfied
(note that c3,1 = 1/2). Moreover, for all k ∈ T, we get from (314)- (317) that u0 = u1 = 0,
u2(k) = −2c2,1 sin(k), and u3(k) = c3,0 + cos(k). Writing u2 = a0 + 2

∑
m∈〈1,2ν〉 am cos(m ·) as in

(273), Lemma 90 (a) yields

a0 =
1

2
+ 2c2

2,1 + c2
3,0, (318)

a1 = c3,0, (319)

a2 =
1

4
− c2

2,1. (320)

Therefore, the function uu′ = (u2)′/2 ∈ TP (T) satisfies uu′ = 0 (i.e., Case 1 occurs) if and
only if (c2,1, c3,0) ∈ {(−1/2, 0), (1/2, 0)} (the Ising model), i.e., due to (265), Assumption 48
(a) holds if and only if (c2,1, c3,0) ∈ R2 \ {(−1/2, 0), (1/2, 0)}. In these cases, Theorem 61
is applicable and, for all Fermi functions ρ ∈ B(R) and all inverse reservoir temperatures
βL, βR ∈ R, the R/L mover heat flux is given by (307). Moreover, if the Fermi function ρ is the
Fermi-Dirac distribution (74), we get

J =
1

2

∫ π

−π

dk

2π
|(uu′)(k)| sinh(δ|u|(k))

cosh(δ|u|(k)) + cosh(β|u|(k))
, (321)

where we used that 1/(1+e−x)−1/(1+e−y) = sinh((x−y)/2)/(cosh((x−y)/2)+cosh((x+y)/2))
for all x, y ∈ R. The formula (321) has been obtained in [11] for c2,1 ∈ (−1/2, 1/2) and
c3,0 ∈ R.
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Remark 68 Let the Pauli coefficient functions of Ĥ from Theorem 61 satisfy uα = 0 for all
α ∈ 〈0, 2〉 and u3 = 1, i.e., we have Case 1 for which the proof of Lemma 58 (c) asserts that
V̄ = 0. Since spec(Q) = specpp(q) = Z and since ran (Eq(1λ)) = span {δλ} and ran (EQ(1λ)) =
span {Eλ,ΓEλ} for all λ ∈ Z, we get spec(P ) = specpp(P ) = Z and ran (EP (1λ)) = span {eλ ⊕
0, 0 ⊕ eλ} for all λ ∈ Z as in the proof of Proposition 49 (a). Moreover, (226) and (205)
yield V tΦ = PΦ/t for all Φ ∈ dom(P ) and all t ∈ R+ and, with the help of Remark 85, we
get EV t(1(−∞,0)) = EP (1(−∞,0)) and EV t(1(−∞,0]) = EP (1(−∞,0]) for all t ∈ R+. Hence, since
sign = κ0 − 1(−∞,0] − 1(−∞,0), we find, for all t ∈ R+,

EV t(sign) = EP (sign). (322)

Moreover, since, on one hand, EP (sign)e1 ⊕ 0 = EP (sign)EP (11)e1 ⊕ 0 = e1 ⊕ 0 because
11sign = 11 and, on the other hand, sign(V̄ ) = 0, we arrive at

s− lim
t→∞

sign(V t) 6= sign(V̄ ), (323)

i.e., in general, Proposition 49 (a) does not hold if Assumption 48 (a) is not satisfied (see
(229) at the end of the proof of Proposition 49 (a)).

The second example, introduced in [31], is a generalized form of the foregoing XY model.
The corresponding local Hamiltonians in the fermionic and the spin picture are given in
Appendix E.

Example 69 (Suzuki model) Let ν ∈ 〈1, nS〉, let {c2,n}n∈〈1,ν〉 ⊆ R, and let {c3,n}n∈〈0,ν〉 ⊆ R.
The Suzuki model (also called generalized XY model or νXY model) is specified by

h0 = 0, (324)
h1 = 0, (325)

h2 = −2
∑

n∈〈1,ν〉

c2,nIm(θn), (326)

h3 = c3,01 + 2
∑

n∈〈1,ν〉

c3,nRe(θn). (327)

Hence, Assumptions 14 (b) and (d) are satisfied. If at least one of the coefficients from
{c2,n}n∈〈1,ν〉 and {c3,n}n∈〈0,ν〉 is different from zero, Assumptions 14 (e) also holds. More-
over, (324)- (327) lead to u0 = u1 = 0, u2(k) = −2

∑
n∈〈1,ν〉 c2,n sin(nk), u3(k) = c3,0 +

2
∑

n∈〈1,ν〉 c3,n cos(nk) for all k ∈ T, and Lemma 90 (b) yields the coefficients in (273) for
(nS sufficiently large and) ν = 2,

a0 = 2(c2
2,1 + c2

2,2 + c2
3,1 + c2

3,2) + c2
3,0, (328)

a1 = 2(c2,1c2,2 + c3,1(c3,0 + c3,2)), (329)

a2 = −c2
2,1 + c2

3,1 + 2c3,1(c3,0 + c3,2), (330)
a3 = −2(c2,1c2,2 − c3,1c3,2), (331)

a4 = −c2
2,2 + c2

3,2, (332)
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and, for ν ≥ 3, the coefficients a0, . . . , a2ν are given in Lemma 90 (c). Since we have uu′ =
−
∑

m∈〈1,2ν〉mam sin(m ·), we get uu′ = 0 (i.e., Case 1 occurs) if and only if am = 0 for
all m ∈ 〈1, 2ν〉. The solutions of this system of 2ν multivariate homogeneous quadratic
equations in 2ν + 1 variables specify the Suzuki models for which Assumption 48 (a) is not
satisfied (for example, c2,1 = c3,1 = 0, c2,2 = c3,2, and any c3,0 for the ν = 2 system given by
(329)- (332)). In all the other cases, Theorem 61 is applicable and, for all Fermi functions
ρ ∈ B(R) and all inverse reservoir temperatures βL, βR ∈ R, the R/L mover heat flux is again
given by (307).

Finally, we want to discuss the following example.

Example 70 (Full range 1 model) Let ν = 1 and {c0,1, c1,1, c2,1, c3,0, c3,1} ⊆ R. The full range
1 model is specified by

h0 = −2c0,1Im(θ), (333)
h1 = −2c1,1Im(θ), (334)
h2 = −2c2,1Im(θ), (335)
h3 = c3,01 + 2c3,1Re(θ). (336)

Hence, Assumptions 14 (b) and (d) are satisfied. If at least one of the coefficients from
{c0,1, c1,1, c2,1, c3,0, c3,1} is different from zero, Assumptions 14 (e) also holds. Moreover, (333)-
(336) lead to uα(k) = −2cα,1 sin(k) for all α ∈ 〈0, 2〉 and all k ∈ T and u3(k) = c3,0 +2c3,1 cos(k)
for all k ∈ T. Hence, Lemma 90 (b) yields the coefficients in (273), i.e.,

a0 = 2(c2
1,1 + c2

2,1 + c2
3,1) + c2

3,0, (337)
a1 = 2c3,0c3,1, (338)

a2 = −(c2
1,1 + c2

2,1) + c2
3,1. (339)

Hence, Case 1 occurs if and only if c3,0 = 0 and c2
1,1 + c2

2,1 = c2
3,1 6= 0 or c3,0 6= 0 and

c1,1 = c2,1 = c3,1 = 0. Moreover, Case 6 occurs if and only if c3,0 = 0, c3,1 = 0, and
c2

1,1 + c2
2,1 = c2

0,1 6= 0. In all the other cases, Theorem 61 is applicable and, for all Fermi
functions ρ ∈ B(R) and all inverse reservoir temperatures βL, βR ∈ R, the R/L mover heat
flux is given by (307) (in Case 2) and (277) (in Case 3, 4, and 5).

For the following, recall the definitions of e, e′, and ∆βL,βR
from Theorem 61 (b).

Using the additional Assumption 20 (a) and (c) leads to the strict positivity of the R/L
mover heat flux.

Theorem 71 (Nonvanishing heat flux) Let H ∈ L(H) be a Hamiltonian satisfying Assump-
tion 14 (b), (d), and (e) and let the bounded extension V̄ ∈ L(Ĥ) of the asymptotic velocity
with respect to Ĥ satisfy Assumption 48 (a). Moreover, let u0 ∈ L∞(T) and u ∈ L∞(T)3 be
the Pauli coefficient functions of Ĥ, and let T ∈ L(H) be an R/L mover 2-point operator for
H, for an initial 2-point operator T0 ∈ L(H), for a Fermi function ρ ∈ B(R), and for the inverse
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reservoir temperatures βL, βR ∈ R. Moreover, let the Fermi function and the inverse temper-
atures satisfy Assumption 20 (a) and (c), respectively. Then, the heat flux in the R/L mover
state ωT ∈ EA is nonvanishing and the heat is flowing from the left to the right reservoir,

J > 0. (340)

Proof. Under Assumption 20 (a) and (c), the difference ∆βL,βR
◦ |e| is nonnegative on T

and strictly positive on Zce . Hence, in order for (340) to hold, it is sufficient to show that
card(Ze) <∞ and card(Ze′) <∞ since, from (305), we have

J =
1

2

∫ π

−π

dk

2π
|e(k)e′(k)|∆βL,βR

(|e(k)|). (341)

In order to do so, we use the same type of arguments as in the proof of Lemma 58.
Case 1 and 6 These cases are excluded due to Assumption 48 (a).
Case 2 Since e = |u| and e′ = ũu′, we have card(Ze) = card(Zu) < ∞ and card(Ze′) ≤

card(Zu) + card(Zuu′) <∞ due to uu′ 6= 0.
Case 3 Since e = u0 and e′ = u′0, we have card(Ze) = card(Zu0) < ∞ and card(Ze′) =

card(Zu′0) <∞ because u0 = 0 if and only if u′0 = 0.
Case 4 We have e = u0 + |u| and e′ = u′0. Suppose that there exists M ⊆ Zcu with

card(M) =∞ such that e = 0 on M . It then follows that p0 = 0 on M (see (271)) and, hence,
p0 = 0 (on T). Since u2 = a0 > 0, we get u2

0 = a0 > 0 which contradicts u0 6= 0 (and u′0 6= 0)
due to (266). Hence, card(Ze) < ∞. Moreover, since e′ = u′0 and since u′0 6= 0, we also get
card(Ze′) <∞.

Case 5 We have e = u0 + |u| and e′ = u′0 + ũu′. Suppose that there exists M ⊆ Zcu
with card(M) = ∞ such that e = 0 on M . It then follows, as in Case 4, that p0 = 0 which
contradicts u2

0 6= u2 and, hence, card(Ze) < ∞. Moreover, suppose also that there exists
M ′ ⊆ Zcu with card(M ′) = ∞ such that e′ = 0 on M ′. Hence, the third step of Case 5
in the proof of Lemma 58 (b) implies p0 = 0 and we again get a contradiction. Therefore,
card(Ze′) <∞ holds, too. �

As an immediate consequence of the Theorem 71, we get the following corollary.

Corollary 72 (Strict positivity of the entropy production rate) Under the conditions of The-
orem 71, the entropy production rate in the R/L mover state is strictly positive,

σ > 0. (342)

Proof. Plug (341) into (238) and use (340). �

Remark 73 Since [Ĥ](k)[P ](k) = e(k)[P ](k) for all k ∈ T, where P ∈ L(Ĥ) stems from
Remark 64, we get |e(k)| ≤ |[Ĥ](k)|0 for all k ∈ T, where | · |0 stands for the usual oper-
ator norm on C2×2 induced by the Euclidean vector norm on C2. Hence, since we know
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that ‖H‖ = ‖Ĥ‖ = ess supk∈T|[Ĥ](k)|0 (see [13] for example), we have |e(k)| ≤ ‖H‖ for
all k ∈ T. Moreover, due Remark 21 and its consequence for the integral of the deriva-
tives of monotonically increasing functions, ρ′ exists almost everywhere in [0, βR‖H‖] and
ρ(βR|e(k)|) − ρ(βL|e(k)|) ≥

∫ βR|e(k)|
βL|e(k)| dx ρ′(x) for all k ∈ T. Hence, under the conditions of

Theorem 71 and the additional Assumption 20 (b), (238) and (341) yield the strictly positive
lower bound

σ ≥ 2cδ2

∫ π

−π

dk

2π
e(k)2|e′(k)|. (343)

A Spectral theory

In this appendix, we present a brief summary of the approach to spectral theory based
on [18] (see also [19]). The spectral properties used in the foregoing sections are direct
consequences of the following presentation or can be derived from it in a simple way. Since
this approach is somewhat different from the more standard ones, we precisely state the first
three claims without giving proofs (Proposition 76, Proposition 78, and Theorem 80 below).
Subsequently, we rather explicitly carry out the implications of these claims in view of their
applications to the foregoing sections.

In the following, letH stand for any separable complex Hilbert space and L(H) for the C∗-
algebra of bounded operators onH. Moreover, equipped with the usual pointwise operations
and with the norm given, for all χ ∈ `∞(R), by

|χ|∞ := sup
x∈R
|χ(x)|, (344)

we denote by `∞(R), Cb(R), and C0(R) the C∗-algebra of bounded complex-valued functions
on R, the C∗-algebra of continuous bounded complex-valued functions on R, and the (non
complete) normed ∗-algebra of continuous complex-valued functions on R with compact
support, respectively.

Definition 74 (Projection-valued measure) A ∗-algebra homomorphismE0 : C0(R)→ L(H)
is called a projection valued measure.

For the following, let κ0, κ−1 ∈ Cb(R) and κ1 ∈ C(R) be defined, for all x ∈ R, by

κ0(x) := 1, (345)
κ1(x) := x, (346)

κ−1(x) :=
1

1 + |x|
, (347)

where C(R) stands for the ∗-algebra of continuous complex-valued functions on R (equipped
with the same pointwise operations as the foregoing functions spaces). Moreover, for some
of the following notions, see also [20].
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Definition 75 (Borel functions)

(a) Let χ : R → C and let (χn)n∈N be a sequence in `∞(R). If there exists C > 0 such that
|χn|∞ ≤ C for all n ∈ N and if limn→∞ χn(x) = χ(x) for all x ∈ R, we write

B − lim
n→∞

χn = χ, (348)

and we say that (χn)n∈N is Borel convergent to χ ∈ `∞(R).

(b) Let F ⊆ `∞(R) be a family of functions having the following properties:

(B1) C0(R) ⊆ F
(B2) If χ ∈ `∞(R) and if (χn)n∈N in F is such that B − limn→∞ χn = χ, then χ ∈ F .

The smallest such F , denoted by B(R), is called the family of bounded Borel functions.
It is a normed unital ∗-algebra with unity κ0, and Cb(R) ⊆ B(R).

(c) A set M ⊆ R is called a Borel set if 1M ∈ B(R). The σ-algebra of all Borel sets is
denoted byM(R).

Proposition 76 (Extension to Borel functions) Let E0 be a projection-valued measure.

(a) There exists a unique extension from E0 to a ∗-algebra homomorphism E : B(R) →
L(H) on B(R). Moreover, for all χ ∈ B(R), we have

‖E(χ)‖ ≤ |χ|∞, (349)

and E(χ) ≥ 0 for all χ ∈ B(R) with χ ≥ 0.

(b) Let (χn)n∈N in B(R) be such that B − limn→∞ χn = χ for some χ ∈ `∞(R). Then,
χ ∈ B(R) and the extended projection-valued measure E from (a) satisfies

s− lim
n→∞

E(χn) = E(χ). (350)

Proof. See [18] (and [19]). �

Definition 77 (Resolution of the identity) A ∗-algebra homomorphism E : B(R) → L(H)
is called a resolution of the identity if E(κ0) = 1.

Proposition 78 (Extension to the identity function) Let E be a resolution of the identity
and let the dense subspace D of H be defined by

D := ran(E(κ−1)). (351)
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(a) The operator Ē(κ1) : D → H, defined, for all ψ ∈ H, by

Ē(κ1)E(κ−1)ψ := E(κ1κ−1)ψ, (352)

and suitably extended to the whole of D, is selfadjoint.

(b) For all χ ∈ B(R) with κ1χ ∈ B(R), we have

Ē(κ1)E(χ) = E(κ1χ). (353)

Proof. See [18] (and [19]). �

Remark 79 Since E is a resolution of the identity, the set C := span {E(χ)ψ |χ ∈ C0(R), ψ ∈
H} is dense in H. For all η ∈ C(R), defining the operator E(η) on C by E(η)E(χ)ψ := E(ηχ)ψ
for all χ ∈ C0(R), the map C(R) 3 η 7→ E(η) satisfies E(η)C ⊆ C and, on C, preserves the
linear operations and the multiplication. Moreover, we have E(η̄) ⊆ E(η)∗ for all η ∈ C(R).
Therefore, E(η) is closable for all η ∈ C(R) and the closure of E(η) defines an extension of
E to C(R) which preserves the ∗-operation.

In the following, S(R) stands for the usual Schwartz space of rapidly decreasing functions
on R. Note that S(R) ⊆ Cb(R) ⊆ B(R). Moreover, using the same notation as the one
introduced before (137), the Fourier transform of χ ∈ S(R) is denoted by χ̂ ∈ S(R) and we
use the convention χ̂(t) :=

∫
Rdxχ(x)e−itx/

√
2π for all t ∈ R.

Theorem 80 (Spectral theorem) Let A be a (not necessarily bounded) selfadjoint linear
operator on H.

(a) There exists a unique resolution of the identity E such that A = Ē(κ1).

(b) On S(R), the resolution of the identity E from (a) can be expressed as an inverse
Fourier transform, i.e., for all χ ∈ S(R) and all ψ ∈ H, we have

E(χ)ψ =
1√
2π

∫
R

dt χ̂ (t)eitAψ, (354)

where the integral is defined as a Hilbert space-valued improper Riemann integral.
Moreover, the strongly continuous unitary 1-parameter group generated by A (through
Stone’s theorem) satisfies eitA = E(et) for all t ∈ R, where et ∈ Cb(R) is given by
et(x) := eitx for all t, x ∈ R.

Proof. See [18] (and [19]). �

In the following, if we need to display the dependence on A, we sometimes use the
notation χ(A) := E(χ) or EA(χ) := E(χ) for all χ ∈ B(R). Moreover, for all (not necessarily
bounded) selfadjoint linear operators A on H, we denote by dom(A) the domain of A.
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Remark 81 Note that C∞0 (R) ⊆ S(R) and that the resolution of the identity is already uniquely
determined by its restriction to C∞0 (R) since C∞0 (R) is dense in C0(R) with respect to the
norm (344) and since (349) holds.

In the following, if H and K are complex Hilbert spaces, D ⊆ H and A : H → K a
bounded linear operator, we set AD := {AΨ |Ψ ∈ D} ⊆ K.

A first application of this formalism, used in the foregoing sections, is the following stan-
dard property.

Lemma 82 (Identification) Let H and K be separable complex Hilbert spaces, let A a (not
necessarily bounded) selfadjoint operator on H, and let U : H → K be unitary. Then:

(a) The operator B : dom(B) ⊆ K → K, defined by dom(B) := Udom(A) and BΦ :=
UAU∗Φ for all Φ ∈ dom(B), is selfadjoint.

(b) The map EU : B(R)→ L(K), defined by EU(χ) := UEA(χ)U∗ for all χ ∈ B(R), satisfies
EU = EB.

Proof. (a) Since B is densely defined and symmetric, and since, due to the standard crite-
rion for selfadjointness, ran (B± i1) = Uran (A± i1) = UH = K, the operator B is selfadjoint.

(b) Note that EU is a resolution of the identity. Moreover, dom(ĒU(κ1)) = ran (EU(κ−1)) =
Uran (EA(κ−1)) = Udom(A) = dom(B), where we used that dom(A) = ran ((A − i1)−1) =
ran (EA(κ−1)). Hence, for all Φ ∈ dom(B), there exists Ψ ∈ H such that Φ = EU(κ−1)Ψ and,
from (352) and Theorem 80 (a), we get

ĒU(κ1)Φ = ĒU(κ1)EU(κ−1)Ψ

= EU(κ1κ−1)Ψ

= UEA(κ1κ−1)U∗Ψ

= UĒA(κ1)U∗EU(κ−1)Ψ

= BΦ. (355)

The uniqueness property of the resolution of the identity from Theorem 80 (a) then yields
the conclusion. �

In the following, we also denote by ζ the operation of complex conjugation from Definition
1 (b) when applied to χ ∈ `∞(R). Moreover, let `∞(R,R), C0(R,R), and B(R,R) stand for
the bounded real-valued functions on R, the continuous real-valued functions on R with
compact support, and the smallest family of functions satisfying the conditions (B1’) and
(B2’), respectively, where (B1’) and (B2’) stand for the modified conditions (B1) and (B2)
from Definition 75 (b) in which `∞(R), C0(R), and B(R) have been replaced by `∞(R,R),
C0(R,R), and B(R,R), respectively.

Lemma 83 (Spectral identities) Let A ∈ L(H) be selfadjoint and χ ∈ B(R). Then:

(a) Γχ(A)Γ = (ζχ)(ΓAΓ)
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(b) χ(ψ(A)) = (χ ◦ ψ)(A) for all ψ ∈ B(R,R)

(c) For all orthogonal families of orthogonal projections {P,Q} ⊆ L(H) satisfying [P,A] =
[Q,A] = 0 and all r, s ∈ R, we have

χ(rAP + sAQ)(P +Q) = χ(rA)P + χ(sA)Q. (356)

(d) If B ∈ L(H) is selfadjoint, [A,B] = 0, and ψ ∈ B(R), we have

[χ(A), ψ(B)] = 0. (357)

Remark 84 On the right hand side of the equations in Lemma 83 (a) and (b), we used that
ζχ ∈ B(R) for all χ ∈ B(R) and χ◦ψ ∈ B(R) for all χ ∈ B(R) and all ψ ∈ B(R,R), respectively.
In order to verify these properties, we make use of the following recurrent argument which
we detail for the slightly more involved case (b) only. So, let χ ∈ C0(R) be fixed and set

Fχ := {ψ ∈ `∞(R,R) |χ ◦ ψ ∈ B(R)}. (358)

Since χ ◦ ψ ∈ C0(R) for all ψ ∈ C0(R,R), we have C0(R,R) ⊆ Fχ, i.e., Fχ satisfies (B1’).
Moreover, let (ψn)n∈N be a sequence in Fχ with B − limn→∞ ψn = ψ for some ψ ∈ `∞(R,R).
Since χ ◦ ψn ∈ B(R) for all n ∈ N and since B − limn→∞ χ ◦ ψn = χ ◦ ψ because χ ∈ C0(R),
we get χ◦ψ ∈ B(R) (since B(R) satisfies (B2)), i.e., Fχ satisfies (B2’). Hence, B(R,R) ⊆ Fχ.
Next, let ψ ∈ B(R,R) be fixed and set

Gψ := {χ ∈ `∞(R) |χ ◦ ψ ∈ B(R)}. (359)

Since B(R,R) ⊆ Fχ for all χ ∈ C0(R), the family Gψ satisfies (B1). Moreover, let (χn)n∈N be a
sequence in Gψ with B − limn→∞ χn = χ for some χ ∈ `∞(R). Hence, we get B − limn→∞ χn ◦
ψ = χ ◦ ψ and χ ◦ ψ ∈ B(R), i.e., Gψ satisfies (B2), too. Therefore, we arrive at B(R) ⊆ Gψ for
all ψ ∈ B(R,R).

Remark 85 Due to the fact that EA(1spec(A)) = 1 for all selfadjoint operators A ∈ L(H), where
spec(A) ∈ M(R) is a (non-empty) compact subset of R, (353) yields A = EA(κ11spec(A))
because κ11spec(A) ∈ B(R) since 1spec(A) = 1[−a,a]1spec(A) with a := ‖A‖ and since κ11[−a,a] ∈
B(R) (being the limit of a Borel convergent sequence of functions in C0(R)). Since rA =
EA(ψ) with ψ := rκ11spec(A) ∈ B(R) for all r ∈ R, Lemma 83 (b) yields

χ(rA) = χr(A), (360)

where we define χr(x) := χ(rx) for all χ ∈ `∞(R) and all r, x ∈ R, and χr ∈ B(R) for all
χ ∈ B(R) and all r ∈ R (by arguing as in Remark 84). Note that, using (354), a change of
variables, Remark 81, and a minimality type argument as in Remark 84 (see also the proof
of Lemma 83 (c) and (d) below), (360) also holds for unbounded selfadjoint operators.
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We next turn to the proof of Lemma 83. For illustration, we use the uniqueness type
argument (as in the proof of Lemma 82 (b)) for (a) and (b) and the minimality type argument
(as in Remark 84) for (c) and (d).

Proof. (a) Let us define the map EΓ : B(R)→ L(H) by EΓ(χ) := ΓEA(ζχ)Γ for all χ ∈ B(R).
In order to show that EΓ = EΓAΓ, we first note that EΓ is a resolution of the identity because
Γ ∈ L̄(H) is an antiunitary involution. Moreover, we have dom(ĒΓ(κ1)) = ran (EΓ(κ−1)) =
Γran (EA(κ−1)) = Γdom(A) = H. Hence, for all F ∈ H, there exists G ∈ H such that
F = EΓ(κ−1)G and we compute that ĒΓ(κ1)F = ΓAΓF as in (355). Theorem 80 (a) then
implies that ΓEA(ζχ)Γ = EΓAΓ(χ) for all χ ∈ B(R).

(b) Let ψ ∈ B(R,R) and define the map Eψ : B(R) → L(H) by Eψ(χ) := EA(χ ◦ ψ) for
all χ ∈ B(R). It then follows that Eψ is a resolution of the identity and that dom(Ēψ(κ1)) =
ran (Eψ(κ−1)) = ran (EA(κ−1 ◦ ψ)). Moreover, since H = dom(A) = ran ((A − i1)−1) and
since ran ((A− i1)−1) ⊆ ran (EA(κ−1 ◦ ψ)) due to the fact that (A− i1)−1 = EA((κ1 − i)−1) =
EA((κ−1 ◦ψ)(κ1− i)−1(κ−1 ◦ψ)−1) and (κ1− i)−1(κ−1 ◦ψ)−1 ∈ B(R), we get dom(Ēψ(κ1)) = H.
Hence, for all F ∈ H, there exists G ∈ H such that F = Eψ(κ−1)G and we compute that
Ēψ(κ1)F = ψ(A)F .

(c) Let r, s ∈ R be fixed and note that rAP + sAQ ∈ L(H) is selfadjoint. Moreover, since
[AP,AQ] = 0, we have eit(rAP+sAQ) = eitrAP eitsAQ = eitrAP + eitsAQ+ 1− (P +Q) for all t ∈ R,
where we used the (in L(H) converging) exponential series for the propagators. Hence, for
all χ ∈ S(R), (354) leads to

ErAP+sAQ(χ) = ErA(χ)P + EsA(χ)Q+ χ(0)(1− (P +Q)). (361)

Next, let χ ∈ C0(R) and let (χn)n∈N be a sequence in C∞0 (R) ⊆ S(R) which converges
to χ with respect to the norm (344) (such a sequence exists due to Remark 81). Since
ErAP+sAQ(χ) − (ErA(χ)P + EsA(χ)Q + χ(0)(1 − (P + Q))) = ErAP+sAQ(χ − χn) + ErA(χn −
χ)P +EsA(χn−χ)Q+ (χn(0)−χ(0))(1− (P +Q)), (349) yields the estimate ‖ErAP+sAQ(χ)−
(ErA(χ)P +EsA(χ)P + χ(0)(1− (P +Q)))‖ ≤ 2(1 + ‖P‖+ ‖Q‖)|χ− χn|∞. Hence, (361) also
holds for all χ ∈ C0(R). In order to show that (361) holds for all χ ∈ B(R), too, we set

F := {χ ∈ B(R) |ErAP+sAQ(χ) = ErA(χ)P + EsA(χ)Q+ χ(0)(1− (P +Q))}, (362)

and F satisfies (B1) from Defintion 75 (b). Next, let (χn)n∈N be a sequence in F with B −
limn→∞ χn = χ for some χ ∈ `∞(R). Since χn ∈ B(R) for all n ∈ N and since B(R) satisfies
(B2), we have χ ∈ B(R). Moreover, (350) yields s− limn→∞ErAP+sAQ(χn) = ErAP+sAQ(χ),
the analogous properties hold forErA(χn)P andEsA(χn)Q, and limn→∞ χn(0)(1−(P+Q))F =
χ(0)(1 − (P + Q))F for all F ∈ H since (χn)n∈N is pointwise convergent. Hence, F also
satisfies (B2). Therefore, we get B(R) ⊆ F , i.e., (361) holds for all χ ∈ B(R). Multiplying
(361) from the right by P +Q yields (356).

(d) For all χ ∈ S(R), (354) yields

[EA(χ), B] = 0. (363)
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Now, let χ ∈ C0(R) and let (χn)n∈N be a sequence in C∞0 (R) which converges to χ with
respect to the norm (344). Hence, since [EA(χ), B] = [EA(χ − χn), B] for all n ∈ N, (349)
yields ‖[EA(χ), B]‖ ≤ 2‖B‖|χ−χn|∞, i.e., (363) also holds for all χ ∈ C0(R). In order to show
that (363) holds for all χ ∈ B(R), too, we set

F := {χ ∈ B(R) | [EA(χ), B] = 0}, (364)

andF satisfies (B1). In order to verify (B2), let (χn)n∈N be a sequence inF with B − limn→∞ χn =
χ for some χ ∈ `∞(R). Hence, χ ∈ B(R) and, writing again [EA(χ), B] = [EA(χ− χn), B] for
all n ∈ N, we get ‖[EA(χ), B]F‖ ≤ ‖EA(χ− χn)BF‖ + ‖B‖‖EA(χ− χn)F‖ for all F ∈ H and
all n ∈ N. Therefore, due to (350), we get χ ∈ F , i.e., F also satisfies (B2) which implies
B(R) ⊆ F (note that we did not use the selfadjointness of B yet). In order to show (357), we
get, as for (363), for fixed χ ∈ B(R) and all ψ ∈ S(R),

[EA(χ), EB(ψ)] = 0. (365)

Then, proceeding as before, (365) holds for all ψ ∈ C0(R). Finally, setting G := {ψ ∈
B(R) | [EA(χ), EB(ψ)] = 0}, we verify that G satisfies (B1) and (B2) and get B(R) ⊆ G. �

B Matrix multiplication operators

In this appendix, we derive the properties of matrix multiplication operators in momentum
space used in the foregoing sections.

In the following, we make use of the notation introduced after Assumption 40 and of the
spectral theory from Appendix A. Moreover, sinc ∈ C∞(R) (the infinitely differentiable com-
plex valued functions on R) stands for the usual cardinal sine function defined by sinc(x) :=
sin(x)/x for all x ∈ R \ {0} and sinc(0) := 1.

Proposition 86 (Functional calculus) Let u0 ∈ L∞(T) and u := [u1, u2, u3] ∈ L∞(T)3 sat-
isfy Assumption 40 (a) and define U ∈ L(Ĥ) by U := m[u0]σ0 +m[u]σ. Then:

(a) For all t ∈ R, we have

eitU = m[pt0]σ0 +m[pt]σ, (366)

where, for all t ∈ R, we define pt0 ∈ L∞(T) and pt ∈ L∞(T)3 by

pt0 := exp ◦(itu0) cos ◦(t|u|), (367)

pt := it exp ◦(itu0) sinc ◦(t|u|)u. (368)

(b) For all χ ∈ B(R), we have

χ(U) = m[v0]σ0 +m[v]σ, (369)
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where v0 ∈ L∞(T) and v ∈ L∞(T)3 are given by

v0 :=
1

2
(χ ◦ e+ + χ ◦ e−) , (370)

v :=
1

2
(χ ◦ e+ − χ ◦ e−) ũ, (371)

and we recall that e± = u0 ± |u| ∈ L∞(T).

Proof. (a) We first note that, due to Assumption 40 (a) and Remark 45, we have U∗ = U . For
the following, let t ∈ R be fixed. Since m[u0]σ0,m[u]σ ∈ L(Ĥ) and since [m[u0]σ0,m[uα]σα] =

0 for all α ∈ 〈1, 3〉, we have eitU = eitm[u0]σ0eitm[u]σ and eitm[u]σ = limN→∞ PN , where, for
all N ∈ N, we set PN :=

∑
n∈〈0,N〉(it)

n/(n!)(m[u]σ)n ∈ L(Ĥ) and the limit exists with re-
spect to the uniform topology on L(Ĥ). Moreover, since, due to (7), we have (m[u]σ)2n =
m[|u|2n]σ0 and (m[u]σ)2n+1 = m[|u|2nu]σ for all n ∈ N, we can write PN = CN + SN ,
where CN , SN ∈ L(Ĥ) are defined by CN :=

∑
n∈〈0,N〉(−1)nt2n/((2n)!)(m[|u|2n]σ0) and SN :=

i
∑

n∈〈0,N〉(−1)nt2n+1/((2n+ 1)!)(m[|u|2nu]σ) for all N ∈ N. Since, for all Φ = ϕ1 ⊕ ϕ2 ∈ Ĥ and
all N ∈ N, we have ‖m[cos ◦(t|u|)]σ0Φ− CNΦ‖2 =

∑
i∈〈1,2〉

∫ π
−πdk/(2π)|fNi (k)|2, where, for all

i ∈ 〈1, 2〉 and all N ∈ N, the function fNi ∈ ĥ is defined by

fNi := cos ◦(t|u|)ϕi −
∑

n∈〈0,N〉

(−1)nt2n

(2n)!
|u|2nϕi, (372)

and since, for all i ∈ 〈1, 2〉 and almost all k ∈ T, we have that limN→∞ f
N
i (k) = 0 and

|fNi |2 ≤ cosh2(|t|‖|u|‖∞)|ϕi|2 ∈ L1(T), Lebesgue’s dominated convergence theorem implies
s− limN→∞CN = m[cos ◦(t|u|)]σ0. Moreover, since (CN)N∈N is a Cauchy sequence with
respect to the uniform topology on L(Ĥ), we get limN→∞CN = m[cos ◦(t|u|)]σ0 in L(Ĥ).
Finally, for all Φ = ϕ1 ⊕ ϕ2 ∈ Ĥ and all N ∈ N, we have ‖m[it sinc ◦(t|u|)u]σΦ − SNΦ‖2 ≤
3
∑

i∈〈1,2〉
∑

α∈〈1,3〉
∫ π
−πdk/(2π)|gNi,α(k)|2, where, for all i ∈ 〈1, 2〉, all α ∈ 〈1, 3〉, and all N ∈ N,

the function gNi,α ∈ ĥ is defined by gNi,α := it sinc ◦(t|u|)uαϕi − i
∑

n∈〈0,N〉(−1)nt2n+1/((2n +

1)!)|u|2nuαϕi. Hence, the contribution SN can be treated analogously to CN .
(b) Let χ ∈ S(R) and plug (366)-(368) into (354). Then, for all Φ = ϕ1 ⊕ ϕ2 ∈ Ĥ, we get

EU(χ)Φ =
1√
2π

∫
R

dtf t1 ⊕ f t2 +
1√
2π

∫
R

dt (gt1,3 + gt2,1 − igt2,2)⊕ (gt1,1 + igt1,2 − gt2,3), (373)

where, for all i ∈ 〈1, 2〉 and all α ∈ 〈1, 3〉, the maps fi : R → ĥ and gi,α : R → ĥ are defined,
for all t ∈ R, by

f ti := χ̂(t) exp ◦(itu0) cos ◦(t|u|)ϕi, (374)

gti,α := itχ̂(t) exp ◦(itu0) sinc ◦(t|u|)uαϕi, (375)
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and we note that fi, gi,α ∈ C(R, ĥ) for all i ∈ 〈1, 2〉 and all α ∈ 〈1, 3〉. Using the analogous
arguments as the ones which lead to (202) in the proof of Proposition 46 (a), we get

1√
2π

∫
R

dtf ti =
1

2
(χ ◦ (u0 + |u|) + χ ◦ (u0 − |u|))ϕi, (376)

1√
2π

∫
R

dtgti,α =


1

2
(χ ◦ (u0 + |u|)− χ ◦ (u0 − |u|))

uα
|u|
ϕi, on Zcu,

0, on Zu,

=
1

2
(χ ◦ (u0 + |u|)− χ ◦ (u0 − |u|))ũαϕi, (377)

where we used Euler’s formula, the fact that Fourier transform is a bijection on S(R), and
the notation (152). Hence, (369)-(371) holds for all χ ∈ S(R). We next proceed by using the
minimality type argument (as in Remark 84). To this end, let χ ∈ C0(R) and let (χn)n∈N be
a sequence in C∞0 (R) which converges to χ with respect to the norm (344). Hence, we can
write, for all Φ ∈ Ĥ and all n ∈ N,

EU(χ)Φ− (m[v0]σ0 +m[v]σ)Φ = EU(χ− χn)Φ + (m[v0(χn − χ)]σ0 +m[v(χn − χ)]σ)Φ,
(378)

where, for all χ ∈ B(R), we denote (370) and (371) by v0(χ) and v(χ), respectively. Due to
(349), the first term on the right hand side of (378) is bounded by ‖EU(χ − χn)Φ‖ ≤ |χ −
χn|∞‖Φ‖ for all Φ ∈ Ĥ and all n ∈ N. In order to estimate the second and third term in (378),
we note that ‖v0(χn−χ)‖∞ ≤ (‖(χn−χ)◦(u0 + |u|)‖∞+‖(χn−χ)◦(u0−|u|)‖∞)/2 ≤ |χ−χn|∞
for all n ∈ N. Similarly, for all α ∈ 〈1, 3〉 and all n ∈ N, we have ‖vα(χn − χ)‖∞ ≤ |χ − χn|∞
since ‖ũα‖∞ ≤ 1 for all α ∈ 〈1, 3〉. Applying (139), we get, for all Φ ∈ Ĥ and all n ∈ N,

‖(m[v0(χn − χ)]σ0 +m[v(χn − χ)]σ)Φ‖ ≤
∑

α∈〈0,3〉

‖vα(χn − χ)‖∞‖Φ‖

≤ 4|χ− χn|∞‖Φ‖. (379)

Hence, (369)-(371) also holds for all χ ∈ C0(R) (see Remark 84 for the composition of Borel
functions). In order to show that (369)-(371) also holds for all χ ∈ B(R), we again use the
minimality type argument (as in Remark 84). To this end, we set

F := {χ ∈ B(R) |EU(χ) = m[v0]σ0 +m[v]σ with (370) and (371)}, (380)

and F satisfies (B1). Next, let (χn)n∈N be a sequence in F with B − limn→∞ χn = χ for
some χ ∈ `∞(R) and, hence, χ ∈ B(R). Making again the decomposition (378), (350)
applied to the first term on the right hand side of (378) yields s− limn→∞EU(χ − χn) = 0.
As for the second term in (378), we have, for all Φ = ϕ1 ⊕ ϕ2 ∈ Ĥ and all n ∈ N, that
‖m[v0(χn − χ)]σ0Φ‖2 ≤

∑
i∈〈1,2〉

∑
σ∈{±1}

∫ π
−πdk/(2π)|fni,σ(k)|2/2, where, for all i ∈ 〈1, 2〉, all

σ ∈ {±1}, and all n ∈ N, the function fni,σ ∈ ĥ is given by

fni,σ := ((χn − χ) ◦ (u0 + σ|u|))ϕi. (381)
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Since the sequence (χn)n∈N is Borel convergent to χ, we get, for all i ∈ 〈1, 2〉, all σ ∈ {±1},
all n ∈ N, and almost all k ∈ T, that limn→∞ f

n
i,σ(k) = 0 and |fni,σ|2 ≤ 4C2|ϕi|2 ∈ L1(T),

where the constant C > 0 stems from Definition 75 (a). Hence, Lebesgue’s dominated
convergence theorem implies that s− limn→∞m[v0(χn − χ)]σ0 = 0. Similarly, as for the third
term on the right hand side of (378), we have, for all Φ = ϕ1 ⊕ ϕ2 ∈ Ĥ and all n ∈ N,
that ‖m[v(χn − χ)]σΦ‖2 ≤ (3/2)

∑
i∈〈1,2〉

∑
α∈〈1,3〉

∑
σ∈{±1}

∫ π
−πdk/(2π)|gni,α,σ(k)|2, where, for all

i ∈ 〈1, 2〉, all α ∈ 〈1, 3〉, all σ ∈ {±1}, and all n ∈ N, the function gni,α,σ ∈ ĥ is given by
gni,α,σ := [(χn−χ)◦ (u0 +σ|u|)]ũαϕi. We again get, for all i ∈ 〈1, 2〉, all α ∈ 〈1, 3〉, all σ ∈ {±1},
all n ∈ N, and almost all k ∈ T, that limn→∞ g

n
i,α,σ(k) = 0 and |gni,α,σ|2 ≤ 4C2|ϕi|2 ∈ L1(T),

where we used that ‖ũα‖∞ ≤ 1 for all α ∈ 〈1, 3〉. Hence, Lebesgue’s dominated convergence
theorem also implies that s− limn→∞m[v(χn − χ)]σ = 0. Therefore, (369)-(371) holds for χ,
i.e., F also satisfies (B2), and we get B(R) ⊆ F . �

Remark 87 Instead of applying the explicit form of the propagator (366)-(368), we can also
diagonalize U with the help of its eigenvalue functions e± ∈ L∞(T) and its (not yet normal-
ized) eigenvector functions Φ± ∈ Ĥ given by

Φ± := (u3 ± |u|)⊕ (u1 + iu2), (382)
e± = u0 ± |u|, (383)

i.e., we have UΦ± = m[e±]σ0Φ±.

In the following, we denote by L2(T,C2) the space of vector-valued functions T → C2

whose entry functions belong to L2(T). Analogously, L∞(T,C2×2) stands for the space of
matrix-valued functions T → C2×2 whose entry functions belong to L∞(T). Moreover, if
f : D → C is a function defined on D ⊆ R, we use the notation f(M) := {f(x) |x ∈ M}
for all M ⊆ D and, for all Y ⊆ C, the preimage of Y under f is denoted by f−1(Y ) := {x ∈
D | f(x) ∈ Y }.

The following proposition provides us with a useful sufficient condition for a matrix multi-
plication operator to be absolutely continuous on some spectral domain.

Proposition 88 (Absolute continuity) Let u0 ∈ L∞(T) and u = [u1, u2, u3] ∈ L∞(T)3 satisfy
Assumption 40 (a) and (b) and define U ∈ L(Ĥ) by U := m[u0]σ0 + m[u]σ. Moreover, let
M ∈M(R) and let Assumption 43 (a) and (b) hold. Then,

ran (1M(U)) ⊆ ran (1ac(U)). (384)

Remark 89 Since we know (see [17] for example) that, under the assumptions of Proposition
88, the property spec(U) =

⋃
k∈T spec([U ](k)) holds, where [U ] ∈ L∞(T,C2×2) is given by

KUK∗ = m[[U ]], where the unitary natural identification operator K ∈ L(Ĥ, L2(T,C2)) reads
as (KΦ)(k) := [ϕ1(k), ϕ2(k)] ∈ C2 for all Φ = ϕ1 ⊕ ϕ2 ∈ Ĥ and almost all k ∈ T, and
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where, for all A ∈ L∞(T,C2×2), the multiplication operator m[A] ∈ L(L2(T,C2)) is given by
(m[A][ϕ1, ϕ2])(k) := A(k)[ϕ1(k), ϕ2(k)] for all [ϕ1, ϕ2] ∈ L2(T,C2) and almost all k ∈ T, we get

spec(U) =
⋃
k∈T

{e+(k), e−(k)}

= ran (e+) ∪ ran (e−). (385)

Hence, if the set M ∈ M(R) from Proposition 88 has the property spec(U) ⊆ M , we get
e−1
κ (M) = T for all κ ∈ {±}. Moreover, ran (1M(U)) = Ĥ since EU(1spec(U)) = 1 (see Remark

85). Therefore, if Assumption 43 (a) and (b) hold, Proposition 88 yields that U is absolutely
continuous, i.e., that 1ac(U) = 1.

For the following, recall the definitions (150)-(154).

Proof. Since U∗ = U ∈ L(Ĥ) and since we know that

ran (1ac(U)) = {Φ ∈ Ĥ |EU(1A)Φ = 0 for all A ∈M(R) with |A| = 0}, (386)

we want to show that EU(1A)EU(1M)Ψ = EU(1A∩M)Ψ = 0 for all A ∈ M(R) with |A| = 0 and
all Ψ ∈ Ĥ. To this end, using Proposition 86 (b), we write that, for all Ψ = ψ1 ⊕ ψ2 ∈ Ĥ and all
A ∈M(R),

‖EU(1A∩M)Ψ‖2 = (Ψ, EU(1A∩M)Ψ)

≤ 1

2

∑
κ∈{±}

∑
i∈〈1,2〉

∫
e
−1
κ (A∩M)

dk

2π
|ψi(k)|2

+
1

2

∑
κ∈{±}

∑
α∈〈1,2〉

∑
i,j∈〈1,2〉
i 6=j

∫
e
−1
κ (A∩M)

dk

2π
|ũα(k)||ψi(k)||ψj(k)|

+
1

2

∑
κ∈{±}

∑
i∈〈1,2〉

∫
e
−1
κ (A∩M)

dk

2π
|ũ3(k)||ψi(k)|2, (387)

where, due to Assumption 40 (b), we have e± ∈ C(T) and, hence, e−1
± (A∩M) ∈M(T) for all

A ∈M(R). Moreover, all the integrals on the right hand side of (387) exist since ϕi ∈ ĥ for all
i ∈ 〈1, 2〉 and |ũα|∞ ≤ 1 for all α ∈ 〈1, 3〉. In order to make the left hand side of (387) vanish
for all A ∈ M(R) with |A| = 0 and all Ψ ∈ Ĥ, it is sufficient to show that |e−1

± (A ∩M)| = 0 for
all A ∈ M(R) with |A| = 0. In order to do so, let us stick to the case of e+ in the following
(the case of e− being completely analogous). Let us start off by making the decompositions
T = Zu ∪Zcu and Zcu = Z+ ∪ (Zcu \Z+) (recall that Z+ ⊆ Zcu). Hence, writing A′ := A∩M and
e−1

+ (A′) = e−1
+ (A′) ∩ T, we get

e−1
+ (A′) = (e−1

+ (A′) ∩ Zu) ∪ (e−1
+ (A′) ∩ Z+) ∪ (e−1

+ (A′) ∩ (Zcu \ Z+)). (388)
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Moreover, since Zcu = (Zcu ∩ {−π})∪ (Zcu ∩ {π})∪ (Zcu ∩ T̊), where T̊ := (−π, π), the last term
on the right hand side of (388) has the form

e−1
+ (A′) ∩ (Zcu \ Z+) = (e−1

+ (A′) ∩ ((Zcu ∩ {−π}) \ Z+)) ∪ (e−1
+ (A′) ∩ ((Zcu ∩ {π}) \ Z+))

∪ (e−1
+ (A′) ∩B), (389)

where we set B := (Zcu ∩ T̊) \ Z+. Denoting the restriction of e+ to Zcu ∩ T̊ by f , we have

B = {k ∈ Zcu ∩ T̊ | f ′(k) 6= 0}, (390)

and B is open (in R) since B is open relative to Zcu ∩ T̊ and since Zcu ∩ T̊ is open. Since
we know that there exists a countable family of compact intervals {In}n∈N in R satisfying
I̊n ∩ I̊n′ = ∅ for all n, n′ ∈ N with n 6= n′ and B =

⋃
n∈N In, the last term in (389) reads

e−1
+ (A′) ∩B =

⋃
n∈N

(e−1
+ (A′) ∩ In). (391)

Denoting by g ∈ C1(B) the restriction of e+ to B, we have g′(k) 6= 0 for all k ∈ B. Hence,
for all k ∈ B, the inverse function theorem guarantees the existence of an open set Uk ⊆ B
with k ∈ Uk and of an open set Vg(k) ⊆ R with g(k) ∈ Vg(k) such that the restriction of g to Uk,
denoted by gk, is a bijection between Uk and Vg(k). Moreover, since, for all n ∈ N, we have
In ⊆

⋃
k∈In Uk and since In is compact, there exists Nn ∈ N and {kn,1, . . . , kn,Nn} ⊆ In such

that In ⊆
⋃
m∈〈1,Nn〉 Ukn,m which implies

e−1
+ (A′) ∩B ⊆

⋃
n∈N

⋃
m∈〈1,Nn〉

(e−1
+ (A′) ∩ Ukn,m). (392)

Since, for all n ∈ N and all m ∈ 〈1, Nn〉, it holds that

e−1
+ (A′) ∩ Ukn,m = {k ∈ Ukn,m | gkn,m(k) ∈ A′ ∩ Vg(kn,m)}

= g−1
kn,m

(A′ ∩ Vg(kn,m)), (393)

the properties (388)-(389) and (392)-(393) yield e−1
+ (A′) ⊆

⋃
i∈〈1,5〉Mi, where, for all i ∈ 〈1, 5〉,

the sets Ki ∈M(T) are defined by

K1 := e−1
+ (A′) ∩ Zu, (394)

K2 := e−1
+ (A′) ∩ Z+, (395)

K3 := e−1
+ (A′) ∩ ((Zcu ∩ {−π}) \ Z+), (396)

K4 := e−1
+ (A′) ∩ ((Zcu ∩ {π}) \ Z+), (397)

K5 :=
⋃
n∈N

⋃
m∈〈1,Nn〉

g−1
kn,m

(A′ ∩ Vg(kn,m)). (398)

Using Assumption 43 (a) and (b), we get |K1| = |e−1
+ (A)∩(Zu∩e−1

+ (M))| ≤ |Zu∩e−1
+ (M)| = 0

and |K2| ≤ |Z+ ∩ e−1
+ (M)| = 0, respectively. Moreover, we have card(Ki) ∈ {0, 1} for all
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i ∈ 〈3, 4〉. Hence, it remains to estimate (398). We first note that, since, for all n ∈ N and
all m ∈ 〈1, Nn〉, the set Vg(kn,m) is open, there exists again a countable family of compact
intervals {Jn,m,p}p∈N in R satisfying J̊n,m,p ∩ J̊n,m,p′ = ∅ for all p, p′ ∈ N with p 6= p′ and
Vg(kn,m) =

⋃
p∈N Jn,m,p. Furthermore, since A′ ∈ M(R) has the property |A′| ≤ |A| = 0, we

know that, for all ε > 0, there exists a countable family of compact intervals {Lq}q∈N in R
such that A′ ⊆

⋃
q∈N Lq and

∑
q∈N |Lq| < ε. Hence, for all n ∈ N and all m ∈ 〈1, Nn〉, we get

g−1
kn,m

(A′ ∩ Vg(kn,m)) ⊆
⋃
p,q∈N

g−1
kn,m

(Jn,m,p ∩ Lq). (399)

Furthermore, the inverse function theorem also guarantees that, for all n ∈ N and all m ∈
〈1, Nn〉, the inverse of gkn,m, denoted by hkn,m, satisfies hkn,m ∈ C

1(Vg(kn,m)) and, hence, hkn,m
is Lipschitz continuous on the compact interval Jn,m,p with a Lipschitz constant Cn,m,p > 0.
Therefore, for all n ∈ N, all m ∈ 〈1, Nn〉, and all p, q ∈ N, we get

sup
x,y∈Jn,m,p∩Lq

|hkn,m(x)− hkh,m(y)| ≤ Cn,m,p|Lq|, (400)

and the set g−1
kn,m

(Jn,m,p∩Lq) = hkn,m(Jn,m,p∩Lq) ∈M(T) is contained in a compact interval of
length Cn,m,p|Lq| (and Cn,m,p is independent of ε). Since

∑
q∈N |Lq| < ε, we get |g−1

kn,m
(Jn,m,p ∩

Lq)| = 0 for all n ∈ N, all m ∈ 〈1, Nn〉, and all p, q ∈ N. Hence, using (398)-(399), we arrive at
|K5| = 0. �

C Real trigonometric polynomials

In this appendix, we carry out the computations of the squares in TP (T) used in the forego-
ing sections (for more information on the structure of this ring, see [25] for example). To this
end, let ν ∈ N and, for all α ∈ 〈0, 3〉, let uα ∈ L∞(T) be given by

uα =

{
−2
∑

n∈〈1,ν〉 cα,n sin(n ·), α ∈ 〈0, 2〉,
c3,0 + 2

∑
n∈〈1,ν〉 c3,n cos(n ·), α = 3,

(401)

where cα,n ∈ R for all α ∈ 〈0, 2〉 and all n ∈ 〈1, ν〉 and c3,n ∈ R for all n ∈ 〈0, ν〉 (recall that in
(267), we have ν ∈ 〈1, nS〉).

Lemma 90 (Squares) For all α ∈ 〈0, 3〉, the squares of uα ∈ L∞(T) from (401) read as

u2
α = aα,0 + 2

∑
m∈〈1,2ν〉

aα,m cos(m ·), (402)

where aα,m ∈ R for all α ∈ 〈0, 3〉 and allm ∈ 〈0, 2ν〉. Moreover, setting bα,m := [aα,m, a3,m] ∈ R2

for all α ∈ 〈0, 2〉 and all m ∈ 〈0, 2ν〉, we have:
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(a) For ν = 1, for all α ∈ 〈0, 2〉 and all m ∈ 〈0, 2〉,

bα,m =


[2c2

α,1, c
2
3,0 + 2c2

3,1], m = 0,

[0, 2c3,0c3,1], m = 1,

[−c2
α,1, c

2
3,1], m = 2.

(403)

(b) For ν = 2, for all α ∈ 〈0, 2〉 and all m ∈ 〈0, 4〉,

bα,m =



[2(c2
α,1 + c2

α,2), c2
3,0 + 2(c2

3,1 + c2
3,2)], m = 0,

[2cα,1cα,2, 2(c3,0c3,1 + c3,1c3,2)], m = 1,

[−c2
α,1, 2c3,0c3,2 + c2

3,1], m = 2,

[−2cα,1cα,2, 2c3,1c3,2], m = 3,

[−c2
α,2, c

2
3,2], m = 4.

(404)

(c) For all ν ≥ 3, all α ∈ 〈0, 2〉 and all m ∈ 〈0, 2ν〉,

bα,m =



[2
∑

n∈〈1,ν〉 c
2
α,n, c

2
3,0 + 2

∑
n∈〈1,ν〉 c

2
3,n], m = 0,

[2
∑

n∈〈1,ν−1〉 cα,ncα,n+1, 2(c3,0c3,1 +
∑

n∈〈1,ν−1〉 c3,nc3,n+1)], m = 1,

[2
∑

n∈〈1,ν−m〉 cα,ncα,m+n −
∑

n∈〈1,m−1〉 cα,ncα,m−n,

2(c3,0c3,m +
∑

n∈〈1,ν−m〉 c3,nc3,m+n) +
∑

n∈〈1,m−1〉 c3,nc3,m−n], m ∈ {2, ν − 1},
[−
∑

n∈〈1,ν−1〉 cα,ncα,ν−n, 2c3,0c3,ν +
∑

n∈〈1,ν−1〉 c3,nc3,ν−n], m = ν,

[−
∑

n∈〈m−ν,ν〉 cα,ncα,m−n,
∑

n∈〈m−ν,ν〉 c3,nc3,m−n], m ∈ {ν + 1, 2ν}.
(405)

Proof. Note that 2 sin(x) sin(y) = cos(x − y) − cos(x + y) and 2 cos(x) cos(y) = cos(x − y) +
cos(x+ y) for all x, y ∈ R and that, for all ν ≥ 2 and all {bi,j}i,j∈〈1,ν〉 ⊆ R, we have∑

i,j∈〈1,ν〉

bi,j =
∑

m∈〈0,ν−1〉
i∈〈m+1,ν〉

bi,i−m +
∑

m∈〈−ν+1,−1〉
i∈〈1,ν+m〉

bi,i−m, (406)

=
∑

m∈〈2,ν+1〉
i∈〈1,m−1〉

bi,m−i +
∑

m∈〈ν+2,2ν〉
i∈〈m−ν,ν〉

bi,m−i. (407)

Squaring (401) and applying (406)-(407) to the terms in the foregoing trigonometric expres-
sions whose arguments are differences (i − (i − m) = m) and sums (i + (m − i) = m),
respectively, we arrive at (403)-(405). �
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D Heat flux contributions

In this appendix, we collect the explicit expressions for the contributions to Jac appearing in
the proof of Theorem 61 (b).

Lemma 91 (Expansion) Let the assumptions of Theorem 61 hold. Then, for all i ∈ 〈1, 8〉,
the functions µi ∈ L∞(T) appearing in (299) are given by

µ1 :=
∑

n∈〈1,ν〉
l∈〈0,ν−n〉

n sin(n ·) (c0,lc0,n+l + c1,lc1,n+l + c2,lc2,n+l + c3,lc3,n+l), (408)

µ2 := −
∑

n,m∈〈1,ν〉

n sin((n+m) ·) (c0,nc0,m + c1,nc1,m + c2,nc2,m − c3,nc3,m), (409)

µ3 := −2
∑

n,m∈〈1,ν〉
l∈〈0,ν−n〉

n sin(n ·) sin(m ·)c1,m(c0,lc1,n+l + c0,n+lc1,l − c2,lc3,n+l − c2,n+lc3,l), (410)

µ4 := 2
∑

n,m,l∈〈1,ν〉

n sin((n+ l) ·) sin(m ·)c1,m(c0,nc1,l + c0,lc1,n + c2,nc3,l − c2,lc3,n), (411)

µ5 := −2
∑

n,m∈〈1,ν〉
l∈〈0,ν−n〉

n sin(n ·) sin(m ·)c2,m(c0,lc2,n+l + c0,n+lc2,l + c1,lc3,n+l + c1,n+lc3,l), (412)

µ6 := 2
∑

n,m,l∈〈1,ν〉

n sin((n+ l) ·) sin(m ·)c2,m(c0,nc2,l + c0,lc2,n − c1,nc3,l + c1,lc3,n), (413)

µ7 := −
∑

n∈〈1,ν〉
l∈〈0,ν−n〉

n cos(n ·)c3,0(c0,lc3,n+l − c0,n+lc3,l + c1,lc2,n+l − c1,n+lc2,l)

− 2
∑

n,m∈〈1,ν〉
l∈〈0,ν−n〉

n cos(n ·) cos(m ·)c3,m(c0,lc3,n+l − c0,n+lc3,l + c1,lc2,n+l − c1,n+lc2,l), (414)

µ8 :=
∑

n,m∈〈1,ν〉

n cos((n+m) ·)c3,0(c0,nc3,m + c0,mc3,n − c1,nc2,m + c1,mc2,n)

+ 2
∑

n,m,l∈〈1,ν〉

n cos((n+ l) ·) cos(m ·)c3,m(c0,nc3,l + c0,lc3,n − c1,nc2,l + c1,lc2,n). (415)

Proof. Noting that, for all x ∈ Z and all α ∈ 〈1, 2〉,

η0,x = −1

2

∫ π

−π

dk

2π
sin(kx)(ρ+(k) + ρ−(k)), (416)

ηα,x = −1

2

∫ π

−π

dk

2π
sin(kx)ũα(k)(ρ+(k)− ρ−(k)), (417)

η3,x =
1

2

∫ π

−π

dk

2π
cos(kx)ũ3(k)(ρ+(k)− ρ−(k)), (418)
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plugging (298) for G(−n, z,−n − z) and G(−n + z, z,−n) into (297), using (267), and sepa-
rating the terms with respect to ρ+ and ρ−, we arrive at (408)-(415). �

E Hamiltonian densities

In this appendix, we display the selfdual second quantization of the local first, second and
third Pauli coefficient of H in the fermionic and the spin picture (the selfdual second quanti-
zation of the zeroth Pauli coefficient of H is given in Remark 66).

For the following, recall that qN = m[1〈−N,N〉] ∈ L0(h) for all N ∈ N as defined after (257).

Lemma 92 (Hamiltonian densities) Let H ∈ L(H) be a Hamiltonian satisfying Assumption
14 (b), (d), and (e). Then:

(a) The selfdual second quantizations of the local first, second and third Pauli coefficient
of H in the fermionic picture are given, for all N ∈ N satifying (258), by

b((qNh1qN)σ1) = −2i
∑

n∈〈1,ν〉

c1,n

∑
x∈〈−N,N−n〉

(a∗xa
∗
x+n − ax+nax), (419)

b((qNh2qN)σ2) = −2
∑

n∈〈1,ν〉

c2,n

∑
x∈〈−N,N−n〉

(a∗xa
∗
x+n + ax+nax), (420)

b((qNh3qN)σ3) = c3,0

∑
x∈〈−N,N〉

(2a∗xax − 1) + 2
∑

n∈〈1,ν〉

c3,n

∑
x∈〈−N,N−n〉

(a∗xax+n + a∗x+nax).

(421)

(b) In the spin picture we have, for all x ∈ Z and all n ∈ N,

a∗xa
∗
x+n − ax+nax

=

{
− i

2

(
σ

(x)
1 σ

(x+1)
2 + σ

(x)
2 σ

(x+1)
1

)
, n = 1,

− i
2

(
σ

(x)
1

(∏
i∈〈1,n−1〉 σ

(x+i)
3

)
σ

(x+n)
2 + σ

(x)
2

(∏
i∈〈1,n−1〉 σ

(x+i)
3

)
σ

(x+n)
1

)
, n ≥ 2,

(422)

a∗xa
∗
x+n + ax+nax

=

{
−1

2

(
σ

(x)
1 σ

(x+1)
1 − σ(x)

2 σ
(x+1)
2

)
, n = 1,

−1
2

(
σ

(x)
1

(∏
i∈〈1,n−1〉 σ

(x+i)
3

)
σ

(x+n)
1 − σ(x)

2

(∏
i∈〈1,n−1〉 σ

(x+i)
3

)
σ

(x+n)
2

)
, n ≥ 2,

(423)

a∗xax+n + a∗x+nax

=

{
−1

2

(
σ

(x)
1 σ

(x+1)
1 + σ

(x)
2 σ

(x+1)
2

)
, n = 1,

−1
2

(
σ

(x)
1

(∏
i∈〈1,n−1〉 σ

(x+i)
3

)
σ

(x+n)
1 + σ

(x)
2

(∏
i∈〈1,n−1〉 σ

(x+i)
3

)
σ

(x+n)
2

)
, n ≥ 2.

(424)

Moreover, we have 2a∗xax − 1 = σ
(x)
3 for all x ∈ Z.

Proof. See Remark 66 and, for example, [11]. �
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