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Abstract. We establish a criterion for a set of eigenfunctions of the one-

dimensional Schrödinger operator with distributional potentials and boundary
conditions containing the eigenvalue parameter to be a Riesz basis for L2(0, π).
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1. Introduction and main result

In this paper we continue the study of one-dimensional Schrödinger operators
with distributional potentials and boundary conditions containing rational Herglotz–
Nevanlinna functions of the eigenvalue parameter initiated in [7]. These operators
are generated by the differential equation

−
(
y[1]
)′

(x)− s(x)y[1](x)− s2(x)y(x) = λy(x) (1.1)

and the boundary conditions

y[1](0)

y(0)
= −f(λ),

y[1](π)

y(π)
= F (λ), (1.2)

where s ∈ L2(0, π) is real-valued, y[1](x) := y′(x) − s(x)y(x) denotes the quasi-
derivative of y with respect to s, and

f(λ) = h0λ+ h+

d∑
k=1

δk
hk − λ

, F (λ) = H0λ+H +

D∑
k=1

∆k

Hk − λ
(1.3)

are rational Herglotz–Nevanlinna functions, i.e., h0, H0 ≥ 0, h,H ∈ R, δk,∆k > 0,
h1 < . . . < hd, H1 < . . . < HD. Our aim in this paper is to prove a criterion for
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(a subset of) the eigenfunctions of this boundary value problem to be a Riesz basis
for L2(0, π).

In [5], to each function f of the form (1.3) we assigned its index (an integer)
which, roughly speaking, counts the number of poles of this function. More pre-
cisely, each finite pole is counted twice and a pole at infinity (if any) once:

ind f :=

{
2d+ 1, h0 > 0,

2d, h0 = 0.

This notion allowed us in that paper (see also [6] and [7]) to formulate various direct
and inverse spectral results for boundary value problems with boundary conditions
of the form (1.2), (1.3) in a unified manner, i.e. without considering separate cases
as it is usually done in the literature. Define a nonnegative integer N by

N :=

⌈
ind f

2

⌉
+

⌈
indF

2

⌉
,

where the ceiling function d·e denotes the smallest integer not smaller than the
argument. Let Θ := {n1, . . . , nN} ⊂ N ∪ {0} be a set of N distinct indices. Then
from the asymptotics of the eigenvalues and the eigenfunctions one sees that the
sequence {ψn}n/∈Θ of appropriately normalized (see below) eigenfunctions asymp-
totically behaves as (and is, in fact, quadratically close to) the orthonormal basis√

2

π
cos

((
n+N − ind f + indF

2

)
x+

ind f

2
π

)
(which coincides with one of {cosnx}∞n=0, {cos(n+ 1/2)x}∞n=0, {sin(n+ 1/2)x}∞n=0,
or {sin(n + 1)x}∞n=0 up to a constant factor). Hence it seems reasonable to hope
that the sequence {ψn}n/∈Θ will be a Riesz basis for L2(0, π), i.e. the image of
an orthonormal basis under a bounded invertible operator [1]. This is indeed the
case when the boundary conditions do not contain the eigenvalue parameter at
all or only one of them depends on the eigenvalue parameter, and can easily be
established by using the transformation operators [9, Theorem 6.2], [4, Corollary
5.1]. However, in the general case it is quite possible for {ψn}n/∈Θ not to be a Riesz
basis for L2(0, π). It turns out that whether this sequence is a (Riesz) basis or
not depends on the invertibility of a certain N ×N matrix defined in terms of the
spectral characteristics of the boundary value problem (1.1)-(1.2).

We need some additional definitions to state our result. Denote by W the diag-
onal matrix with diagonal entries δ−1

1 , . . ., δ−1
d , h−1

0 , ∆−1
1 , . . ., ∆−1

D , H−1
0 , where

the (d + 1)-th entry (respectively, the last entry) is omitted whenever h0 = 0 (re-
spectively, H0 = 0), and consider the Hilbert space H = L2(0, π)⊕ CN with inner
product given by 〈(

y
ŷ

)
,

(
z
ẑ

)〉
H

:=

∫ π

0

y(x)z(x) dx+ ẑ†Wŷ,

where the superscript † denotes the conjugate transpose. Most of our matrices will
have real entries and for them the conjugate transpose coincides with the ordinary
transpose. The boundary value problem (1.1)-(1.2) is equivalent to an eigenvalue
problem for a self-adjoint operator in H with discrete spectrum (see [7, Section II
C] for details), in the sense that they both have the same eigenvalues λn and this



A RIESZ BASIS CRITERION FOR SCHRÖDINGER OPERATORS 3

operator has an orthonormal basis of eigenvectors of the form(
ψn
ψ̂n

)
, (1.4)

where ψn are eigenfunctions of (1.1)-(1.2) and

ψ̂n :=
(
δ1ψn(0)
λn−h1

. . . δdψn(0)
λn−hd

−h0ψn(0) ∆1ψn(π)
H1−λn

. . . ∆Dψn(π)
HD−λn

H0ψn(π)
)†

(with the obvious modifications when one or both of h0 and H0 equal zero). We can
(and will) choose ψn to be real-valued. This kind of linearization procedure goes
back at least to a 1956 book by Friedman [2, pp. 205–207] and can even be gen-
eralized to arbitrary (not necessarily rational) Herglotz–Nevanlinna functions [8].

We define MΘ as the matrix whose rows consist of (the entries of) the vectors ψ̂nk
:

MΘ :=

N∑
k=1

ekψ̂
†
nk
,

where {ek}Nk=1 is the standard basis of CN . Our main result can now be stated as
follows.

Theorem. The sequence {ψn}n/∈Θ is a Riesz basis for L2(0, π) if and only if the
matrix MΘ is invertible.

We will prove this theorem in the next section. As remarked by Gelfand [3], to
prove that a sequence is a Riesz basis it suffices to construct a new inner product
equivalent to the original one, with respect to which this sequence becomes an
orthonormal basis [12, Theorem 1.9]. The main idea of our proof is to demonstrate
that this new inner product in L2(0, π) can be constructed in terms of the inner
product of the space H in a straightforward way.

Now that we have this general result, the following question naturally arises: for
a given problem, roughly speaking, what part of N -tuples Θ satisfies the condition
of the theorem? Since, intuitively speaking, a generic matrix is invertible, one might
expect that the share of N -tuples with detMΘ = 0 will be negligible in some sense.
Indeed, as we have already pointed out, if only one of the boundary conditions
depends on the eigenvalue parameter then each MΘ is invertible. On the other
hand, however, for symmetric boundary value problems with linear dependence on
the eigenvalue parameter (s(x) + s(π− x) = 0, f = F , and 1 ≤ ind f ≤ 2), roughly
speaking, only half of all N -tuples satisfies the condition of the theorem. We will
discuss these issues in Section 3.

2. Proof

We start with the “only if” part. If the matrix MΘ is not invertible then the

vectors ψ̂nk
are linearly dependent, i.e.,

N∑
k=1

αkψ̂nk
= 0

for some αk, not all of them being zero. The function

y(x) :=

N∑
k=1

αkψnk
(x)



4 NAMIG J. GULIYEV

cannot be identically equal to zero, since otherwise the orthonormal system(
ψnk

ψ̂nk

)
, k = 1, . . . , N

would also be linearly dependent. Moreover,∫ π

0

y(x)ψn(x) dx =

〈(
y
0

)
,

(
ψn
ψ̂n

)〉
H

=

N∑
k=1

αk

〈(
ψnk

ψ̂nk

)
,

(
ψn
ψ̂n

)〉
H

= 0

for every n /∈ Θ. Hence y 6= 0 is orthogonal to all the functions of the sequence
{ψn}n/∈Θ, and thus this sequence cannot be complete in L2(0, π).

We now turn to the “if” part. Our immediate aim is to define a new inner product
equivalent to the usual one in L2(0, π) and such that the sequence {ψn}n/∈Θ is an
orthonormal basis with respect to this new inner product. Since we already have
the Hilbert space H and the orthonormal sequence (1.4) in this space, the most
straightforward way to achieve this is to map L2(0, π) into H in such a way that
{ψn}n/∈Θ are mapped to their corresponding vectors (1.4) and then “transfer” the
inner product on H to L2(0, π). With this goal in mind, we define the mapping
y 7→ yΘ, L2(0, π)→ CN by the formula

yΘ := −W−1M−1
Θ

N∑
k=1

ek

∫ π

0

y(x)ψnk
(x) dx. (2.1)

One can easily verify that (ψn)Θ = ψ̂n for n /∈ Θ. Now we introduce a new inner
product in L2(0, π) by the obvious expression

〈y, z〉Θ :=

〈(
y
yΘ

)
,

(
z
zΘ

)〉
H
.

It is trivial to check that this is indeed an inner product and {ψn}n/∈Θ are orthonor-
mal with respect to it. That this inner product is equivalent to the original one
follows from the inequalities∫ π

0

|y(x)|2 dx ≤ 〈y, y〉Θ ≤

(
1 + ‖W−1‖‖M−1

Θ ‖
2
N∑
k=1

∫ π

0

|ψnk
(x)|2 dx

)∫ π

0

|y(x)|2 dx,

where ‖ · ‖ denotes the operator norm. It remains to verify the completeness. To
this end, suppose that 〈y, ψn〉Θ = 0 for all n /∈ Θ. Then(

y
yΘ

)
=

N∑
k=1

αk

(
ψnk

ψ̂nk

)
for some αk, this being a consequence of the orthogonality of the vector on the
left-hand side to the vectors from (1.4) with n /∈ Θ. Therefore (2.1) yields

N∑
k=1

αkψ̂nk
= yΘ =

N∑
k=1

αk (ψnk
)Θ =

N∑
k=1

αk

(
ψ̂nk
−W−1M−1

Θ ek

)
=

N∑
k=1

αkψ̂nk
−W−1M−1

Θ

N∑
k=1

αkek.

Since M−1
Θ and W−1 are both obviously invertible, we obtain αk = 0 for k = 1, . . .,

N , and hence y = 0.
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3. Some special cases

In general, it appears to be rather difficult to characterize the N -tuples Θ for
which MΘ is invertible in terms of Θ itself. Two particular cases when this is pos-
sible have already been studied (for continuously differentiable s) in the literature
(see below for references). We now discuss these two cases.

3.1. Dependence on the eigenvalue parameter only in one boundary con-
dition. In this section we assume that one of the boundary coefficients, say F , is
constant. As we have noted in the introduction, in this case by using the transfor-
mation operators [9], one can deduce that MΘ is invertible for every Θ. We now
want to derive this result as a corollary of our theorem.

In our case, the matrix MΘ (after obvious cancellations) has either the form
p1 (λn1) . . . pd (λn1) p (λn1)

...
. . .

...
...

p1 (λnd
) . . . pd (λnd

) p (λnd
)

p1

(
λnd+1

)
. . . pd

(
λnd+1

)
p
(
λnd+1

)
 or

p1 (λn1
) . . . pd (λn1

)
...

. . .
...

p1 (λnd
) . . . pd (λnd

)

 ,

(3.1)
depending on whether h0 > 0 or h0 = 0, where we denoted

p(λ) :=

d∏
k=1

(hk − λ), pm(λ) :=

d∏
k=1
k 6=m

(hk − λ).

One possible way to prove the invertibility of these matrices, as was done in [11], is
to reduce this problem to the invertibility of a Cauchy matrix whose determinant
has a closed-form expression (the Cauchy double alternant identity).

However, since we do not need the value of this determinant, but only need to
verify the invertibility of the matrices in (3.1), one can also proceed as follows. If

d∑
m=1

αmpm (λnk
) + αp (λnk

) = 0, k = 1, . . . , d+ 1,

then the polynomial α1p1(λ) + . . .+αdpd(λ) +αp(λ) of degree at most d has d+ 1
roots and hence it must be identically zero. From the obvious identities pm(hk) = 0
for m 6= k we obtain α1 = . . . = αd = α = 0 and thus the columns of the first matrix
in (3.1) are linearly independent. This proves the invertibility of this matrix. The
case h0 = 0 is similar.

3.2. Linear dependence on the eigenvalue parameter. The case when one
or both of the boundary conditions depend in a linear fashion on the eigenvalue
parameter (i.e., max{ind f, indF} ≤ 2 in our notation) is the most extensively
studied case in the literature. We mention only the very recent paper [10] and
refer the reader to the bibliography therein. Since we have already discussed the
case when only one of the boundary conditions depends on the eigenvalue param-
eter, we now assume that both of them contain the eigenvalue parameter (i.e.,
min{ind f, indF} ≥ 1).

In order to completely characterize those pairs Θ = {n1, n2} for which MΘ is
invertible, we need some more definitions from [5], [7]. We assign to each rational
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Herglotz–Nevanlinna function f of the form (1.3) two polynomials f↑ and f↓ by
writing this function as

f(λ) =
f↑(λ)

f↓(λ)
,

where

f↓(λ) := h′0

d∏
k=1

(hk − λ), h′0 :=

{
1/h0, h0 > 0,

1, h0 = 0.

For each n ∈ N ∪ {0} we define βn 6= 0 as the unique number for which

χn(x) = βnϕn(x),

where ϕn and χn are the (necessarily linearly dependent) eigenfunctions of (1.1)-

(1.2) satisfying the conditions ϕn(0) = f↓(λn), ϕ
[1]
n (0) = −f↑(λn), χn(π) = F↓(λn),

and χ
[1]
n (π) = F↑(λn). Using the results of [6] and [7] one can deduce that these

numbers have alternating signs and asymptotically behave as

βn = (−1)n
(
n− ind f + indF

2

)indF−ind f

(1 + ξn) , ξn ∈ `2. (3.2)

We now return to the main topic of this subsection. Under our assumptions, the
matrix MΘ (again after obvious cancellations) has the form(

1 β−1
n1

1 β−1
n2

)
.

Thus the invertibility of MΘ is equivalent to the condition βn1
6= βn2

. On the basis
of the discussion in the preceding paragraph, we immediately conclude that MΘ

is always invertible for indices n1 and n2 of different parity. For indices of same
parity, both cases are possible. As one extreme example, we have βn = (−1)n for
all n when the boundary value problem is symmetric (i.e., s(x) + s(π− x) = 0 and
f = F ) and hence MΘ is never invertible for n1 and n2 of same parity. On the
other hand, using the inverse spectral theory developed in [7], one can produce a
boundary value problem of the form (1.1)-(1.2) for arbitrary sequence of distinct
numbers βn, as long as they satisfy the requirements of the preceding paragraph.
In the case of the latter boundary value problem, MΘ is invertible for all pairs of
indices n1 and n2.

As a final observation, we note that it is also possible to obtain some results of
asymptotic character when indF 6= ind f . For example, given n1, MΘ is invertible
for all sufficiently large n2. In the case of summable potentials (i.e., for absolutely
continuous s), one can say even more: MΘ is invertible for all sufficiently large n1

and n2. In other words, there can be only finitely many pairs Θ = {n1, n2} for
which MΘ is not invertible, since in this case nξn → 0 in (3.2).
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