Ring chains with vertex coupling of a preferred orientation
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We consider a family of Schrodinger operators supported by a periodic chain of
loops connected either tightly or loosely through connecting links of the length
¢ > 0 with the vertex coupling which is non-invariant with respect to the time
reversal. The spectral behavior of the model illustrates that the high-energy be-
havior of such vertices is determined by the vertex parity. The positive spectrum
of the tightly connected chain covers the entire halfline while the one of the loose
chain is dominated by gaps. In addition, there is a negative spectrum consisting
of an infinitely degenerate eigenvalue in the former case, and of one or two ab-
solutely continuous bands in the latter. Furthermore, we discuss the limit ¢ — 0
and show that while the spectrum converges as a set to that of the tight chain, as
it should in view of a result by Berkolaiko, Latushkin, and Sukhtaiev, this limit
is rather non-uniform.
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1 Introduction

Quantum graphs came to recognition only slowly. First proposed by Linus Pauling [8] as
a model for aromatic hydrocarbon molecules, they were briefly investigated [10] and then
forgotten for more than three decades. Even when rediscovered in the late 1980s in connec-
tion with the progress in fabrication techniques that allowed to produce graphlike structures
of semiconductors and other materials, they looked like a topic of limited importance. The
development of the next three decades revealed many facets of the quantum graph theory



including some deep mathematical questions going far beyond the original purpose; we refer
to the recent monograph [3] for a survey and a rich bibliography.

A characteristic property of quantum graphs is the non-uniqueness of their vertex cou-
pling. The Schrodinger operators supported by graphs play the role of quantum mechanical
Hamiltonians and as such they have to be self-adjoint. This means that the functions from
their domain must satisfy at the vertices the conditions matching their values and first
derivatives: in a vertex v connecting n graph edges they are generally of the form

(U — Dp(v) +i(U + D' (v) = 0, (1.1)

where U is an n X n unitary matrix. A natural question then arises about the meaning
of such a coupling because each choice of the matrix U defines a different physics. The
most often considered case is the Kirchhoff couplingl] with the functions continuous and
the sum of the derivatives vanishing, or the more general ¢ coupling [5] corresponding to
U= fmj — I, where J is the matrix whose all entries are equal to one and a € R. One
way to understand the meaning of a vertex coupling was proposed in early days [10], namely
to consider the dynamics in a family of thin tubes built around the graph ‘skeleton’ and to
look what happens it their widths shrink to zero. If the tubes boundary is Neumann, such a
limit leads to the Kirchhof coupling [9, [10], the § coupling is obtained by adding a properly
scaled potential in the vertex region.

This is, however, only a small subset of the family described by the conditions . The
tube approximation can be worked out for any of those couplings but the scheme has to
be modified [6]. First of all, the graph topology has to be changes locally by disconnecting
the edges and connecting them pairwise by links whose lengths will go to zero in the limit,
and furthermore, scalar and vector potentials, properly singularly scaled, have to be placed
at those links. This solves the question from the existence point of view, but nobody could
wonder if the reader would regard such a construction as a rather baroque one. An alternative
is to adopt a pragmatic approach and to ask whether a particular vertex coupling could be
useful in a specific physical model.

The motivation to analyze the coupling considered in this paper comes from a recent
attempt to use quantum graphs to model the anomalous Hall effect [11], that is, the occur-
rence of a voltage perpendicular to the current though the sample without the presence of
a magnetic field. While the mechanism of the usual Hall effect is well understood in both
the classical and quantum cases, the anomalous effect is much less clear; it is conjectured
that it comes from internal magnetization in combination with the spin-orbit interaction.
The model proposed in [I1] regards the material supporting the 2D electron gas as ‘carpet’
of rings connected mutually by a § coupling at the points where they touch. Simple and
elegant as it may be, however, it has a drawback: to obtain a nontrivial Hall conductance,
the authors have to assume that the electron motion on the rings has a preferred direction
which is something difficult to justify from the first principles. On the other hand, one can
find among the conditions (1.1)) couplings with such a property. As the simplest example,

!The name is unfortunate having in mind that Kirhhoff law in electricity means the current conservation
and in the quantum case the conservation of probability current is equivalent to the self-adjointness. Several
alternatives have been proposed but none of them stuck.



two of us studied in [7] the matching referring to the matrix

o 1 0 0 - 0 0
o 0 1 0 - 0 0
U — o 0 0 1 - 0 0
R
1 0 0 0 - 0 0
which at a fixed momentum value, conventionally set to & = 1, exhibits a ‘maximum’
rotation; written in the components, the condition reads
(¢j+1 _¢])+Z(¢;+1+w;) :O’ ] = 17"'ana (12)

and it is obvious that it is not invariant with respect to the time reversal operation rep-
resented in quantum mechanics by complex conjugation. The discussion of this coupling
revealed interesting properties, in particular, it was found that the high-energy behavior of
the on-shell scattering matrix, S(k) = m%, depends on the parity n of the vertex
involved. This has spectral consequences which we have illustrated in [7] using the examples
of square and hexagonal lattice graphs.

The first aim of the present paper is to examine this effect of graphs periodic in a single
direction. We are going to discuss graphs in the form of a periodic chain of loops connected
either tightly or loosely through connecting links of the length ¢ > 0 assuming the coupling
at all the graphs vertices. Since the graphs in question are periodic, the spectral
analysis can be performed using the Floquet method [3, Chap. 4] writing the Hamiltonian
in question as

Hy = /7r H,(6) 6 (1.3)

where the fiber operator Hy() acts on L?(C,), where Cy is the period cell and C} = [—7, )
is the dual cell, or Brillouin zone. Each of them has a purely discrete spectrum and the
spectrum of H, then coincides with the union Ueec; o(Hy(0)). It is well known that the
unique continuation principle is in general not valid in quantum graphs [3, Sec. 3.4] and it
will be indeed the case, o(H,) consists here of an absolutely continuous part and infinitely
degenerate eigenvalues, or ‘flat bands’ in the physicist terminology.

The indicated property of the vertex coupling is clearly manifested. While the
positive spectrum of the tightly connected chain covers the entire halfline, the one of the
loose chain is dominated by gaps as can be seen from the fact that the probability of being
in the spectrum, in the sense of [2] defined properly by relation below, is zero for
any ¢ > 0. This brings us to another interesting point. In a recent paper conditions have
been found under which the spectrum of a quantum graph behaves ‘continuously’ when the
lengths of some of its edges tend to zero [4]. Our graphs satisfy the sufficient condition
derived there and indeed, the spectrum of H, converges in the set sense to that of Hy, the
Hamiltonian of the tightly connected chain, as ¢ — 0. Our result shows, however, that this
convergence may be highly non-uniform.

2 Tightly connected rings

Consider first the chain graph I'y sketched in Fig[l] in which the adjacent rings are coupled
directly through the matching conditions ([1.2)); the corresponding Laplacian on T’y will be
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Figure 1: An elementary cell of the tightly connected ring chain

denoted as Hy. Following the standard Floquet-Bloch procedure [3, Sec. 4.2] we take an
elementary cell of Iy and choose the coordinates to increase from left to right. Seeking a
solution at energy k2, we employ the following Ansatz

Vi(x) =cre™ +cie™™  wel0,r/2, j=1,2,

VP;(z) = c;“e““‘c + cj_e_“””, xr € [-n/2,0], j=34.

(2.1)

The Floquet condition at the ‘free’ ends of the cell gives the following conditions

Ui(m/2) = s (=m/2), Wi(m/)2) = Y j(~m/2), j=1,2, (2.2)

with @ running through the dual cell, or Brillouin zone, [—7, 7). Substituting now (2.1 into
(2.2)), one expresses coefficients c]i, j=1,2, in terms of c;.*L, j = 3,4, as follows
Cit = cffeiee:”’”, céc = cécewej”k”. (2.3)

Imposing next the condition ([1.2)) at the vertex, and taking into account that the derivatives
in it are taken in the outward direction, we get

2(0) = 1 0) + i(¥3(0) + v1(0)) = 0,
a(0) = 2(0) + i(=04(0) + ¥4(0)) =0, 0
$a(0) = a(0) + i(—4(0) = ¥4(0) =0, |

Inserting (2.1)) into(2.4), and taking into account (2.3]), we get a system of four linear equa-
tions for the coefficients cj[, j = 3,4. To be solvable, its determinant has to vanish, after an

easy simplification it yields the spectral condition in the form
k* (k* +1) sinkr (coskm — cos ) = 0. (2.5)

Furthermore, we know from [7] that quantum graph operators with the coupling ([1.2)) may
not be positive, hence we have to inspect solutions with the energy —x2. This amounts
to replacing a real k by & = ik with x > 0, and the trigonometric functions in (2.2)) by

hyperbolic ones. In a similar way as above we then arrive at the spectral condition
K (k* — 1) sinh k7 (cosh km — cos6) = 0. (2.6)

Theorem 1 The spectrum of Hy consists of the absolutely continuous part which coincides
with the interval [0,00), and a family of infinitely degenerate eigenvalues, the isolated one
equal to —1, the threshold one at zero, and the embedded ones equal to the positive integers.
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Proof: The condition has the only solution, x = 1, while is satisfied for all non-
negative integers. The corresponding eigenvalues of the fiber operator are independent of
0, hence the respective eigenvalues of Hy have infinite multiplicity. The remaining part of
the spectrum comes from the last factor at the left-hand-side of . Every non-negative

k is obviously a solution corresponding to the energy k* = <% + 2n> with n € Z, and since

the dependence on the quasimomentum 6 is expressed by functions analytic on the Brillouin
zone, this part of the spectrum is absolutely continuous. 0

3 Loosely connected rings

Let us now replace I'y by the graph I'; in which the direct coupling of adjacent rings is
replaced by connecting segments of length ¢ > 0 and the matching conditions (1.2]) are
imposed at their ends; the corresponding Laplacian on I', will be denoted as H,. The Ansatz

Figure 2: The ring chain graph with ¢ > 0.

for positive energy solutions will in this case look as follows,

di(x) = afe™ +are”™, wel0,4/2],

¢]($) = (I;_€ikx + (Ij_e_ikxa T e [07 7T/2]7 .] - 2a 3a (3 1)
p1(2) = bre L bre e [—0/2,0), |
i(z) = bje““ + b;e’””, r € [-n/2,0], j=2,3.

Naturally, the functions ¢y and ¢; have to be matched smoothly at segment midpoint,
1(0) = ¢1(0) and ¥1(0) = ¢1(0). On the other hand, the Floquet conditions at the
boundary of the elementary cell require

Vi(m/2) = e“pi(—/2), Wi(n/2) = “Pi(-7/2), j=2,3. (3.2)
Using the smoothness at the midpoint together with (3.2)), we find

af =bt, a;-t = b;ceie et =2 3. (3.3)



The elementary cell now contains two vertices; the matching conditions (1.2]) at them read

Us(0) = U1 (6/2) + i(U4(0) — ¥i(¢/2) = 0

2(0) = ¥5(0) + i(u4(0) + ¥4(0)) =

Dr(E/2) = U2(0) + (=1 (¢/2) + ¥5(0)) = 0, 5
22(0) = 1(=/2) + i(=4(0) + 1 (~1/2) =

23(0) = 2(0) + i(~24(0) = 4(0)) = 0,

AA72) — 0) + A1) — 40 =

Plugging (3.1)) into (3.4) and using (3.3) we obtain a system of six linear equations; after a
simple calculation one finds that it is solvable provided that the following condition is valid,

k°sinkm ((k* + 2k* + 5) sin kmsin k¢) — 4 (k* + 1) (cos km cos k¢ — cos §)) = 0. (3.5)

As in the previous case the negative spectrum of H, corresponds to k = ik with x > 0; the
solvability condition now acquires the form

k°sinh k7 (4 (1 — %) (cosh s cosh K — cos ) + (k* — 2k* + 5) sinh ki sinh k) = 0. (3.6)

To state results, let us recall the notion of the probability of belonging the (positive) spectrum
put forward by Band and Berkolaiko [2]: it is defined as

K—oo

P,(H,) = lim % o(H,) N [0, K]| (3.7)

and it is clear that zero can be replaced here by any fixed positive number.
Theorem 2 The spectrum of Hy has for any fixed ¢ > O the following properties:

(i) Any non-negative integer is an eigenvalue of infinite multiplicity.
(i1) Away of the non-negative integers the spectrum is absolutely continuous having a band-
and-gap structure.
(11i) The negative spectrum is contained in (—oo, —1). It consists of a single band if £ =,
otherwise there is a pair of bands and —3 ¢ o(H,).
(iv) The positive spectrum has infinitely many gaps.
(v) P,(H;) =0 holds for any ¢ > 0.

Proof: 1t is obvious from that non-negative integers solve the condition independently
of #; in contrast to the tightly connected case there is no negative eigenvalue. The rest of the
spectrum comes from the last factors at the left-hand sides of and ; it is absolutely
continuous since one can check, using the implicit function theorem, that the corresponding
solutions depend analytically on the quasimomentum 6.
Concerning the negative spectrum one may rewrite the condition (3.6|) as
4 2
cos 0 = cosh k¢ cosh km + sinh k¢ sinh kT w (3.8)
4(1 — K2)
If k < 1, the last fraction is positive, and consequently, the right-hand side is larger than
one, hence the interval (—1,0) cannot belong to the spectrum. For x > 1 we can rewrite the

condition (3.8)) as
2 _ 92
cosf = fy(k) := coshk(m — () — (" = 3)

=) sinh k¢ sinh k7. (3.9)



It is obvious that
lim fo(k) = li_>m fi(k) = —o0 (3.10)

K—1+

and that fr(k) < fr(v/3) = 1. To prove that for £ = 7 there is a single negative band we

write fr(rk) =1 — h(k)? with h(k) := (k? — 3)(k*> — 1)~/2sinh k7 so that h(v/3) = 0. The
derivative of this function is

23 241

B (k) = 72 n coshmm + A"+ 1)

2vK2 — 1 2(k? —1)3/2

hence we have h'(k) > 0 for k > /3. On the other hand, lim,_,,, #'(k) = 4oo, and
consequently, h(-) would be also increasing in (1,+/3) if there is no s in this interval for
which one would have h'(k) = 0. Was it the case, the relation (3.11]) would lead to

sinh K, (3.11)

2 2
tanh kT = T (5 i)(?, w)
K k2 +1

which is impossible, since the right-hand side reaches its maximum value = 0.812 in the
given interval at k ~ 1.303 while tanh k7 > tanh 7 ~ 0.996.

On the other hand, for any positive £ # 7 we have f;(v/3) = coshs(m — ¢) > 1, and
consequently —3 & o(H,), while in view of and the continuity of f,(-) the spectrum
has a nonempty intersection with both the intervals (—3,—1) and (—oo, —3). In each band
the quasimomentum runs through the whole Brillouin zone and the band is determined by a
pair of band edges; using one can rewrite the conditions determining them, f,(x) = £1,
as

(k*—3)*  coshk(r—0)F1

L2 —1) _ sinhrl simhrr = coth(km) coth(kl) F csch(km)csch(kl) — 1. (3.12)

The left-hand side is positive, decreasing in (1,+/3) and increasing in (v/3, 00), reaching its
minimum at £ = /3 and diverging when x — 14+ or k — o0o. Since k — cothxl and
k > csch Kl are decreasing functions for any ¢ > 0, the right-hand side of with the
lower sign is decreasing as a function of k. As a result, the condition f,(x) = —1 has a single
solution in (v/3,00), and consequently, H; has a single band in the interval (—oc, —3).

In the interval (1,+/3) this simple argument does not work; we shall instead show that
the graph of the function f, can cross each of the values 41 only once. To this aim we
express the derivative of this function with respect to k,

(K2 =37 . :
(k) = T (¢sinh k7 cosh k + 7 cosh k7 sinh k()

)
2 9)2 2 _
+ <;((:2 — i’; — ’i/(; — 13)) sinh k7 sinh k¢ + (7 — £) sinh k(7 — £),

which can be using simple manipulations brought to the form
(K* —3)°
4(k?—1)
2k (K* + 1)

(k2 =3) (k2 —1)

HOES

[E sinh k7 cosh k¢ + 7 cosh k7 sinh k¢

sinh k7 sinh k¢| + (7 — ¢) sinh k(7 — £). (3.13)



Substituting now from (3.12)) into (3.13]) we find that

fi(k) = ((3 31(2/; (:21_) o 7 coth Kk — £ coth M) (coshr(m —€) F1)
+ (m — {)sinh k(7 — ¢) (3.14)

must hold if fy(k) = %1, respectively. Our aim is to show that these derivatives are positive
for any ¢ > 0 and x € (1,4/3). Consider the case with the upper sign and suppose that

2k (K2 +1
[(3 fﬁ} (:2 _) j —cothr —coth £0)] (cosh(m =€)~ 1) < ((—7) sinha(x—0) (3.15)
holds. Since cosh k(m — ¢) — 1 > 0, we can rewrite this relation as

2k (K2 + 1)
(3—k%) (k2 —1)

(x—0)

< mcoth km + £ coth k€ + (¢ — ) coth ~ 5 (3.16)

We denote the left- and right-hand side of as ¢1(k) and go(k, £), respectively. They are
both positive, for gs(k) it is obvious for £ > 7, for smaller values the function is increasing
as we will see in a minute, and gy(k,0+) = k=1 + ﬂ(coth kT — coth ”“—2”) is in the interval
(1,4/3) larger than g»(v/3,0+) = 0.550. The function g; satisfies

li = 1 =
Jim gi(k) = 1im gy(k) = oo
and reaches its minimum value ~ 7.737 at xk ~ 1.303.
On the other hand, asking about the values of gs(k, ) we first note that for a fixed
k € (1,4/3) it is increasing as as function of £. To check that, consider the partial derivative

0go(k, ) _ k(0 — ) + coth k(m—1{)

th sl — Kl csch’kl. 1
ol coshk(m—/0) —1 2 T eothiwt = mEeschn (3.17)

The last two terms at the right-hand side in combination vanish in the limit £ — 04 so for
small ¢ the expression is dominated by the first two being thus positive. The same is true
for all £ < 7, because was it not the case we would have

sinhk(m — 0) — k(m — ()

< h2kl — coth
cosh r(r — 1) —1 < klcsch”kl — coth Kkl

or equivalently

sinh? k¢

coshk(m —0) —1 [

sinh (1 — €) — k(7 — £)] < —[sinhkl cosh kl — K],

which is impossible because cosh k(m — ¢) > 1 for ¢ < 7 and the expressions in the square
brackets are obviously positive. Using further I’'Hospital rule, we find that the derivative is
also positive at £ =,

0go(k, )
ov

= coth kT — k7 ecsch?km > coth ™ — 7 esch?m & 0.980



To deal with the case ¢ > 7, we rewrite the condition (3.17)) as

% = F(2k0) — F(r(f — 7)), (3.18)
h
where Flu) = sinhu — u
"~ 2sinh® Y

It is easy to see that F'(0+) = 0 and lim,,~, F'(u) = 1 and that F' is increasing because

usinh%—Q

F'(u) = > 0

coshu —1

holds in view of the inequality cothx > x~! valid for > 0. This monotonicity in combina-
tion with (3.18) shows that the derivative is positive for any ¢ > 0. It follows that

g2(k, 0) < Zlim g2(k,0) = (1 4 coth km) < (1 + coth7) ~ 6.295 (3.19)
—00

Putting these results together we conclude that assumption (3.15)) leads to a contradiction,
hence f(x) > 0 holds at any point x € (1,v/3) where fy(k) = 1. In the same way we can
check that the derivative is positive when the graph of the function crosses the value —1.
This completes the proof of the part (iii); let us note that the same method can be used as
an alternative way to prove the existence of a single band below —3 by verifying that in this
case the derivatives f;(x) at the point referring to the band edges are negative.
Turning to the positive spectrum we rewrite the spectral condition (3.5)) in the form
kY4 2k*+5
cos kl cos km — cos ) = FICENE sin k¢ sin k. (3.20)
It shows that the points k where sin k¢sin km = 0 belong to the spectrum, since one can
always find 6 such that cos kf cos km = cosf. Asking about the left and right endpoints of
the bands, we arrive at
k*+ 2k* +5
cosklcoskm — 1< ke +o sin kfsin km < coskl coskm + 1 (3.21)
4 (k2 +1)

which implies that the middle expression takes values in the interval [—2,2]. By negation, a
sufficient condition for being in the spectral gap is

E*+2k%2+5

Y | sin k¢ sin k)| > 2, (3.22)

which for can be replaced by a weaker sufficient condition with the same asymptotics for
large k,

| sin k¢ sin k| > % (3.23)

Given now an interval J = (kq, ky) C Ry one can introduce the set

2v/2
My(ki, ko) = {k € (ki, ko) + |sinkt| > Tf} (3.24)
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we have clearly k & o(H) if k € My(ky, ko) N My (ki,ks). Let us assess the measure of
My(k1, k). We have sin(k() = £ sin(6¢) for k = X + 6 € J, and since |sinz| > 2|z| holds

for || < 17, the inequality 6 > ”k—‘f ensures that k € My(ky, k). The interval J contains

a finite number of zeros, hence there is a constant ¢ > 0 depending on |J| = |k — k1| such
that .
|Me(k1, k2)| > |k — k| — T (3.25)
1
and consequently
2c
| My(ky, ko) N My (ky, ko)| > ke — k1| — o (3.26)
1
This allows us to find the probability P,(H,). We choose k,,, = md for d > 0, then we have
N-1
1 1 2c
1——o(Hy) N|d, Nd|| > ka1 — kym — — 3.27
Al 0 1N 2 e S (b~ 0) (82
N-1 N-1
1 2c 2c 1 1
- d——)=1-=_——_N"— 1
(N—l)dml( md) EN_12m

as N — oo because the sum equals vg + (N) = 75 + In N + O(N 1) where g =~ 0.577
is the Euler-Mascheroni constant; note that the constant c¢ is independent of m because all
the involved intervals have the same length. This yields the claim (v) and at same time
(iv) because the operator H, is unbounded having all the positive integers in its spectrum; a
finite number of gaps would them imply P,(H,) = 1. In this way, the proof is concluded. [

The last claim of the theorem means that, in contrast to the case of tightly connected
rings, that the transport over such a chain is impossible for most energies because the
spectrum is dominated by the gaps. This feature illustrates one more time the role of the
vertex parity observed in [7]. The asymptotic behavior of individual bands at high energies
may differ in dependence on the parameters involved. If the right-hand side of has a
double root, the band width in the % variable is proportional to k~!, and consequently, in
the energy variable it is of order O(1) as k — oo. This is analogous to the behavior of the
0" Kronig-Penney model [I, Chap. II1.3] and its lattice generalizations [5]. Note that such
bands have the infinitely degenerate eigenvalues from claim (i) of Theorem |2l embedded in
them. On the other hand, if the root in (3.20]) is simple — which happens always, for instance,
if f ¢ Q — the corresponding band widths are of order O(k™') as k — oo.

4 Changing the connecting links length

Let us first consider the situation when the segments connecting the rings shrink to points,
i,e. £ — 0. The spectral condition turns in the limit into cos km — cos@ = 0 which
leads to the same conclusion as suggesting that the limiting positive spectrum fills the
interval [0, c0), naturally in addition to the infinitely degenerate eigenvalues at the positive
integers which are /-independent. This conclusion is not surprising taking into account the
results of [4]. Applying Theorem 3.5 of this work to the fiber operator in ([1.3]) we see that
Hy(0#) — Hy(f) in the norm-resolvent sense, since the domain of H, contains no function
that would be nonzero only on the connecting link, hence Condition 3.2 of [4] is satisfied.
It follows that the eigenvalues of Hy(f) converge to those of Hy(6), and in view of the
spectrum of H, converges to that of Hy in the sense of sets.

10



At the same time, the convergence is highly nonuniform. Indeed, by claim (v) of Theo-
rem [2| the probability (3.7]) that a positive energy belongs to the spectrum is zero for any ¢

while P,(Hy) = 1 holds by Theorem [1} The reason is clear: it follows from (3.20) that k>
belongs to a gap if and only if

E*+ 2k +5

|Cosk€cosk7r— 02+ 1)

sin k€ sin k| > 1. (4.1)

It is the second term on the left-hand side which is responsible for opening the gaps, and
the smaller ¢ is the larger k£ must be to make it dominate over the first one.

The behavior of the negative spectrum is equally interesting; what is left of it in the limit
is the value —1 which is, as we know, the eigenvalue of the four-prong star graph with the
coupling . Let us summarize the results:

Theorem 3 In the limit { — 0 the positive spectrum of Hy fills the interval [0,00). The
lower edge of the upper negative band behaves asymptotically as

— K2(;0)=—1—¢ cothg +O(?)  for £ — 0+ (4.2)

and the band width is —k*(¢; +7) + £%((;0) = 20(sinh ) ™! + O(¢?). On the other hand, the
lower negative band escapes to —oo, more specifically, we have
4N 2/3
~R2(L:0) = _(Z> F O for € — 0+ (4.3)

and any fized quasimomentum 6 € [—m, ) with the error term independent of 6.

Proof: We have already dealt with the positive spectrum. Let us next rewrite the spectral
condition (3.9) as an implicit equation

0 = g(k,0) := (k* — 3)?sinh k¢ sinh k7 + 4(k* — 1)(cos § — cosh k(7 — £)) (4.4)
We have ¢(1,0) = 0 and

9]
a—z(l, 0) = 8(cosf — coshm) # 0,
which justifies the use of implicit function theorem. Since %(1, 0) = 4sinh 7, it yields
l sinh 7 9
K(G0) =1+ - ————+O0(°) as £ — 0+ (4.5)

2 coshm — cos @

which implies the claims made about the upper negative band. To see the behavior of the
lower one, let us first note that the corresponding function must satisfy lim, o x(¢; ) = oo,
otherwise the condition (3.9)) could not hold for ¢ small enough. Furthermore, we rewrite

the condition (3.8)) as

k' —2k% 45 cos
——————— tanh kl tanh kr = - 1. 4.6
4(1 — K?) AR RS PR = osh Kl cosh (4.6)

This implies limy_,¢ x(¢; 0)¢ = 0 because otherwise there would be a sequence {/¢,}, ¢, — 0,
for which the condition will have no solution but we know that it is not the case. As a result,
we have for small ¢ and large k

}1/{2 -kl (1+O(K?) + O(kl)) =1+ O(r*?)
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which yields
4
k(6;0) = i/;—i— O3 as £ — 0+
and consequently, the relation (4.3) independently of 6. 0

Let us now turn to the opposite extremal situation. The limit ¢ — co makes little sense
but we can ask about the spectral behavior of the system when the spacing ¢ is large. While
the gaps dominate according to Theorem [2] the spectrum becomes nevertheless ‘dense’ in the
sense that the gap with a fixed ordinal number can be made arbitrarily narrow by choosing
¢ large enough. Indeed, we know from the proof of the said theorem that the points with
k=7, n €N, belong to the spectrum, and this implies that the distance of the neighboring
bands is ~ (2n + 1)(%)2 + O(I71) for large /.

The negative spectrum bands shrink in the asymptotic regime, however, in contrast to
the limit £ — 04 not to the same point. In order to see that, we rewrite the condition
in still another form,

cos

(2 — 3
1+ ————= ) tanh km = coth wl — .
( * AR T = COM T Sinh ke cosh ki

4(k? —1)

For large ¢ the right-hand side behaves as 14+O(e~*). To find the approximate band positions
we put k2 = 3 + ¢, the the expression in the bracket on the left-hand side is 1 + i, and

4(2+¢)
putting tanh km ~ 1 — e 2™3 we find that
e~ fde ™ & £0.0173.

This is not surprising, recall that that the three-edge star graph with the vertex coupling
has the eigenvalue —3. A similar squeezing of a band pair around this value occurs in
hexagonal lattice graphs with long edges [7]. Here, however, the two bands do not converge
to a single point but a pair of separate ones, the reason being that the lengths of two of the
three edges meeting in a vertex are fixed and only one is getting longer.
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