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Abstract: We study solvability of some linear nonhomogeneous edliptjuations
and establish that under reasonable technical conditi@nsdnvergence ih?(R?)
of their right sides yields the existence and the convergémé?(R?) of the solu-
tions. The problems contain the fractional powers of thesahsecond order non-
Fredholm differential operators and we use the methodseosfgectral and scat-
tering theory for Schrodinger type operators analogotslgur preceding article
[27].
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1. Introduction

Consider the equation
—Au+V(x)u — au = f, (1.1)

withu € E = H?(RY) andf € F = L?(R%), d € N, a is a constant and the scalar
potential functionV/ (z) tends to0 at infinity. Fora > 0, the essential spectrum of
the operatod : E — F corresponding to the left side of equation (1.1) contaies th
origin. As a consequentce, such operator does not satisfifrdadholm property.
Its image is not closed, fat > 1 the dimensions of its kernel and the codimension
of its image are not finite. The present article is devotecheodtudies of some
properties of the operators of this kind. We recall thapéliiproblems containing
non Fredholm operators were treated extensively in receautsy(see [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], also [6]) alag with their potential
applications to the theory of reaction-diffusion equasideee [8], [9]). Non-
Fredholm operators are also crucial when studying wavessyswith an infinite
number of localized traveling waves (see [1]). Particylavhena = 0 the operator
A satisfies the Fredholm property in some properly chosenhieigspaces (see
[2], [3], [4], [5], [6]). However, the case of # 0 is significantly different and the
method developed in these articles cannot be used.
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One of the important issues about equations with non-Filedbperators con-
cerns their solvability. Let us address it in the followirgftsng. Let f,, be a se-
quence of functions in the image of the operatoisuch thatf,, — f in L?>(R%) as
n — oo. Denote byu, a sequence of functions frofi?(R?) such that

Au, = fn, n € N.

Since the operatof fails to satisfy the Fredholm property, the sequemgcenay not

be convergent. We call a sequenggesuch thatdu,, — f a solution in the sense of
sequences of equatiotu = f (see [17]). If such sequence converges to a function
up In the norm of the spacé&, thenu, is a solution of this problem. Solution in
the sense of sequences is equivalent in this case to thesguabn. However, in
the case of the non-Fredholm operators, this convergengenotahold or it can
occur in some weaker sense. In this case, solution in theesd@rgequences may
not imply the existence of the usual solution. In the presentle we will find
sufficient conditions of equivalence of solutions in thessenf sequences and the
usual solutions. In the other words, the conditions on secgef,, under which
the corresponding sequenagsare strongly convergent. Solvability in the sense of
sequences for the sums of Schrodinger type operators wtitfredholm property
was studied in [27]. In the first part of the article we consislech operators raised
to fractional powers, namely

(A, +V(z) = A, +U@y)Yu—au= f(z,y), zyeR)® 0<s<1, (1.2
where the constant > 0. The operator
Hy v ={-A+V(z)—A,+U(y)}* (1.3)

here is defined by means of the spectral calculus. Here atifudown the Laplace
operators\, andA, are with respect to theandy variables respectively. The frac-
tional powers of second order differential operators ateely used, for example
in the studies of the anomalous diffusion problems (see 28], [29] and the
references therein). The form boundedness criterion frdhativistic Schrodinger
operator was established in [14]. The work [13] deals wittwprg the imbedding
theorems and the studies of the spectrum of a certain ps#igdedtial operator.

The scalar potential functions involved in operator (118 assumed to be shal-
low and short-range, satisfying the assumptions analotgotle ones of [20] and
[22].

Assumption 1. The potential function® (z), U(y) : R® — R satisfy the estimates

C C

1% < U <
V(z)] < 1+ |z[35+e U(y)| < 1+ |y[35+e

with some:= > 0 andz,y € R? a.e. such that

g
9

19 2 1
49§(47T) VI Z oo @y V] <1, (1.4)

L3 (R?)
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L5 (R)
and

\/CHLSHVHL%(RS) <A, \/CHLSHUHL%(RS) < Am.

Here and below stands for a finite positive constant ang, s given on p.98
of [12] is the constant in the Hardy-Littlewood-Sobolevauality

[ [ Lhw,,

|z = yl?

< curs|| fill*s fi EL%(R?’).

L3 (R3)’

The norm of a functiorf; € LP(R%), 1 < p < oo, d € N is denoted ag f1l| Lo ey
We designate the inner product of two functions as

() @) = [ f@tds, (1.6)

with a slight abuse of notations when these functions aresguoare integrable.
Indeed, if f(z) € L'(RY) andg(x) € L>(R?), like for instance the functions
of the continuos spectrum of the Schrodinger operatorsudsed below, then the
integral in the right side of (1.6) is well defined. By virtueleemma 2.3 of [22],

under Assumption 1 above on the scalar potentials, ope(at8) considered as
acting in L*(IR%) with domain 7%(R°) is self-adjoint and is unitarily equivalent to
{—=A, — A, }* on L*(R") via the product of the wave operators (see [11], [16])

it(fAerV(m))eitAz Q:I: — g
U -

)

it~ Dy U () gitAy

:l: o . .
OF =5 —lim_zo0€ —lim; e ,

with the limits here understood in the stroiid sense (see e.g. [15] p.34, [7]
p.90). Thus, operator (1.3) has no nontrivid(R®) eigenfunctions. Its essential
spectrum fills the nonnegative semi-akis+oo). Therefore, operator (1.3) fails to
satisfy the Fredholm property. The functions of the cordmapectrum of the first
operator involved in (1.3) are the solutions the Schroeiregjuation

[—As + V(2)lpn(z) = kKoi(x), kR,

in the integral form the Lippmann-Schwinger equation

ke 1 [ gilklleyl
o) = oy g L Ty Ve 17)

and the orthogonality conditionsx(z), vr, (2)) r2rs) = 0(k — ki), k, k1 € R®.
The integral operator involved in (1.7)

cilkllz—]
Q) (x) = — = / o)y, lz) € L(BY).

AT Jps |z =yl



Let us conside® : L>(R?) — L>=(R?) and its norm|Q||.. < 1 under Assumption
1viaLemma 2.1 of [22]. In fact, this norm is bounded aboveh®/itindependent
quantity 7 (V'), which is the left side of inequality (1.4). Similarly, fone second
operator involved in (1.3) the functions of its continuopsarum solve

[=Ay +UW)ng(y) = i®ngly), q € R’

in the integral formulation

el 1 etlally—=|
wo) = oy g L O (1.8)

such that the the orthogonality conditioig (), 74, (¥)) r2@s) = 0(¢ —@1), ¢, ¢1 €
R3 hold. The integral operator involved in (1.8) is

1 etlally—z|

(Pn)(y) = (Un)(z)dz, n(y) € L™(R?).

Am Jps |y — 2|
For P : L*(R?) — L*(R?) its norm||P|» < 1 under Assumption 1 by virtue
of Lemma 2.1 of [22]. As before, this norm can be bounded franova by the
g-independent quantity(U), which is the left side of inequality (1.5). We denote
by the double tilde sign the generalized Fourier transfoiith the product of these
functions of the continuous spectrum

f(k,q) = (f(z,9), er(x)ng(y)) 2oy, k,q € R’ (1.9)

(1.9) is a unitary transform of?(R®). Our first main statement is as follows.

Theorem 2. Let Assumption 1 hold anflz, y) € L*(R°).

a) Whena = 0, let in additionf(z,y) € L'(R%). Then problem (1.2) possesses a
unique solution:(z,y) € L*(R%).

b) Whena > 0, let in additionz f(z,y), yf(x,y) € L'(R%). Then equation (1.2)
admits a unique solution(x,y) € L?(R°) if and only if

(f (@), or(@)nq(y))r2e) =0, (k.q) €Sy (1.10)

Here and further dows? denotes the sphere &’ of radiusa centered at the
origin. Such unit sphere will be denoted §4 and its Lebesgue measure|&$|.
Note that in the case when= 0 of the theorem above no orthogonality relations
are needed to solve problem (1.2)/iA(R%).

Let us turn our attention to the issue of the solvability ia #ense of sequences
for our problem. The corresponding sequence of equatiotisrwé N is given by

{-A, +V(z) — Ay +U(y) YPu, — au, = fu(z,y), =x,y€ R3, (1.12)
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where( < s < 1, the constant > 0 and the right sides converge to the right side
of (1.2) in L>(R®) asn — oc.

Theorem 3. Let Assumption 1 holdy € N and f,(z,y) € L*(R®), such that
fu(@,y) = f(z,y)in L*(R) asn — oc.

a) Whena = 0, let in additionf,,(z,y) € L'(R®), n € N, such thatf,(z,y) —
f(x,y)in L'(R%) asn — oo. Then problems (1.2) and (1.11) admit unique solu-
tionsu(x,y) € L*(R%) andu,(z,y) € L?(R%) respectively, such that,(z,y) —
u(x,y)in L?(R%) asn — co.

b) Whena > 0, let in additionxf,(z,y), yf.(z,y) € L'(R%), n € N, such
that fo(z,y) — 2 f(2,y), yfalz,y) — yf(z,y) in L'(R°) asn — oo and the
orthogonality conditions

(Fal,1), 1)1 (0))zceny = 0, (k) € 5°) (1.12)

hold for all n € N. Then equations (1.2) and (1.11) possess unique solutions
u(x,y) € L*(R®) andu,(z,y) € L*(R%) respectively, such that,(z,y) — u(z,y)
in L?(R%) asn — oo.

In the second part of the work we study the equation
{_AJU - Ay + U<y>}su —au= Qb(SC,y), T e Rd7 y e R37 (113)

whered € N, 0 < s < 1 and the scalar potential function involved in (1.13) is
shallow and short-range under Assumption 1 above. The tpera

Ly = {0, — A, + U(y)} (1.14)

here is defined by virtue of the spectral calculus. Analobotes(1.3), under the
given assumptions operator (1.14) considered as actidg ({R?**) with domain
H?*(R%+3) is self-adjoint and is unitarily equivalent {o-A, — A, }*. Hence, oper-
ator (1.14) does not have nontrivigd (R%+3) eigenfunctions. Its essential spectrum
fills the nonnegative semi-ax|8, +o0) and such that operator (1.14) is non Fred-
holm. We consider another generalized Fourier transfortin thie standard Fourier
harmonics and the perturbed plane waves

o(k, q) == <<Z>(:6, y), )

(1.15) is a unitary transform ohb?(R+3). We have the following proposition.

dnq(y)> , keRY qeR’. (1.15)
2 L2(RA+3)

Theorem 4. Let the potential functiot(y) satisfy Assumption 1 antlz, y) €
L*(R¥*3), d € N,



a) Whena = 0, let in addition¢(z,y) € L'(R*3). Then problem (1.13)
possesses a unique solutiofx, y) € L2(R*H3).

b) Whena > 0, let in additionz¢(z,y), yé(x,y) € L*(R3). Then equation
(1.13) admits a unique solutianz, y) € L*(R4*3) if and only if

e
<¢(x,y), dnq(y)> =0, (k) €8sy (1.16)
2 L2(Rd+3)

Note that in the case when= 0 of this theorem no orthogonality conditions
are required to solve equation (1.13)fiA(R+3).

Our final main statement deals with the issue of the solugbilithe sense of
sequences for our problem. The corresponding sequenceuhamate equations
with n € N is given by

{_Ax _Ay+U(y)}Sun_aun - gbn(xv y)v T e Rda d S Na ) S Rga (117)

where( < s < 1 and the right sides converge to the right side of (1.13)%R¢"?)
asn — oo.

Theorem 5. Let the potential functio/(y) satisfy Assumption I; € N and
bn(z,y) € L*(R3), d € N, suchthat, (z,y) — ¢(z,y) in L*(R3) asn — oo.

a) Whena = 0, let in addition ¢, (z,y) € LY(R*"3), n € N, such that
bn(z,y) — ¢(x,y) in LY(R™3?) asn — oo. Then problems (1.13) and (1.17)
admit unique solutions(z, y) € L*(R4"3) andu,(x,y) € L?(R*"3) respectively,
such thatu,,(z,y) — u(z,y) in L2(R43) asn — oo.

b) Whena > 0, let in additionzé,(z,v), yé.(z,y) € L'(R*3), such that
2o, (2,y) — xd(2,y), you(r,y) — yo(x,y) in L}(RY3) asn — oo and the
orthogonality conditions

(cbn(x,y), énq(y)> =0, (kg€ Sj;lf’ (1.18)
2 L2(Rd+3) '

(27)

hold for all n € N. Then equations (1.13) and (1.17) have unique solutions
u(r,y) € L*(R™?) andu,(z,y) € L*(RY"3) respectively, such that,(z,y) —
u(z,y)in L2(R¥3) asn — oc.

Note that (1.10), (1.12), (1.16), (1.18) are the orthogityedlations containing
the functions of the continuous spectrum of our Schrodimgerators, as distinct
from the Limiting Absorption Principle in which one orthagglizes to the standard
Fourier harmonics (see e.g. Lemma 2.3 and Proposition 2Z.403f. Let us proceed
to the proof of our propositions.



2. Solvability in the sense of sequences with two potentials

Proof of Theorem 2To prove the uniqueness of solutions for our problem, we sup-
pose that equation (1.2) has two square integrable sokutign:, y) andus(x,y).
Then their differencev(z, y) := ui(z,y) —us(z, y) € L*(R) satisfies the equation

Hy vw = aw.

Since operator (1.3) has no nontrivial square integralglerdéunctions in the whole
space as discussed above, we haye, y) = 0 a.e. inRS.

Let us first treat the case of our theorem wlen 0. We apply the generalized
Fourier transform (1.9) to both sides of equation (1.2) sTgives us

(k.0) f(k,q)
{k? + ¢2}s {\/k2+q2<1} {k2 + QQ}SX{\/ngquM}a (2.19)

wherek, ¢ € R3. Here and below 4 will stand for the characteristic function of a
setA C R4 Clearly, the second term in the right side of (2.19) can hended from

above in the absolute value bf(k, ¢)| € L?(R®) via the one of our assumptions.
By virtue of Corollary 2.2 of [22] (see also [20]) under thegm assumptions for
k,q € R we havepy(z), n,(y) € L>(R?) and

u(k,q) =

x oo oo .
Pk Lo(R3) S 1 ](‘,) (2 )%7 Ng Y )|l Loo(r3) = 1 I(U) (2 )%

(2.20)

This allows us to estimate the first term in the right side 0192 from above in the
absolute value by by

1 1 1 X{«/_k2+q2<1}

P T 1V) T 10) 1 ey
Thus,
| {k? —|—q2}sX{\/k;2+q2§1} o, < GrF 1= (V)1 ( )HfHL COY

which is finite due to the assumptions of the theorem. Theeefor the unique

solution of problem (1.2) in the case a) of the theorem we hdvey) € L*(R®).
Let us conclude the proof by considering the case b) of owrdm. We apply

the generalized Fourier transform (1.9) to both sides oa&qno (1.2) and obtain

f(k, q)
{k:Q +q2}s _ (l'

u(k,q) =



For the technical purposes we introduce the set
Asi={(k,q) €R® |ax -6 < /K2 + @ <a® +6}, 0<d<az, (2.21)

such that 3 3
k.q) = 2.22
U( 7Q) {k2+q2}s_aXA5+ {k}2+q2}8—anA6 ( )
Here and below for a set C R¢ we designate its complement 4$. Clearly, the
second term in the right side of (2.22) can be estimated frioovein the absolute

f(k,q) 1 f(k,q)
value by —; ’ for \/k? + ¢*> > a2 + 0 and by ’ - ’ when
(a% +0)> —a a — (a2 —0)*
0<VE2+¢ < az — §, such that
f(k,q) :

<C

fk,0)| € L2(RY)

(k2 + @b — CLXAE
due to the one of our assumptions. Obviously, we can express

N - VAR o F .
Fng) = flatio+ [ e

a2s

Here and further dowmr will stand for the angle variables on the sphere. This
allows us to write the first term in the right side of (2.22) as

N
1

- 0f(€.0)
[ I S
{k2+q2}5—ax’4‘5 {2+ 2} —a XAs-

(2.23)

Apparently, we can bound the second term in (2.23) from alwovbe absolute

value by
VK24 q? — az

{k2+¢*} —a

(Vi + Vo) f (K q)|| oo (mo) Xa, <

< CI(Vi + Vo) [k, 4l o= (mo)xa; € L*(RE).
Here and further dowiv,, andV, will stand for the gradients acting on variables

k andq respectively. Clearly, under the given assumptiofs + V,)f(k,q) €
L>(RS) by virtue of Lemma 11 of [20]. A straightforward computatisimows that

the first term in (2.23) belongs t6?(R®) if and only if (a2, o) vanishes. This is
equivalent to orthogonality relation (1.10). [ |

Then we turn our attention to the solvability in the senseegfugnces for our
problem in the case of two scalar potentials.
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Proof of Theorem 3in the case when the constant 0, equations (1.2) and (1.11)
admit unique solutions(z,y), u,(z,y) € L*(R°®) respectively withn € N due to
the part a) of Theorem 2 above. We apply the generalized &oumansform (1.9)
to both sides of problems (1.2) and (1.11). This gives us

. f(k D ) - fn< 9

0<s<1, mneN.

Henceu, (k, q) — ﬁ(k, ¢) can be expressed as

Fulk, q) — f(k,q) fulk,q) — f(k,q)
{k2 + @2} X i<t} T 2+ &) X g1}

Obviously, the second term in (2.24) can be easily estimated above in the
absolute value by, (k, q) — f(k, q)|. Therefore,

asn — oo via the one of our assumptions. The first term in (2.24) cancambed
from above in the absolute value by virtue of inequalitie2Q2 by

1 1 1 Myerea}
(27’(’)3 1 — ](V) 1 — I(U) ||fn($,y) - f(x7y)||L1(R6 {k’Q T q2}
ulh.a) = F(k.q)

‘ (k2 + g2} {\/k2+q2<1} R6)

1 1 56
S @111 1) ) = Fe e 6|— z|15

due to the one of our assumptions. Henggr, ) — u(x,y) in L?*(R®) asn — oo
in the case a) of our theorem.

Let us complete the proof of the theorem by considering threlpa For each
n € N problem (1.11) has a unique solutiop(z,y) € L*(R®) by virtue of the
result of the part b) of Theorem 2 above. By means of (1.12)gaith inequalities
(2.20), we obtain fotk, q) € 562L

(2.24)

full,q) — F(k, 9,
Ry ey el

< | fulz,y) = f(z,9)||l2@ey — O
L2(RS)

Thus,

—0, n—o0

|(f (2, 9), ou(2)ng(y)) Loyl = |(f (2, 9) = falz,9), 0r(2)04(y)) L2 ey <

1 1 1
= @2rpP1-1(V)1—1(U)

| ful2,y) = f(2,y)|lLr@ey — 0, n — o0,



Note that under the given conditiorfis(z, y) — f(z,y) in L'(R%) by means of the
simple argument on p.114 of [27]. Thus, we arrive at

(f (@), or(@)n(y))r2@e) =0, (k.q) €Sy (2.25)

Hence, problem (1.2) possesses a unique solutieny) € L?(R®) via the result
of the part b) of Theorem 2 above. Let us apply the generakzedier transform
(1.9) to both sides of equations (1.2) and (1.11). This gield

. - Rk~ fhe) | fulkg) — f(kq)
un(ka q) U(kﬁ, q) - {kg + qQ}S —a XAs + {k?Q + q2}8 —a XA (226)
where the setl; is defined in (2.21). Evidently, the second term in the righés

of (2.26) can be estimated from above in the absolute valug(%(y]?l’ %) ;)j(k;, 9)
a2z +0)* —a

for viZ+ ¢ > at + 8 and by "D S0 Dl g o i <k,

a— (azs —0§)%

Hence

Fulk,q) — f(k, q)
{2+ ¢} —a

< Ol fulz,y) — f(z,y)|l2mey — 0, n — 00
12(R)

X Ag

via the one of our assumptions. Orthogonality relations2)land (2.25) give us

fla®,0) =0, f.(a¥,0)=0, neN.

Therefore,
fono = [, LeDde fna- [} L2 Dae wen

This allows us to express the first term in the right side dt§2as

f\/k;2+q2 |:8f:'n(§,o') . 8f:(§,0'):|d§
0¢

o5 o¢
{k;Q + (]2}8 —a
Clearly, (2.27) can be estimated from above in the absohites\by

V@ —ax

{k:Q +q2}s —a

XAs- (2.27)

(Vi + Vo) (ks q) — F(k, )] pooes)

XAs <

< CN(Vi + Vo) (Fulley q) — F (k@) oo oy Xty
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This enables us to obtain the upper bound fortheR®) norm of (2.27) by

C(Vi+ Vo) (falk q) = F(k, Q)| pe@e) = 0, 1 — o0

via the part a) of Lemma 5 of [27] under the given conditionenkke,u,,(z,y) —
u(x,y)in L?(R%) asn — oo. |

In the final section of the work we consider the case when g lfaplacian is
added to the three dimensional Schrodinger operator.

3. Solvability in the sense of sequences with Laplacian andsangle potential

Proof of Theorem 4.To show the uniqueness of solutions for our problem, let us
suppose that (1.13) has two square integrable solutipitsy) andus(z, y). Then
their differencew(z, y) := ui(z,y) — us(z,y) € L*(R43) solves the equation

Lyw = aw.

Because operator (1.14) does not possess nontrivial squtagrable eigenfunc-
tions in the whole space as discussed above, wehévey) = 0 a.e. inR4+3.

First we consider the case a) of our theorem when the parameémishes. Let
us apply the generalized Fourier transform (1.15) to balbssof problem (1.13).
This gives us

~

= . ¢<k7Q) (ﬁ(kv(p
W0 =g ppvmea) Y 1 oy vy G2

wherek € R, ¢ € R3. Evidently, the second term in the right side of (3.28) can be

estimated from above in the abosolute valuedyt, ¢)| € L*(R*3) via the one of
our assumptions. By means of (2.20), we easily obtain

1 1
(2@% 1-1(U) ||¢(xay)||L1(Rd+3)-

Hence, the first term in the right side of (3.28) can be bourfd®d above in the
abosolute value by

! : [o(z, y)l —X{ i)
xZ, 1 3 .
(QW)% 1-1(U) P Re) {k% 4+ q*}*

6k, g)| <

Therefore,

~

ok, q)

{12 + g2y {Virres} =

L2 (Rd+3)

11
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via our assumptions. Hence(r,y) € L?(R¢"3) in the case a) of our theorem.
We conclude the proof by treating the case b) of our theoreshuk apply the
generalized Fourier transform (1.15) to both sides of aqndf..13) and arrive at

5(k,Q)
{k:Q + q2}s —a

For the technical purposes we will use the set

a(k,q) =

Bs = {(k,q) e R |az —§ < /2 + @ <a% +6}, 0<6<a>. (3.29)

Thus

k — c,
u(k,q) {k2 + @} — XB& + {k2 + g2} — XBa
The second term in the right side of (3.30) can be bounded &foave in the abso-
lute value by 1\¢(/<;, 9) for k2 + ¢*> > a® + 6 and by [0k, 9)] for
(a2s +6)* —a — (a 2 — )%

0<VE+¢>< a® — §, such that

(k. q) c
{k:2 + q2}s _ aXBé

(3.30)

< Clo(k, q)| € L*(R™)

via the one of our assumptions. We express

This enables us to write the first term in the right side of @3 &8s

Y vV k24+q% o o
o(a%,0) . TN ‘”5 Ldg
rer—a " R rgr—a

(3.31)

Clearly, we have the estimate from above for the second ter{®.81) in the abso-
lute value by

/k;2+q2—a2_1s

(s Fa)thsa)loon) | o m—

XBs; <

< C(Vik + Vo)dk, @) | oo marayxs, € L*(RTD).

12



Evidently, under the stated assumptidig, + Vq)é(k,q) € L®(R*3) due to
Lemma 12 of [20]. It can be easily shown that, the first term3r81) belongs

to L2(R*3) if and only if ¢(a2, o) vanishes. This is equivalent to orthogonality
condition (1.16). [ |

Let us finish the article with showing the solvability in trense of sequences for
our equation when the free Laplacian is added to a three dilmeal Schrodinger
operator.

Proof of Theorem 5In the case when = 0, problems (1.13) and (1.17) possess
unique solutionsi(z, ), u,(x,y) € L?*(R%3) respectively fom € N due to the
part a) of Theorem 4 above. Let us apply the generalized &otreinsform (1.15)
to both sides of equations (1.13) and (1.17). This yields

ok - on (k)

u(k,q) = 2+ e un(/lf,q)—{]{:2 2T

0<s<l1l, meN.

This allows us to writei, (k, ¢) — u(k, q) as

Onlk.q) = Ok, ) onlk.a) = ok )
{/{72 + q2}s X{\/k2+q2§1} + {kg T qg}s X{\/k2+q2>1}' (3.32)

Evidently, the second term in (3.32) can be easily boundzd &bove in the abso-

lute value by|o, (k, ¢) — &(k, q)|. Hence

ulk,a) = olk.)
(k2 + 2} {\/k2+q >1}

< llon(z,y) — ¢(x7y>HL2(]Rd+3) — 0

]Rd+3

asn — oo due to the one of our assumptions. We derive the estimatedhmve in
the the absolute value for the first term in (3.32) via (2.20) b

1 1 X{\/Wﬂ}
(271_)% 1_ ](U) ”(bn@jv y) - ¢(x7y>HL1(Rd+3 {]i]Q T q2}

Hence . i
‘ On(h,q) = o(k,q) )
{k? 4+ ¢*}* {\/k2+q2<1} .
1 1 o
< 2 E 1 10) l6n(,9) = (@ )@\ g — g 00 n— o0

due to the one of our assumptions. This impliesthat, y) — u(x,y)in L?(R4+3)
asn — oo in the case a) of our theorem.
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We finish the work by proceeding to the proof of the part b) efttmeorem. For
eachn € N equation (1.17) admits a unique solutiof(z,y) € L*(R"?) due to
the result of the part b) of Theorem 4 above. By virtue of (1.d®ng with the
second inequality in (2.20), we derive fot, q) € Sd;f’

ezkx

(27)

Uq(y))L2(Rd+3)

’(¢(%y)a =|(¢(4B,y)—¢n(fc,y), 77 (y))r2(miss) | <

ol

(2m)

o1 1
T emstl-I

(U) ||¢n(l‘, y) - QZ)(‘T? y)||L1(Rd+3) — 0, n— oo

Note that under the given conditions(x,y) — ¢(z,y) in L}(R%3) asn — oo
via the trivial argument on p.116 of [27]. Hence, we obtain

eilm
(é(x, v), wq(y)> =0, (k,q) €8 (3.33)
2 L2(Rd+3) @

Thus, equation (1.13) admits a unique solutidly, y) € L*(R%+3) by means of
the result of the part b) of Theorem 4 above. We apply the @gdimed Fourier
transform (1.15) to both sides of problems (1.13) and (1.Tfjs gives us

~ ~

un(ka(J) - u(kv(J) = ¢{§€2 i)qg}f(_ C;])XB(S + ¢{§€2 i)QQ}gsb(_ 5)

where the seB; is defined in (3.29). Obviously, the second term in the rigté s

~

ka q) - ¢(k7 q)|

of (3.34) can be bounded from above in the absolute valugaﬁ(y'
(azs +0)* —a

1 bk, q) — o(k 1
for k2 + ¢2 > a® +5andby|¢"( ’Q)l i ’q>|for0§\/k:27+q2<arrs_5_

a— (a2 —0)%

Therefore,

via the one of our assumptions. Orthogonality condition$g§)Land (3.33) give us

(gn(kv(n — é(kv(p
{2+ ¢} —a

< Cllgn(z,y) —¢($>y)||L2(Rd+3) —0, n—o0
LZ(Rd+3)

X Bg

1

(2(&%70-) :07 $n<a2_1570'):0, n € N.
Therefore,
z ViEre o4 3 Vi 54
o(k,q) = /L ¢(8§é U)df, on(k,q) = /L %df, neN.

14



This enables us to write the first term in the right side of43&s

f\/k2+q2 [8(;"(570') o 8(;(5,0’)]d£

o3 73 73
{2+ ¢} —a

o (3.35)

Evidently, (3.35) can be estimated from above in the absalalue by

X x VE2+ ¢ — az
||(Vk? + vq)(gbn(ka Q) - ¢(k7 Q))||L°°(Rd+3) (kQ + q2)s —a XB& S

~

< C| (Vi + Vo) (@nlk, q) = Dk, @) || Lo (gars) X5;-
This allows us to obtain the upper bound for #h#&R+3) norm of (3.35) as

~

C(Vi + Vo) (Gulk, @) — bk, )| pgasay = 0, 1 — o0

by means of the result of the part b) of Lemma 5 of [27] undesthtd conditions.
Thereforeu, (z,y) — u(z,y) in L?(R*3) asn — oo. |
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