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Abstract. We prove the persistence of “most” finite gap solutions of the KdV equation on the circle under
sufficiently small and smooth quasi-linear Hamiltonian perturbations. The proof makes use of suitable
symplectic coordinates, introduced by Kappeler-Montalto [I5], in the vicinity of any finite-gap manifold,
which admit a pseudo-differential expansion. Then we implement a Nash-Moser iteration scheme. A key
step is to diagonalize the linearized operators, obtained at any approximate quasi-periodic solution, with
sharp asymptotic estimates of their eigenvalues.
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1 Introduction

The aim of this paper is to investigate the stability of finite gap solutions of the KdV equation — also referred
to as space periodic multi-solitons — under quasi-linear Hamiltonian perturbations

ou = —03u + 6udyu + €0, VP(u), z€Ty:=R/Z, (1.1)

where ¢ € (0,1) is a small parameter and VP is the L?-gradient of

P(u):= | flz,u(x),uz(x))de, uy:=0u, feC?TxRxRR). (1.2)
T1

Equation then reads

Oru = 0, VH_(u) (1.3)
with Hamiltonian
1
H_(u) := H*"(u) + eP(u), HF () = / 5@3(30) +ud(z) d . (1.4)
Ty

As phase spaces for the Hamiltonian PDE (1.3) we choose H§(T1), s > 0, where

HE(Ty) = {u € H*(Ty) : / u(z) dz = o}, L2(Ty) = HY(Ty), (1.5)

Ty

H?(T;) denotes the Sobolev space of real valued functions

H*(Ty) = {u(x) =3 ™ gy = () funl?)? < 00, T = un Vi€ Z} (1.6)

nez neZ

and (n) := max{1, [n|} for any n € Z. We also write L?*(T;) for H(T;). The symplectic form on the phase
space LZ(Ty) is
Wra(u,v) == / (0 'w)vdr, Vu,ve LE(Ty), (1.7)
T,
where the operator d; ' is defined in (2.19). The Hamiltonian vector field Xp(u) = 0, VH (u) associated
with the Hamiltonian H, is characterized by dH (u)[-] = Wr2(Xu, ).

In order to state our main result, let us first describe the dynamics of equation , when ¢ = 0. It is
proved in Kappeler-Péschel [16] that the KAV equation dyu = —03u + 6uu, admits global analytic Birkhoff
coordinates, which we describe below. As a consequence, all its solutions are periodic, quasi-periodic or
almost periodic in time. The quasi-periodic solutions of the KdV equation are referred to as finite gap
solutions or alternatively space periodic multi-solitons.

Birkhoff coordinates: For any s > 0, let h{ := {z = (2Zn)nez € h* : 20 = 0} where

h = {z = (za)nez, 70 € C : ||z = Y (n)*|zul? < 00, Zo =20, ¥n € z},
nez

endowed with the standard Poisson bracket defined by
{#n, 21} =120k —p, VnN,k€Z.

By F we denote the Fourier transform, F : L?(T1) — h°, u > (up)nez, where u,, := le u(x)e™ 27 dg for
any n € Z and by F~1 : h® — L2(Ty) its inverse.

Theorem 1.1. ([16]) There ezists a real analytic diffeomorphism Wk4 : h3 — HY(Ty) so that:

(i) for any s € Zxo, Yk (hg) C HE(Ty) and V*® : b — HE(Ty) is a real analytic symplectic diffeomor-
phism.

(it) H* o Wkdv . pl — R is a real analytic function of the actions I, = sirzpz_, k > 1. The KdV
Hamiltonian, viewed as a function of the actions (Iy)g>1, is denoted by HE.

(iii) Wk (0) = 0 and the differential dg®*® of Wk4 at 0 is the inverse Fourier transform F~!.



As a consequence of Theorem the KdV equation, expressed in the Birkhoff coordinates (z,)ns0,
reads

Ohzn = Wi (Ik)k=1)2n , Yn € Z\ {0}, W ((Ix)k>1) = £01, HE" ((Ii)k>1) , Ym > 1, (1.8)

and its solutions are

1
za(t) = exp (W™ (L)1) )za(0), Vn € Z\{0}, I = 5 z(0)2-1(0), V> 1.

Finite gap solutions: Let us consider a finite set Sy C N1 :={1,2,...} and define
S:=8S;U(-S4), S;:=Ny\S;, St:=S;uU(-S;})cz)\{0}.
A S—gap solution of the KdV equation is a solution of the form
2n(t) = exp(IwF? (1,0)t) 2,(0), 2,(0) £0, ¥n €S, z,(t) =0, Yn € ST, (1.9)

where v := (I]go))keer € RS;O and, by a slight abuse of notation, we write

v v S
wp® (I, (I)kess) = wp®™ ((Tn)i=1) s 1= (Ik)res, € R (1.10)
Such solutions are quasi-periodic in time with frequency vector

W (1) = (whE™ (v,0)) € RS+, (1.11)

neSy

parametrized by v € RS;). The map v + wk¥(v) is a local analytic diffeomorphism, see Remark When
written in action-angle coordinates,

0= (On)nes, € T, I = (In)nes, € RS;B, 2z =/ 2mnl,e % neS,y,
instead of the complex Birkhoff coordinates z,, the S—gap solution (1.9)) reads
0(t) = 00 — Wk (L)t I(t) =v, 2, () =0, VYneSt. (1.12)

Motivated by questions raised by S. Kuksin and V. Zakharov, our aim is to study the stability of these finite
gap solutions under quasi-linear perturbations.

In the whole paper = C RS;B is the closure of a bounded open set so that w*? defined in (I.11)) is a
diffeomorphism onto its image. Moreover we require that, for some § > 0 small enough,

=+ Bg, (5) CRY, (1.13)

where Bs, (§) denotes the ball of radius ¢ in R+ centered at the origin.

The main result of this paper (Theorem is that, for € small enough, and for v in a subset of = of
large Lebesgue measure, there is a quasi-periodic solution of equation , close to the finite gap solution
of the KdV equation ¢(8(9) — w*® (v)t, z;v) where, for any v € Z,

q(-,3v): TS+ — H8(']T1), ©=q(e, ;) , q(p,z;v) = \I'k”l”(go7 v, 0)(z), Yo € Ty, (1.14)

and W* (0, v, 0)(x) := W*4((2,)nes, 0)(z). Notice that the function q(p, z) = q(p, x;v) is in C>°(TS+ x Ty),
actually it is real analytic.

Let H* = H; ., s > 0, denote the Sobolev space H* (TS+ x T;) of periodic, real valued functions

H = {f= Y fo 0 f2= Y e <00 Fug=Fen ) (L15)

(£,5)€75+ X7 (£,) €75+ X7

where (¢, j) := max{1, €|, |j|}. For s > (|Sy|+1)/2 the embedding H*(TS+ x T;) € C°(T®+ x T;) holds and
H*(TS+ x T,) is an algebra.
The main result of this paper is the following one:



Theorem 1.2. Let f be a function in C*°(T; x R x R,R). Then there ezist § > (|S+|+1)/2 and g9 € (0,1)
so that, for any € € (0,e¢), there exists a measurable subset Z. C E with the following properties:

lim |2\ =] =0

lim 2 =,
and, for any v € 2., there exists a quasi-periodic solution u.(we(v)t,z;v) of equation (L.1) with u.(-,-;v)
in H®(TS+ x Ty) and frequency vector w.(v) € RS+ so that

lm |Jue(s,-;v) —q(, ;)]s =0, limw.(v) = —wkd”(u),
e—0 e—0

where q(p, z;v) is defined in (L.14) and W% (v) in (I.11). The solution u.(w.(v)t,z;v) is linearly stable.

Remark 1.3. Actually the same result holds for any density f of class C** for s, € N large enough. We
assume f to be C*°—smooth merely for simplicity of notation.

Ideas of the proof: Theorem|[L.2]is proved by using a Nash-Moser scheme. One of the main issues concerns the
invertibility of the linearized Hamiltonian operator w-0, —0;dVH. (u(p, x)) where u(wt, z) is an approximate
quasi-periodic solution of , close to the finite gap solutions . Since the perturbation in is
quasi-linear, i.e. the perturbed vector field 9,V P(u) might contain d7u and hence it is of the same order
as the KAV vector field 9, VH*® (u), the KAM reducibility schemes known in literature cannot be applied
directly. A key ingredient of the proof are special canonical coordinates, constructed in Kappeler-Montalto
[15],
U (0, y,w) — V(0,y,w) € LA(Ty),

defined in a neighborhood of the finite gap manifold 'I[‘?+ x {v} x {0} in 'IF?+ X RS;O x L2 (Ty) where

L2(Ty) = {w =Y w,em e Lg(qu)} (1.16)

nesSt

which admits a pseudo-differential expansion. They have the following main properties that we describe in
detail in Section 3.1}

(i) For € = 0, the manifold of S—gap solutions in the range of ¥ is characterized by the equation w = 0
and the linearized equation along the manifold {w = 0, = const.} is in diagonal form with coefficients
only depending on I, see Theorem (AE3).

(ii) When expressed in these coordinates, the linearized Hamiltonian vector field admits an expansion in
terms of pseudo-differential operators, see Section [3.2)

Thanks to their pseudo-differential nature, these coordinates allow us to deal with quasi-linear perturbations.
We first perform preliminary transformations (which are Fourier integral operators generated as flows of linear
transport PDEs and pseudo-differential maps) which diagonalize the above mentioned linearized operators
up to a pseudo-differential operator of order zero plus a regularizing remainder (see Section@. At this point,
using the properties of the KdV frequencies, we are able to perform a KAM reducibility scheme in order to
complete the diagonalization. This strategy has been carried out for small amplitude solutions of KdV in
[3], [2]. In that case one can directly use the differential structure of (L.I)-(L.2). The novelty of Theorem
[1.2] consists in the fact that the unperturbed solutions are not required to be small.

Related work: The first KAM theorems for perturbations of large finite gap solutions of the KdV equation
were established by Kuksin in [I9], see also [20], and by Kappeler-Poschel in [I6], in the case the
perturbation is semi-linear, namely the density f(x,u) in does not depend on u,. The key idea is
to exploit that the frequencies of KAV grow asymptotically as ~ ;2 as |j| — +oo, and therefore one can
impose second order Melnikov non-resonance conditions of the form |w - £ + 52 — 3| > (52 +142)/2, i # j,
which gain 2 space derivatives (outside the diagonal ¢ = j), sufficient to compensate the loss of one space
derivative produced by the vector field £0,(9, f)(x,u). Subsequently, Liu-Yuan in [I3] proved KAM results
for semilinear perturbations of small amplitude solutions of the derivative NLS and Benjamin-Ono equations
whereas Zhang-Gao-Yuan [2I] proved analogous results for the reversible derivative NLS ius + tze = |ug|?u.



More recently, Berti-Biasco-Procesi [5]-[6] proved existence and stability of small quasi-periodic solutions
of autonomous derivative Klein-Gordon equations of the form vy — yor + my = g(2,y, Yz, ye) satisfying
reversibility conditions.

In all of the work mentioned above, the perturbations are required to be semilinear. Concerning quasi-
linear perturbations, the first KAM results of small amplitude solutions of the KdV equation were estab-
lished by Baldi-Berti-Montalto in [3], [2], by using pseudo-differential calculus, see also [4], [I1], [I2]. The
frequency-amplitude modulation is obtained in [3] by a weak-Birkhoff normal form analysis. Due to the
purely differential structure of , the required tools of pseudo-differential calculus in [3], [2] mainly con-
cern multiplication operators and Fourier multipliers. In order to obtain KAM type results for the water
waves equations, more advanced techniques have been developed in Berti-Montalto [9] and Baldi-Berti-Haus-
Montalto [I].

For studying perturbations of large finite gap solutions, the Birkhoff coordinates are a natural setting.
Existence of large KAM tori for semilinear perturbations of the cubic NLS has been obtained in [8], exploiting
that the Birkhoff map is a one smoothing perturbation of the Fourier transform (see [18]). This property is
not sufficient to deal with quasi-linear perturbations. It would be useful to exploit some pseudo-differential
property of the coordinates, that, however, the Birkhoff map does not seem to possess. As an alternative,
Kappeler-Montalto [I5] constructed, in the vicinity of finite gap manifolds of KdV, symplectic coordinates
admitting a pseudo-differential expansion to any given order, up to a remainder satisfying tame estimates.
In the present paper we use these symplectic variables as a starting point and then apply KAM techniques
developed in [9], [I] to prove Theorem [1.2

We expect that by the same methods of proof, a result analogous to Theorem can be proved for finite
gap solutions of the defocusing NLS equation as well as the defocusing mKdV equation.

Notation. We denote by N = {0,1,2,...} the set of natural numbers and set Ny = {1,2,...}. Given a
Banach space X with norm | - ||x, we denote by by H X = H*(TS+,X), s € N, the Sobolev space of
functions f : TS+ — X equipped with the norm

10 = 1Lz x + mae 102 x- (1.17)

We also denote H gX = LiX . We recall that the continuous Sobolev embedding theorem is stronger in the
case X is a Hilbert space H. The corresponding theorems read as follows

H5 (TS, X) < C%(T%,X), Vs> |[Si|,  H¥ (T, H)—CT H), Vs>[S|/2. (1.18)

Let H3 := H*(T1), s > 0, and denote by (f,g),, the L?~inner product on L2 = HY,

(f,g)Li = i f(@)g(x) de. (1.19)

Furthermore, we denote by II, the L?—orthogonal projector onto the subspace L? (T;), defined in (1.16),
and by H(J)- the one onto the subspace of functions with zero average. We set

H$(Ty) == H*(T1) N L3 (Ty) (1.20)
and
Hi = H5 (T% x Tq) = {u € H(T% x T1) : u(p,-) € LI (T1)}, (1.21)
which is an algebra for s > s¢ := [%} + 1. The space HjJ_ is also denoted by Lﬁ_. Let
E =TS xRS+ x HS(Ty), £=&, E, :=RS xRS+ x H5(T;), E = Ey, (1.22)

where HS (T1) is defined in (1.20). Elements of £ are denoted by r = (,y,w) and the ones of its tangent
space F by T = (5, y,w). For s < 0, we consider the Sobolev space Hf (T1) of distributions, and the spaces
&, and E; are defined in a similar way as in ([.22). Notice that H[*(T;) is the dual space of H{(T;). On
E, we denote by (-,-) the inner product, defined by

<(§1,§1,@1)7 (52@27@2» = 51 : 52 +Y1 Y2+ (@1’@2)& . (1.23)



By a slight abuse of notation, II, also denotes the projector of E, onto its third component,
HJ_:ES_>Hj_<T1)? (é\’@@)'_”ﬁ

For any 0 < § < 1, we denote by Bs, (§) the open ball in RS+ of radius § centered at 0 and by B (6), s > 0,
the corresponding one in Hj (T;) where we also write B (§) for BY (). These balls are used to define the
following open neighborhoods in &, s € N,

V3(8) = Ty* x Bg, (6) x B5.(8),  V(6)=V°(5), 0<d§<1. (1.24)

The space of bounded linear operators between Banach spaces X1, X5 is denoted by B(X;, X5) and endowed
with the operator norm. For two linear operators A, B we denote by [A, B] their commutator, [A, B] :=
AB — BA. We denote A" the transposed with respect to the scalar product .

Throughout the paper, @ C R5+ denotes a parameter set of frequency vectors. Given any function f : @ — X,
we denote by A, f the difference function

AwaQXQ%X, (wl,CUg)l—)f(wl)ff(WQ).
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2 Preliminaries

2.1 Function spaces and linear operators

In the paper we consider real or complex functions u(p, z;w), (¢, z) € TS+ x Ty, depending on a parameter
w € Q in a Lipschitz way, where Q is a subset of RS+. Given 0 < v < 1 and s > 0, we define the norm

Li i i
ull 55 = (| 5P = a5 4 P
. u\wi ) — ulwsz (2'1)
Il = sup Ju(@)lle, Juf® = sup LU el
wen w1, w2 €0 w1 Fws w1 — wo

where || ||s is the norm of the Sobolev space H® defined in (1.15). For a function u : @ — C, the sup
norm and the Lipschitz semi-norm are denoted by |u[*"P and, respectively |u|'P. Correpondingly, we write
[P s e+ ofu]'.

By IIy, N € N4, we denote the smoothing operators on H?,

(Myuw)(p, z) = Z g jel (e tmin) My :=1d — Iy . (2.2)
(€J)<N

They satisfy, for any o > 0, s € R, the estimates

i @ Li i —« Li
Ty BPO) < NoJ|ul[F0) ) | P00 < N ful| 5200 (2.3)

Furthermore the following interpolation inequalities hold: for any 0 < s1 < s9 and 0 < 6 < 1,

Li
lullg 00 gy, < 2

Li 0 Li 1-6
[l 51PO) ([lul 5P 7) (2.4)
Multiplication and composition with Sobolev functions satisfy the following tame estimates.
Lemma 2.1. (Product and composition) (i) For any s > so = [(|S4+|+1)/2] +1

luv|[$P0) < C(s) [ull PO ol 5P + C(s0) [ull 5P o FPO. (2.5)



(ii) Let B(-,-w) : TS+ x Ty — R with ||B||15;§(+72) < d(sg) small enough. Then the composition operator
B:u— Bu, (Bu)(p,z) :=u(p, x4+ B(p,x)) satisfies, for any s > so + 1,

|| 520 4 BIIEPO) | 2R (2.6)

||Bu||£11p( s+1 so+2

Ss |
The function 3, obtained by solving y = x + Blp,x) forx, z =y+ B(go, y), satisfies
IBIEP) Sa 1817, Vs = so. (2.7)

(iii) Let a(-;w) @ TS — R with HOZHIE;I;(:Q) < 6(sg) small enough. Then the composition operator A : u —
u, u)(p, ) = ulp + a(p)w,x) satisfies, for any s > so + 1,
Au, (A ti > 1
i Li i Li
Al PO Sl 2 + ol PO ul 55 (28)

The function &, obtained by solving 9 = ¢ + a(p)w for ¢, ¢ =9 + &(I)w, satisfies

[P s llall Y Vs > 0. (2.9)
Proof. Ttem (i) follows from (2.72) in [9] and (47)-(4i%) follow from [9, Lemma 2.30]. O
If w is diophantine, namely
|w- €] > Ve e 75+ \ {0},

\fl

the equation w - 0,v = u, where u(y, ) has zero average with respect to ¢, has the periodic solution

. -1, _ W5 i(e-p+2mja)
(W-0p)  u = 2; iw-ée eI
JELLeZ +\{0}
and it satisfies the estimate (cf. e.g. [8 Lemma 2.2])
i - Li
(@ - 9)~ulliP) < Oyl ZET - (2.10)

We also record Moser’s tame estimate for the nonlinear composition operator

u((pa J}) = f(u)(@a J)) = f(%%“(% JJ)) :

Since the variables ¢ and x play the same role, we state it for the Sobolev space H*(T¢), (cf. e.g. [9, Lemma
2.31]).

Lemma 2.2. (Composition operator) Let f € C®(T? x R*,C). If v(-;w) € H*(TH,R"), w € Q, is a

family of Sobolev functions satisfying ||v||£‘;p(§;/) < 1 where so(d) > d/2, then, for any s > so(d),

£ )P0 < Cls, /(L + o] ) (2.11)

Moreover, if f(¢,2,0) =0, then || £(v)|[EP™) < C(s, £)||v]|EP.

Linear operators. Throughout the paper we consider y-dependent families of linear operators A : TS+ —
L(L?(Ty,C)), ¢ — A(p), acting on complex valued functions u(z) of the space variable . We also regard
A as an operator (which for simplicity we denote by A as well) that acts on functions u(yp, z) of space-time,
i.e. as an element in £(L?(TS+ x Ty, C)) defined by

Alul(p, ) = (Au)(p, ) = (Alp)u(p, ) (@) . (2.12)

We say that the operator A is real if it maps real valued functions into real valued functions.



When w in (2.12)) is expanded in its Fourier series,
ulp,x) =Y uj(p)e™T = Ny gl (2.13)
JEL JELLETS+
one obtains

(Au)(p,2) = > AL (uy(p)e™m = 3 ST A= Oy yeterEmin) (2.14)

J,3' €L JELUETS+ j EL U €T+

We shall identify an operator A with the matrix (A;l (¢ — E/))]:j’ez ezt

Definition 2.3. Given a linear operator A as in (2.14) we define the following operators:
1. |A| (MAJORANT OPERATOR) whose matriz elements are |A§/(€ —)].

2. IIyA, N € N (SMOOTHED OPERATOR) whose matriz elements are

Al (e—¢) if ((—0)<N

) (2.15)
0 otherwise .

(yA)] (0~ 0) == {

3. (0,)PA, b € R, whose matriz elements are (£ — €’>bA§/(£ =),

4. 0y, A(p) = [0,,,, A] (DIFFERENTIATED OPERATOR) whose matric elements are i(€,, — E’m)Aﬁ:/(ﬂ - .

Definition 2.4. (Hamiltonian and symplectic operators) (i) A p-dependent family of linear operators
X (), ¢ € TS+, densily defined in L3(T;), is HAMILTONIAN if X (¢) = 0,G(yp) for some real linear operator
G(p) which is self-adjoint with respect to the L*—inner product. We also say that w - 9, — 0,G(p) is
Hamiltonian.

(ii) A @-dependent family of linear operators A(y) : L3(T1) — L3(Ty), Vo € TS+, is SYMPLECTIC if

WLS (A(QO)U, A(QO)U) = WL(Q) (U, U) ) V’U,, vE L(%(Tl) )
where the symplectic 2-form WL% is defined in (1.7)).

Under a ¢-dependent family of symplectic transformations ®(¢), ¢ € TS+, the linear Hamiltonian oper-
ator w - 0, — 0,G(y) transforms into another Hamiltonian one.

Lemma 2.5. A family of operators R(¢), ¢ € TS+, expanded as R(p) = ,cp5y R(0)el“?, is
(i) SELF-ADJOINT if and only if Rj (0) = Rg,(—é);

(i) REAL if and only if R;:, () = R:g,(fé); ) _

(i71) REAL AND SELF-ADJOINT if and only if R} (£) = R”},(£).

Lemma 2.6. Let X : H3t3(Ty) — HE(Ty) be a linear Hamiltonian vector field of the form
2
X = Z as_(x)92~% 4+ bounded operator (2.16)
k=0

where az_j € C(T1). Then az = 2(asz);.

Proof. Since X is a linear Hamiltonian vector field it has the form X = 9,.A where A is a densely defined
operator on L3(T;) satisfying A = A'. Therefore, using (2.16)),

A=07'X = a3(x)0y, + ( — (a3)s + ag)am + ...
AT = -XT0;" = a3(2)00 + (3(az)s — a2)0z + ... .

The identity A = AT implies that as = 2(a3).. O



2.2 Pseudo-differential operators

In this section we recall properties of pseudo-differential operators on the torus used in this paper, following
[9]. Note however that z € T; and not in R/(27Z).

Definition 2.7. We say that a : T1 X R — C s a symbol of order m € R if, for any o, B € N,
0207 a(x,€)| < Cap(&™ 7, Y(x,6) €Ty xR. (2.17)

The set of such symbols is denoted by S™. Given a € S™, we denote by A the operator, which maps a one
periodic function u(z) =3,z u;el® to

Alul(x) = (Au)(x) = Zjeza(x’j)ujeijm.

The operator A is referred to as the PSEUDO-DIFFERENTIAL OPERATOR (WDO) of order m, associated to
the symbol a, and is also denoted by Op(a) or a(z,D) where D = %893. Furthermore we denote by OPS™
the set of pseudo-differential operators a(x, D) with a(z,§) € S™ and set OPS™% := N,,,erOPS™.

When the symbol « is independent of £, the operator A = Op(a) is the multiplication operator by the
function a(x), i.e., A : u(z) — a(z)u(x) and we also write a for A. More generally, we consider symbols
a(p, z,&;w), depending in addition on the variable ¢ € TS+ and the parameter w, where a is C* in ¢ and
Lipschitz continuous with respect to w. By a slight abuse of notation, we denote the class of such symbols
of order m also by S™. Alternatively, we denote A by A(¢) or Op(a(ep,-)).

Given an even cut off function o € C*°(R,R), satisfying

1 2
0<xo<1, Xo(€) =0, VI <3, xo(€) =1, V¢l =3, (2.18)
we define, for any m € Z, 9" = Op(XO(i)(i27r§)m), so that
o) = (12mj)me | jeZ\ {0}, A1) =0. (2.19)

Note that 0%[u](z) = u(z) — ug, hence d? is not the identity operator.

Now we recall the norm of a symbol a(p, x,&;w) in S™, introduced in [, Definition 2.11], which controls
the regularity in (¢, z) and the decay in £ of a and its derivatives 6§a € S8, 0< B < a, in the Sobolev
norm || ||s. By a slight abuse of terminology, we refer to it as the norm of the corresponding pseudo-differential

operator. Unlike [9] we consider the difference quotient instead of the derivative with respect to w, and write

Lip(v)

| 377 o instead of | [mlsa .

Definition 2.8. Let A(w) := a(y, z, D;w) € OPS™ be a family of pseudo-differential operators with symbols
alp,z,&w) € 8™, meR. Forvye (0,1), « €N, s >0, we define the WEIGHTED ¥DO NORM of A as

A(wy) — A(w
AR = Sup | A@) e 7 sup A= A s
wEN w1 ,w2€Q |w1 - W2|
w1 Fw2

where |A(w)]m,s,a = maxo<p<a SUPecg |95 a(, -, &w)lls (€)™,

Notice that for any s < s, a < o', and m < m/,

R g Y N I g Y e VA I A B A (2.20)
For a Fourier multiplier g(D;w) with symbol g € S™, one has
0p(9) 172 = [0p(9) 32 < Cm,ag), Vs >0, (221)
and, for a function a(p, x;w),
0p(@)]555 = Op(a)|g25” < llal/y»). (2.22)



Composition. If A = a(p, z, D;w) € OPS™, B = b(yp, z, D;w) € OPS™ then the composition AB := AoB
is a pseudo-differential operator with a symbol oap(p,x,;w) in S™T™ which, for any N > 0, admits the
asymptotic expansion

0AB %0»55 gv Zﬁi 41071' 5, )8517(903:[;57(*}) +’]"N(QD,.’E,5;(U) (223)

with remainder ry € S™*T™'~N-1 " We record the following tame estimate for the composition of two

pseudo-differential operators, proved in [9, Lemma 2.13].

Lemma 2.9. (Composition) Let A = a(p, z, D; w), B =b(p,z, D;w) be pseudo-differential operators with
symbols a(p,x,&w) € 8™, b(p,z,&w) € S™, mym’ € R. Then A(w) o B(w) is the pseudo-differential
operator of order m + m’, associated to the symbol oap(p,x,&;w) which satisfies, for any a € N, s > s¢,

Li i Li i Li
JABEY | Sma VA DIBLPT, o+ Clo) AR BET)  (2.24)
oTreover, jor any inieger =1, c remainaer vy = P\TN) . Satisjies
M int N >1, th inder R O in (2.23)) sati
Li ) Lip( Lip(
|R |m5-(rjz’—N—1,s,a ,Sm N @C(S)|A|mp€ ’Jy\)f—&-l—&-oz|B|m/p,s’(y))+2(N+l)+|m|+a,a (2 25)
Lip(vy Lip(v) ’
( )|A|m so,N+1+a‘B|m’ s+2(N+1)+|m|+a,a”

By (2.23) the commutator [A, B] of two pseudo-differential operators A = a(x,D) € OPS™ and B =
b(xz,D) € OPS™ is a pseudo-differential operator of order m 4 m/ — 1, and Lemma then leads to the
following lemma, cf. [9, Lemma 2.15].

Lemma 2.10. (Commutator) If A = a(p,z, D;w) € OPS™ and B = b(p,z,D;w) € OPS™ , m,m’ €R,
then the commutator [A, B] := AB — BA s the pseudo-differential operator of order m +m’ — 1 associated
to the symbol o ap(p,x,&w) — opale, z,&w) € S™T™ =1 which for any o € N and s > sg satisfies

Lip(v) Lip(y BIHPM)
|[A B”erm’ 1,s,« Smm Y& ( )|A‘m s+2+|m’|+a a+1‘ |m’,80+2+\m\+a,a+1 (2 26)
Lip(7) Lip(7) '
(50)|A|m ,80+2+|m/ | +a, a+l‘B|m’ ;8424 |m|+a,a+1
In the case of operators of the special form 92", Lemma [2.9 and Lemma [2.10] simplify as follows:
Lemma 2.11. (Composition and commutator of homogeneous symbols) Let A = a0)', B = b@;,”/

where m,m’ € Z and a(p,x;w), by, z;w) are C*°—smooth functions with respect to (¢,x) and Lipschitz
with respect to w € Q. Then there exist combinatorial constants K, ,, € R, 0 <n < N, with Ko, =1 and
Ki.m = m so that the following holds:

(i) For any N € N, the composition Ao B is in OPS™ ™ and admits the asymptotic erpansion
N
Ao B =3 Kuma (@200 =" + Ry (a,b)
n=0
where the remainder Ry (a,b) is in OPS™ ™ ~N=1_ Fyrthermore there is a constant on(m) > 0 so that,
for any s > sp, a € N,

Li Li L L L
RN (D)) 1o S sy lally 20 S IBIEESY )+ lall 2200 ]S

(i1) For any N € Ny, the commutator [A, B] is in OPS™ ™' =1 and admits the asymptotic expansion

Z rm@(070) — Ky (970)D) O™ =" 1 Qi (a, b)

where the remainder Qn/(a,b) is in OPS™ ™ ~N=1_ Fyrthermore, there is a constant on(m,m') > 0 so
that, for any s > sg, a € N,

Lip(v) HbHLlp 5 + HaHLiP(W)

L Li
|QN(G, )|7r;3-(7n)’—N—1,s7a Sm,m’,&N,Oé ||aHs+UN(m,m so+on(m,m so+UN(m,m’)||b|| s

s+aN m,m’) "

10



Proof. See formula (2.23) and Lemma [2.9] O

We finally give the following result on the exponential of a pseudo-differential operator of order 0.

Lemma 2.12. (Exponential map) If A := Op(a(p,z,&w)) is in OPSY, then Y, <o 0ar (2, & w) is
a symbol of order 0 and hence the corresponding pseudo-differential operator, denoted by ® = exp(A), is in
OPS°, and for any s > sg, a € N, there is a constant C(s,a) > 0 so that

| — Id|LP) <|A\g‘f+mexp( (s, )| AP ). (2.27)

0,s,a 0,s0+a,a

Proof. Tterating (2.24)), for any s > s, a € N, there is a constant C(s, «) > 0 such that

[A¥620) < Os,0) (| Alg o) T A D, VR 1. (2.28)
Therefore
@ TG < 37 AR g,y SO0, (AR, )4
k>1 k>1
ot nacxp(Cs, ) Alg T o)
This shows that Zkzo %O—Ak (p,2,&;w) is a symbol in S° and that the estimate holds. O

2.3 Lip(y)-tame and modulo-tame operators

In this section we recall the notion and the main properties of Lip(+y)-o-tame and Lip(7y)-modulo-tame
operators. We refer to [0, Section 2.2] where this notion was introduced, with the only difference that here
we consider difference quotients instead of first order derivatives with respect to the parameter w.

Definition 2.13. (Lip(y)-o-tame) Let o > 0. A linear operator A := A(w) as in (2.12) is Lip(y)-o-tame
if there exist S > s1 > so and a non-decreasing function [s1,S] — [0,400), s — Ma(s), so that, for any
51<s< S anduc H",

A(wy) — Aws)

w1 — we

sup [[A(w)ulls +7 _sup o < Malulloro + Ma@lulerio. (229)

w1, w2 E€Q

w1 Fwg
When o is zero, we simply write Lip(vy)-tame instead of Lip(vy)-0-tame. We say that M4(s) is a TAME
CONSTANT of the operator A. Note that MM a(s) is not uniquely determined and that it may also depend on
the “loss of derivatives” o. We will not indicate this dependence.

Representing the operator A by its matrix elements (A?I(ﬁ — f’))g verft jjen 3 in (2.14), we have, for
all j/ € Z, ¢ € Z8+, for all wy,wy € Q, wy # wa,

Q)AwAgi (=12

>, (|47 - ) S @alsn) gyt (2.30)

where we recall that A, f = f(w1) — f(wa).

w1 — wal

Lemma 2.14. (Composition) Let A, B be, respectively, Lip(y)-oa-tame and Lip(y)-op-tame operators
with tame constants M4 (s) and Mp(s). Then the composition Ao B is Lip(vy)-(ca + op)-tame with a tame
constant satisfying

Map(s) S Ma(s)Mp(s1+0a) + Ma(s1)Mp(s+04).

Proof. See [9, Lemma 2.20]. O

We now discuss the action of a Lip(vy)-o-tame operator A(w) on a family of Sobolev functions u(w) € H®.

11



Lemma 2.15. (Action on H?) Let A := A(w) be a Lip(vy)-o-tame operator with tame constant M4 (s).
Then, for any family of Sobolev functions u = u(w) € H*T9, Lipschitz with respect to w, one has

i Li Li
[Au[[EP0) < 9y (s1) [l [ 2 + M (5) [l 525

sl+a .
Proof. See [0 Lemma 2.22]. O
Pseudo-differential operators are tame operators. We shall use in particular the following lemma.
Lemma 2.16. Let a(p,x,&w) € SO be a family of symbols that are Lipschitz with respect to w. If A =
a(p, x, D;w) satisfies |A\151§0 < +00, 8 > so, then A is Lip(vy)-tame with a tame constant satisfying
Ma(s) < C(s)|AlgEg” (2.31)
AlS) = S 0,5,0 - .

As a consequence _
1AuHPO) < C(s0) Al g lull s + C()| Algog” [l 5P (2:32)
Proof. See [9, Lemma 2.21] for the proof of (2.31)). The estimate (2.32) then follows from Lemma[2.15] [

In the KAM reducibility scheme of Section 7} we need to consider Lip(y)-tame operators A which satisfy
a stronger condition, referred to Lip(v)-modulo-tame operators.

Definition 2.17. (Lip(y)-modulo-tame) Let S > s1 > sg. A linear operator A := A(w) as in is
Lip(7y)-modulo-tame if there exists a non-decreasing function [s1,S] — [0,4+00), s smﬁ(s), such that the
magjorant operators |A(w)| (see Definition [2.3) satisfy, for any s; < s < S and u € H*,

[A(wr) = A(wo)|

w1 — ws

sup | [A(w)full, +7 _sup u <o llull+ MGl (23

wq,w €EQ
w]Fw2

The constant im&(s) is called a MODULO-TAME CONSTANT of the operator A.
If A, B are Lip(y)-modulo-tame operators, with [A2 (¢)] < |BY (£)], then 0% (s) < M (s).

Lemma 2.18. An operator A that is Lip(7y)-modulo-tame with modulo-tame constant 9)??4(8) is also Lip(7)-
tame and 93??4(3) is a tame constant for A.

Proof. See [9, Lemma 2.24]. O
The class of operators which are Lip(7y)-modulo-tame is closed under sum and composition.

Lemma 2.19. (Sum and composition) Let A, B be Lip(y)-modulo-tame operators with modulo-tame
constants respectively Dﬁ& (s) and imﬁB(s). Then A+ B is Lip(vy)-modulo-tame with a modulo-tame constant
satisfying

My, (5) < Oy () + M (s) - (2.34)

The composed operator A o B is Lip(y)-modulo-tame with a modulo-tame constant satisfying
My (5) < C (D (5) M (1) + Dy (51) M (5)) (2.35)

where C > 1 is a constant. Assume in addition that (9,)°A, (0,)°B (see Definition are Lip(v)-
modulo-tame with a modulo-tame constants, respectively, im%aw)bA(s) and im%%)bB(s). Then (9,)°(AB) is
Lip(y)-modulo-tame with a modulo-tame constant satisfying, for some C(b) > 1,

M, o (5) < C(b) (mzﬁaw(s)mtg(sl) + I 104 (51) DM ()

(2.36)
+ O ()M, 1o (s0) + mg(sl)mgaw(s)) .
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Proof. See [0 Lemma 2.25]. O
Tterating ([2.35))-(2.36)) we obtain that, for any n > 2,
n—1
My, (s) < (2000 (1)) Dy (s), (2.37)
and
M g (5) < (AC)IC) (I, () [y (51)] "

As an application of (2.37)-(2.38]) we obtain the following
Lemma 2.20. (Exponential map) Let A and (0,)°A be Lip(y)-modulo-tame operators and assume that

' + mga@m(sﬂm%@) [93?%(81)]”72) . (2.38)

9)?%4 : [81,8] = [0, 400) is a modulo-tame constant satisfying
ey (s1) < 1. (2.39)

Then the operators ®*! := exp(£A), @1 —1d and (0,)*(®@=! —1d) are Lip(y)-modulo-tame with modulo-tame
constants satisfying, for any s1 < s < S,
mgpilfld(s) S 93154(8) >

. - A (2.40)
(0,1 (@1 -10) (5) o Mg yo 4 (5) + M ()M 10 (1) -

Proof. In view of the identity ®*! —Id = Zn21 (i:!)n and the assumption (2.39) the claimed estimates
follow by (2:37)-(238). O

Lemma 2.21. (Smoothing) Suppose that (0,)°A, b > 0, is Lip(y)-modulo-tame. Then the operator I A
(see Deﬁnition is Lip(y)-modulo-tame with a modulo-tame constant satisfying

mﬁ

fuals) < N*bim%%)bA(s), m? Lale) < M, (s) . (2.41)

Proof. See [9, Lemma 2.27]. O

Lemma 2.22. Let a;(+;w), az(:;w) be functions in C*°(T5+ x T1,C) and w € Q. Consider the linear operator
R defined by Rh := ay - (ag,h)rz2, for any h € L2. Then for any X € NS+ and ny,ny > 0, the operator
<D>"152R<D>”2 is Lip(7y)-tame with a tame constant satisfying, for some o = o(ny,ng, \) > 0,

M (pymaar(Dyn2 () Ssininan (MaXizi,2)|aills+o) - (maxi—1 2[aillsp+o) -

Proof. For any ni,ns >0, A € NS+ h € L2, one has

(DYMORR(DY™h =" ex (D)™ [03 aa] ((D)™[0)%a2] , ) 1
A1t+A2=A

where we used that the operator (D) is symmetric. The lemma then follows by (2.5)). O

2.4 Tame estimates

In this section we record various tame estimates for compositions of functions and operators with a torus
embedding 7 : TS+ — &, of the form (cf. (T.22)))

i) = (¢,0,0) + (), tlp) = (O(p),y(w),w(p)),

with norm ||L||£ip(7) = ||@Hlflig(7) + ||yHI1}ig(’Y) + ||w||£ip(7). We shall use that the Sobolev norm in (1.15]) is
equivalent to
I lls =11 ey, ~s W gz + 11 |z mg (2.42)
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and the interpolation estimate (which is a consequence of Young’s inequality)
lwllagmg < llwllggre 2 + Wl zre Sso lwllsso - (2.43)

Given a Banach space X with norm || ||x, we consider the space C*(T5+, X), s € N, of C*—smooth maps
f: TS+ — X equipped with the norm

Ifllesx == >~ N05fIX", 105 FIX" = sup 93/ (2)x - (2.44)

0<]o|<s pET+

Ser ||fHH;+le for s; > |S4|, whereas if X is a Hilbert space, the latter

estimate is valid for s; > [Sy|/2. On the scale of Banach spaces C*(TS+, X) the following interpolation
inequalities hold: for any 0 < k < s,

1_,

[fllexx <s (2.45)

Recall that &, E, are defined in (1.22)) and V*(§) in (T.24). Let © be an open bounded subset of RS+.

Lemma 2.23. Let o > 0 and assume that, for any s > 0, the map a : (V7(6) N Esq0) X Q — H*(Ty) is
C> with respect to t = (0,y,w), C' with respect to w, and satisfies for any ¢ € V°(6) N Esro, o € NS+ with
la] <1, and | > 1, the tame estimates

105a(m W)y Ss 1+ [[wll gzt s

l l
~ - . N N (2.46)
ld'0ga(s ) Ellie Sova 3 (1816 [T Ralle, ) + lwl oo TTIE e, -
j=1 n#j j=1
Then for any © with || HL‘;&U < 4, the following tame estimates hold for any s > 0:
0)
y
la@)[FP <o 1+ [Jol520)
~ L Li ~ yLi
lda@) @50 <, (B 1EE0), + 5200w 5nS, 2.47)
o L ~ —~ 1 Li —~ 1 Li :
|d2a ()01, 2]5P) <o (G115 2l soro + [T 1IERD )5 20),
Lip(7) |~ (jLip(¥) 1~ Lip(y
+ || ||s+so+a|| 1||so+a H ||so+cr .

(i) If in addition a(0,0,0;w) = 0, then (D)l <, [|XP0),.
1i3) If in addition a(0,0,0;w) = 0, 9,a(0,0,0;w) = 0, and 0ya(6,0,0;w) = 0, then
Y

o i Li Li
la@IIE™D S el el

o L L L L
| da ()[40 <, \|L||s;i<3)|ﬂ|sfso+a + [lel|5P00 R

Proof. (i) It suffices to prove the estimates in (2.47) for ||d%a(?)[1,72]||s and ||d2 ()[21,722]||%P since the ones
for a(?) and da(?) then follow by Taylor expanslons By the hypothesis (2 with [ = 2, a = 0, we have,
for any ¢ € TS+, s >0,

ld®a(i(@) (e (@), (s Ss [72(9)]
+ ()]

B 2()l e, + [ (el e, [22(#)]

Eso
—~ ~ (2.48)
E.io (o)l e, [[22(0) | £, -

Squaring the expressions on the left and right hand side of (2.48)) and then integrating them with respect to
®, one concludes, using (2.42)), (2.43)), and the Sobolev embedding (|1.18]), that

”d a(l )[517L2]HL2 Hs Ss [t lls+oll2llsoro + 11 llso+o [22lls+0 + lellstolZ1llso+olZ2]lsp+o - (2.49)
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In order to estimate ||d*a(7)[1, 22| s 12, we estimate [|d*a(2)[i1, 72][|cs 2. We claim that

ld*a(D)[21, 2] |

so that the estimate for ||d%a(7)[z1,72]||s stated in (2.47) follows by (2.49)), (2.50), and (2.42)). The bound for
|d2a(?)[t1,72]|| P is obtained in the same fashion.

Proof of ([2.50). By the Leibnitz rule, for any 8 € NS+, 0 < |3| < s,

O (Pali@)R) B@)) = D eprpnsdl (Pali(@) [027(0), 027()] (251)

B1+P2+B3=p

CcsL? Ss [tllsotollz2lls+so+o + 21 lls+so+o 22l so+0 + [l s+s0+o 121 lso+o 22/l s0+0 (2.50)

where cg, g,.3, are combinatorial constants. Each term in the latter sum is estimated individually. For
1 < |B1| < s we have

O (d*a(i())) [027T01 (), 02 Ta(p)] =
D Carand"Pa(i(9) [0211(p), -+, 08m i), 02T (), 05 Ta()]
1<m<|B1]
a1t am =1

for suitable combinatorial constants cq, ... a,,. Then, by (2.46)) with [ = m + 2, o = 0, we have the bound

185" (da (D) (05271, 0% Ta)lleo 2 Sp (2.52)
>+ ellgont g, ) - LA Nellgiomi g MEallgieet g 22l ioat 5,
1<m<|6|

a1+ tam=p1
Arguing as in the proof of the formula (75) in [8], for any j =1,...,m, we have

lajl

1 ledl
(1 + Wllgost ) s (1 lellen)'™ 1 (1 + el )

and, using the interpolation estimate (2.45)), we get

Lt lellponig,) - (Ut ellepomt g B Nl B2l gla 5 (2.53)
-l TR R 1l o]
Ss [@alleg s, 2l Hb2||co 122l oo s, [T +llelles )™ 7 (14 llell o1 ) T
Jj=1

[

1821 _5m ‘7 m
Ss Hu\lco = [zl ‘2 thllco = 22l ‘2 (At lelleg s, )™ =TT (1 e Uietsip, )iz T

By ([T, @), (1+ llleys, )™ S (14 [l o)™ S (14+8)m and Zialosl 10—y Lol 1ol
so that

1 1isal Lol altioal 15 6214153 16,1
253) S el s,  Ellcss, 12lleo s, e2llesm, U+ Ntlegm,) ™ (1+ [l ,) ™
1611 X

~ —~ T 18]
o (Illen, lEzlleg s, (1 + ey 2.)) ™ (Iiilles £ Ezlleg m, (1 + elleg )

B3l

—~ ~ 181
< (Illey ., lEzlles , (1 + elleg z,))

and, by the iterated Young inequality with exponents |8|/|581], |5|/|82], |81/|Bs|, we conclude that (2.53) is
bounded by

H71||c0E ||72||cg,E,,(

H Is+so+ol@allsorollzzllsore + +llealls+sorolillsoro + [[22llso+ollE2llstsoto -

:8,) + e e, 2llcor, 1+ e g, ) + [l 5, [[22lles £, (1 + [lllco &, )
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Note that (2.52) satisfies the same type of bound as (2.53). The term in (2.51)) with 8; = 0 is estimated in
the same way and thus (2.50) is proved.
PROOF (ii)-(iii). Let v — () = (6(¢), y(¢), w(p)) be a torus embedding. If a(6,0,0) = 0, we write

1
a(t) :/0 da(t)[e]dt, 1 = (1=1)(0(),0,0) +ti(e), v:= (0,y(p), w(¥)),

and, if a(6,0,0),0ya(8,0,0), wa(d,0,0) vanish, we write
1
a(l) = / (1 —t)d*a(iy)[2,7) dt .
0

Ttems (#4)-(iii) follow by item (i), noting that |[Z][5™ =[]0, y(-), w(:N|EP? < [elE™™ for any s > 0. O
Given M € N, we define the constant
sy = max{sg, M + 1}. (2.54)
Lemma 2.24. Assume that, for any M > 0, there is op; > 0 so that:
e Assumption A. For any s > 0, the map
R (V7V(8) N Eqon) X @ — B(H®(Ty), HTMT1(Ty))
is C> with respect to t, C* with respect to w and, for any r € V7™ (8) N Esioy,, @ € NS+ with |af < 1,
105 R )@ rgeresr Sonr (1@l arg + [[wll yovone ([0 22

and, for any 1 > 1, ||d'02R(x; w)[@][t1, - - - 8[| s is bounded by

l l l
Sota N80 [T 18w, + 18022 (Il yovon TT Billen,, + 3 (Eilleray, T Ealle,,)) -

j=1 j=1 Jj=1 n#j
e Assumption B. For any —M — 1 < s <0, the map
R :V7M(8§) x Q — B(H*(Ty), HTMTH(Ty))
is C> w.r to ¢, C' with respect to w and, for any r € V7™ (§), a € NS+ with |a| <1, and 1 > 1,

1SR )@ grgrrr So,ar 10
l

'SR (x5 ) @]Fr, - B oy Ssnra 1@z [T 18511, -
j=1

Then for any S > sy and X € NS+, there is a constant opr(N) > 0, so that for any (@) = (¢,0,0) + ()
with HL”I;;};(Z?\{(A) < and any ni,ne € N satisfying ny +no < M + 1, the following holds:
(i) The operator <D>"18;>(R o I){D)™ is Lip(7y)-tame with a tame constant satisfying, for any sy < s < S,

Li
M pym103(Roty(Dy2 (8) Ssmx 1+ | Hs—fazf)()\) :

gz) The operator <D>”18$(dR(Z) [2]){D)™ is Lip(vy)-tame with a tame constant satisfying, for any sy < s <

Li Li Li
M pymi o3 (@R (1)) (D)2 (5) Ss,MA ||A]|gf0M(A) + e IISEC,M(A)IHISOTZL(A

(#1i) If in addition R(6,0,0;w) = 0, then the operator (D)™ 9)(R o I)(D)" is Lip(y)-tame with a tame
constant satisfying, for any spyr < s < S,

Li
m(D)nlag(Roz)w)nz(S) S8,MA HLHSJ:)(EL)(A) )
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Proof. Since item (i) and (i7) can be proved in a similar way, we only prove (ii). For any given ny,ny € N
with ny +ng < M 41, set Q := (D)™ R(D)™. Assumption A implies that for any s > M + 1 and any
T € VM) N sty , the operator Q(r) is in B(HE) and for any T1,...,% € Fsyp,, with 1 > 1, and @ € HE

1QW) @ g Ss.nr @1 rg + Nwll grovons [|@]] gacss

1
Id' (Q)[@])[Er, - - - Bl s < ] IElle,,
j—1

(2.55)

(. H Bl + Z Bl [1 IRz, )
n#j

Furthermore Assumption B implies that, for any r € V7 (§), the operator Q(x) is in B(L?2) and for any

/g\la"'a/g\l GEUM,ZZ 17

l
QW a2y Sm 1, d'QWE- - Blllswz) Saa [[ IE e, - (2.56)
Jj=1
One computes by Leibniz’s rule
REAQINERN) = Y. eneaad QM) (), 03 i), 03 )] (257)
0<k<A|
)\1+..4+Xk+1:)\

where ¢y, ... x,,, are combinatorial constants.
ESTIMATE OF (|93 (dQ(i(0)) [e(0)]) [@]| 22 11 - By ([2.58), we have, for s > M +1

1" QH(@)) (05 1), - -, D3 L), D3 1 Up) [@ ()] | s (2.58)

k
Soank |8 2 10300 8,,, [T 10528, ,
n=1
k
+ [0 ()| graa+2 (||L(<P)| Baron 100 0O, [T 11027 20) 18,
n=1
+Z||6M Werioy ([T 5O 2., VO30, + 105500 5, v, H 1957 &( )HEW>-
n#j n=1
Note that by the Sobolev embedding and (2.43)), for any s > 0, u € NS+
105t()le. S 1+ 1105tllcor, 1+ llellstsotinl (2.59)
Hence and || - |rz s S || - [|s imply that for any 7 with || ”?;IjraM()\ <¢and any s > M + 1,
||32(dQ( ()@ () 12 1 (2.60)
S M@ sTllso+onr 3) + 1Dl 111 (ellstonr ) 1Ellsoron ) + [T s40mr 1))
for some constant opr(A) > 0.

ESTIMATE OF (|03 (dQ({(¢)[{(9)])llmsm(z2)- For any s € N, f € N+, [B] < s, we need to estimate
1052 (dQ(U(@)) [ @)]) | L2 (22)- As in ([2.57) we have

QNN = Y. Carman QUL H(), - ., 02 (), 83 T(p)]
0<k<|B]+|Al (2.61)
art...tagp1=5+A
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where cq, ... a,,, are combinatorial constants. By (2.56) and (2.59)) one obtains that

k
14" Q(U()) 05 () - - -, Okl 0), Dk W) |z mrzy Spon [T+ Nelliopma ) [l a4 (262)

j=1

for some 7y, > 0. Using the interpolation inequality (2.4)), and arguing as in the proof of the formula (75)

in [8], we have, for any ¢ with ||¢||,,, <1 and any j =1,...,k,
1 oyl forl ellp <1 loj |
L lelljag e S A llellnn )™ TR+ el geai4m) T S (L4 el gaj4ma) PP
lotgy1l logt1l

hoestonne S Ilme = [0 E5T,
Then by (2.62)) and since ijl laj| + |aks1] = |8+ A, it follows that
14" Q)10 i), - - - Bakf( ), 05" )]l L2 B(r2)

o1l log 41l

58 A (1 + ||LH|5+>\|+77M) “3“' ||AH77M A ||AH||5B.:,\A|‘+17M
Zw_m‘; ]
=Y
Son (4 1l 1ma0) 1l ) 17055 e
Seon [Tgx4mar + Nelligrrsmse [Elnns (2.63)

. . - . . A
where for the latter inequality we used Young’s inequality with exponents Zl’“ﬁ + |(LJ K ||('f o . Combining (|2
and (2.63) we obtain

||3$(d9(5)[ﬂ)||H;B(Lg) Se. M ellsinfrmar + el s ellna - (2.64)
ESTIMATE OF H@g(dQ(Z) m)['@]”Hv,Li Using that

—~ 1/2
(2 14O ©*)  Seo 1Al

LETS+

one deduces from [8, Lemma 2.12] that for any & with [[¢[[25,4|x|+n,, < 1 and any s > s,

103 @z 22 S 103@AQWED 200 (12 1@ 5 22 + 103AQEED | o0 o) 1Bl 2012 (265)

_ _
et @5l 2s0-+131+mas 1@ lso (oo inrmae - [ellootinrmae [Tl s+ 51mar)

Increasing the constant ops(A) in (2.60) if needed, one infers from the estimates (2.60)), (2.65) that for any
s > sy = max{so, M + 1}, 03(dQ(1)[1]) satisfies

103D [@]Ils s,z 1Bl 1Tl so 400 3) + 1Bllsns (ITls+00x) + Mellstons ) [Tlsoransy) - (2.66)

Furthermore, arguing similarly, one can show that for any w1, ws € 2, w1 # we, the operator 3$Aw (dQ(D)[1)
satisfies the estimate, for any s > s,

|28 (D[], - _ L
ol et MBI o+ 1@ lene (I )+ I o LG50 ) - (267)

It then follows from (2.66)) and (2.67) that there exists a tame constant Smaé(dg(z)m)(s) for 8;‘(dQ(Z) [

satisfying the estimate stated in item (7).
PROOF OF (iii). Since R(#,0,0) = 0, we can write

R(Z):/O dR(in)f]dt, T = (1 =1)(0(¢),0,0) +ti(e), Up) = (0,y(0), w(®p)).

Since ||t]]s < ||t]|s for any s > 0, item (4i7) is thus a direct consequence of (7). O
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2.5 Egorov type theorems

The main purpose of this section is to investigate operators obtained by conjugating a pseudo-differential
operator of the form a(p, )02, m € Z, by the flow map of a transport equation. These results are used in
Section [6.3

Let ®(79, T, ¢) denote the flow of the transport equation

aT(I)(TO7T7 50) = B(Ta 90)(1)(7_077—7 50) ) (p(T()aTOaQD) = Ida (268)
where 5( )
B(r,¢) =11, (b(T7 ©, )0 + by (T, 0, a:)) , b=b(r,p,x):= #’pr) , (2.69)

and the real valued function B(p,x) = B(p,x;w) is C*° with respect to the variables (¢, z) and Lipschitz
with respect to the parameter w € . For brevity we set ®(7,¢) := ®(0,7, ) and ®(¢p) := ®(0,1,¢). Note
that ®(¢)~! = ®(1,0, ) and that

(I>(7_07 T, SD) = (I)(Ta SD) o (I)(TOa (P)il . (270)

By standard hyperbolic estimates, equation (2.68)) is well-posed. The flow ®(7p, 7, ) has the following
properties.

Lemma 2.25. (Transport flow) Let A\g € N, S > sg. For any A € N with A < Ao, ny1,ne € R with
ny+ne =—A—1, and s > sg, there exist constants (g, n1,n2) >0, § = 0(S, Ao, n1,n2) € (0,1) such that,
if

1BIIER0 <3, (2.71)

so+o(Xo,n1,m2) —

then for any m € S, (D}"lﬁémé(m,ﬂ ©)(D)™2 is a Lip(y)-tame operator with a tame constant satisfying

M (pyr10), a(romie) (D)2 (5) S r0mima 1+ [BIEE0 ¥so<s< S, Vm,mel01].  (272)

s+o(Xo,n1,m2)

In addition, if ny +ny = —X—2, then (D)™ 0} (®(10,7, ) —1d)(D)" is Lip(7)-tame with a tame constant
satisfying
Li
M(Dyr103 (®(r0,m,0)—1d) (D)2 () S x0,m1,mz ||| p(Y) Vso <s< S8, Vr,7€l0,1]. (2.73)

s+o(Xo,n1,m2)

Furthermore, let so < s1 < S, n1,na € R, \g € N, A < g withny +ne = —-A—1, m e S;. If f1 and P2
satisfy || Bills; +o(n1,ne) < 0 for some a(ni,nz) >0, and § € (0,1) small enough, then

||<D>n16$mA12(I)(TOaTa 90)<D>n2HB(HSl) 5817)\07”17"2 ||A12/8||S1+U(n1,7’b2) y T, T € [07 1] ) (274)

where AlQﬂ = 52 - 51 and A12¢(T077_7 90) = (I)(TO7T7 50762) - (I)(T()a 7, 50761)

Proof. The proof of (2.72) is similar to the one of Propositions A.7, A.10 and A.11 in [9]. In comparison
to the latter results the main difference is that the vector field (2.69)) is of order 1, whereas the vector field

considered in [9] is of order 3. Using (2.72)) we now prove (2.73). By (2.68), one has that
B, ¢) <= [ Blt)B(rost ) dr.
70

Then, for any A € N with A < )¢ and any ni,ns € R with n; +ne = —A — 2, one has by Leibniz’ rule
(D)9}, (®(7o,7, ) —1d)(D)"™

= > Cxl,xz/T(<D>"132;B(t7¢)<D>"2“2“)(<D>*"2*A2*13$1‘1>(707t,¢)<D>”2)dt

A1+A2=A 70
= Z CAW/ ((DY™ a3, B(t,)(D) 1=~ M) ((D) ™72 71932 ®(7o,t, ) (D)"?) dt
A1+Aa=A 70

19



where cy, », are combinatorial constants and we used that no + A2 +1 = —1 — n; — A;. Recalling the

definition (2.69)) of B, using Lemmata 2:27H(i), and (2.72), one has that for any s > so,

n —n1—Xp (Li Li
m sy oa (8) S (DY B(D) 1A Lip0) w1815

(Dym 8$}nB<D>— 0,5+X1,0 NS A1, st+o(A1,n1)?

Lip(y) (2.75)
m<D>—1—"2‘*263%@(ro,t,go)w)nz (8) Ssxaimamz 1+ ”ﬁ”S-‘rU(/\zmlﬂw) :

Then ([2.73) follows by (2.75)), Lemma|2.14|and (2.71). The estimate (2.74) follows by similar arguments. O

For what follows we need to study the solutions of the characteristic ODE 0,z = —b(7, ¢, x) associated
to the transport operator defined in (2.69).

Lemma 2.26. (Characteristic flow) The characteristic flow v™7(p,x) defined by

0T (g, x) = =b(T, 0,7 (@, @), YO (p,x) =, (2.76)

is given by )
’VTO’T(V% SL‘) =z+ TOB(SOa LU) + ﬁ(Tv ®, T + TOB(()O7 l‘)) ’ (277)

where y — y + B(T, ©,y) is the inverse diffeomorphism of x — x + 75(p, x).

Proof. A direct computation proves that 4% (y) = y + (7, ¢, y) and therefore 77°(z) = x + 78(p, z). By
the composition rule of the flow 7707 = 4%7 0 47:0 we deduce (2.77). O

Lemma 2.27. There are 0,0 > 0 such that, if ||BHI;;3_(;) <6, then

(1) [l o IBILESY for any s > so.

(i) For any 70,7 € [0,1], 5 > s, we have |7 (p,z) = a7 <, |85

(133) Let s1 > so and assume that ||Bjlls,+0 < 0, j = 1,2. Then Algb = b(-; B2) — b(+; B1) and Ajay™ 7 =

N7 (o5 By) — 4T (+; B1) can be estimated in terms of Algﬂ = Py — P71 as

HA12b||31 St ||A125||51+U, HA12'VTO’T||81 Se ||A12,8||31+U.
Proof. Ttem (i) follows by the definition of b in (2.69) and Lemma[2.2] Item (i) follows by (2.77) and Lemma
Ttem (ii7) follows by similar arguments. O

Now we prove the following Egorov type theorem, saying that the operator, obtained by conjugating
a(p,x)00, m € Z, with the time one flow ®(¢) = ®(0,1,¢) of the transport equation (2.68)), remains a
pseudo differential operator with a homogenous asymptotic expansion.

Proposition 2.28. (Egorov) Let N, \g € N, S > 50 and assume that 3(-;w), a(;w) are in C® (TS xTy) and
Lipschitz continuous with respect to w € ). Then there exist constants on(Ao), on > 0, (S, N, Ag) € (0,1),
and Cy > 0 such that, if

Lip(v) Li
Hﬁ”soig,v(xo) <6, |a ||soigN(,\0) < Co, (2.78)
then the conjugated operator
Plp) == @(@)Po(p)®(p) "', Poi=alp,z;w)dy", meL,

is a pseudo-differential operator of order m with an expansion of the form

me i, T W)+ Ry (p) (2.79)

with the following properties:
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1. The principal symbol p,, of P is given by
pm(@y x; W) = ([1 + By(%@, Y; W)]ma(@> y;w)) |y:x+ﬁ(tp,m;w) (2'80)

where y — y + B(cp, y;w) denotes the inverse diffeomorphism of x — x + B(p, x;w).
2. Foranys>sgandi=1,...,N,

o — a”gip(v) , Hpm—illlgip(”) 5371\/ ||5||L1P(’Y) + Ha”LiP(“/)Hﬁ”LIP (GD) . (2.81)

ston s+on sotonN

3. For any A € N with A < Ao, n1,ne € Nwithni+no+ X < N—1—m, k €S, the pseudo-differential
operator <D>”182kRN(g0)<D>”2 is Lip(7y)-tame with a tame constant satisfying, for any so < s < S,

Li Li Li
My 03, R o)D)z (8) S.vne BTy + Al Z2 B o) (2.82)

4. Let so < s1 and assume that ||3;||s, +on (r) < 05 l0lls,40n(r0) < Co, j =1,2. Then

[Ar2pm—ills; Ssi.v [|A120]s; 405 + 121285 40xs E=0,..., N,
and, for any A < Ao, n1,n2 € N withny +ne+X <N —-1—m, and k € S,
(D)™ 0}, A2 RN () (D)2 | (1r1) S Nomnma 181286y 40 (30) + (18128151 10w (20)
where we refer to Lemma[2.25 for the meaning of Aqs.

Proof. The orthogonal projector I is a Fourier multiplier of order 0, II, = Op(x.(§)), where x is a
C>=(R,R) cut-off function which is equal to 1 on a neighborhood of S* and vanishes in a neighborhood of
SuU{0}. Then we decompose the operator B(7, @) = I (b(r, ¢, 2)0; + b, (7,0, x)) as

B(7,) = B1(T,¢) + Boo (T, ) ,

N (2.83)
Bi(1,9) = b(1,90,%)05 + bas(7,90,7),  Boo(7,0) 1= Op(beo (7, ¢, 2,€)) € OPS
where for some o > 0, B, satisfies, for any s,m > 0 and a € N, the estimate
[Bocl "t S 18115557 (2:84)
The conjugated operator P(1,¢) := ®(7, 0)Po(¢)®(7, ) ! solves the Heisenberg equation
O:P(r,) = [B(7,¢), P(1,0)], P(0,9) =Polp) = alp, z;w)0;". (2.85)
We look for an approximate solution of (2.85) of the form
N .
= me,i(T, o, x)om " (2.86)
i=0
for suitable functions p,,—;(7, ¢, ) to be determined. By (2.83)
[B(Ta 90)7 PN(Tv 50)] = [Bl (7—7 90)7 Pn (Tv 90)] + [BOO (7—7 QO), Pn (Tv (P)] (287)

where [Boo (7, ¢), Pn(T, ¢)] is in OPS~°, and

N
[Bi(7,0), Pn(7,0)] = D _ [b0s + b, pm—i0) '] .
1=0
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By Lemma [2.11] one has for any i = 0,..., N,

N—1i
(604 + ba, pr—i0 "] = (b(Pm—i)e — (M — D)bopm—i) 07"+ > _ gj (b, pm—i) 07 + R (b, Pru—si)
j=1

where the functions ¢;(b, pm—i) = ¢;(b, pm—i)(T,¢,x), j = 0,..., N — 4, and the remainders Ry (b, prm—;)
can be estimated as follows: there exists oy := on(m) > 0 so that for any s > sg, (cf. Lemma (7))

L L Li Li
195 (5 D) IEPD S s IBIEE o |52 4+ 18115 pim—s |52 (2.88)

and for any s > sp and o € N (cf. Lemma (44))
Li Li Li Li Li
RN (Ol V 0 Som s IBIEo 0 [Pl 500 + 1B om il 557 (2:89)

Adding up the expansions for [0, + by, pp—i02 "], 0 <i < N, yields

N N N-—i N
[Bl (7,9), Pn(T, @)] = Z (b(pm—i)ac —(m— i)bxpm—i)a;nii + Z Z gj(bvpm—i)ﬁgbiiij + Z RN (b, Pm—i)
1=0 =0 j5=1 1=0
N N Jk N
= Z (b(pmfz)m - (m - Z)bmpmfz)a;n_l + Zgj (bapmfk+j)8;n_k + Z RN(bvpmfz)
i—0 k=1 j=1 1=0
N
= (b(pm)z - mbmpm)a;n + Z (b(pm—i)m - (m )bzpm i+ 91)3 + On (290)
=1

where, for any ¢ = 1,...,N, g; := 2321 95 (b, Pm—it+;) and Qn = 27];\;0 Ry (b, pm—i) € OPS™ N=1. Defin-
ing for any s > 0,

Mei(s) == max{||pm_||XP E=0,...,i — 1}, M(s) := max{||pm_i||5P,i =0,..., N}, (2.91)
we deduce from (2.88) and (2.89) that for any s > s, « € N, i =10,..., N,

~ i Li Li
|| HL P(M <S N M<l(8 + UN)HBHSO?FUN + M<Z(SO + UN)HBHSJFO'N
Li Li Li
[ON PRt 0 S MCs + ow)IBI53% + M50 + om)IBIEY
By (2.86)), (2.87), and (2.90) the operator Py (7, ¢) solves the approzimated Heisenberg equation

OrPn(7,¢) = [B(1,¢), Pn(7,0)] + OPS™ N1,

(2.92)

if the functions p,,_; solve the transport equations

8'rpm = b(pm)m — MbePpm ,

. ~ . (2.93
87—pm—i = b(pm—i)ac - (m - Z)b£pm—i +gi, i=1,...,N. )

Note that, since g; only depends on p,,—it1, ..., Pm, we can solve (2.93) inductively.
DETERMINATION OF p,,,. We solve the first equation in ([2.93)),

anm(Tv ®, x) = b(Tv ®s "T)aérpm (7_7 ¥, 'T) — mby (T’ 2 x)pm (Tv 2 ‘T) y DPm (07 2 (E) = a(@a ‘T) .

By the method of characteristics we deduce that

T 07 (o 2)) = exp( —m TI,,O’t , T alp, T .
pulroen® (o)) = esp( =m [ bolton (o) dt)a(o.a) (294)
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where 707 (¢, z) is given by (2.77)). Differentiating the equation (2.76]) with respect to the initial datum =,
we get

0r (0™ (2)) = —ba (7, 0,7 ()™ T (), Oy (2) = 1,
implying that

0 (p) = exp( = [ bt o™ (o)) dt). (295)
70
From and we infer that
P (7 0,) = (1077 (2,22, ) oy o - (2:96)
Evaluating the latter identity at 7 = 1 and using (2.77)), we obtain ([2.80).
INDUCTIVE DETERMINATION OF p,,_;. For ¢ =1,..., N, we solve the inhomogeneous transport equation,
Orpm—i = b0zpm—i — (M — )bepm—i + gis  Pm—i(0,,2) =0.

By the method of characteristics one has

pilrion) = | “exp(— (m i) / Cbals.p (o) ds )t o o) dE. (207)

The functions p,,—;(®,y) in the expansion (2.79) are then given by pp—i(©, ) := pm—i(1, 0, y).

Lemma 2.29. There are o) > o " > ... > o) > 0 such that, for any i € {1,...,N}, € [0,1],
52 50,
! Li Li Li
pm (7, ) — a||XPO) <, 18] ijo)) + [|a f(o)”ﬁ” p('y()o)’
N
Lip(v) < Lip(v) Lip(y (2.98)
[Pm—i (7, )l Ss IIBIIW%) + llall 7" mHﬁHsW

Proof. We argue by induction. First we prove the claimed estimate for p,, —a with p,, given by (2.96] . Recall
that 707 (¢, 2) = 2+ B(r, ¢, x) and 77(¢,y) = y+78(¢,y) (cf. 277)). Since a <p,y+7ﬁ ©,y)) —alp,y) =
fT a. (¢, y+tB(v,y))B(¢, y)dt, the claimed estimate for P thon follows by Lommata 7|and assumption
. Now assume that for any k € {1,...,i— 1}, 1 <4 < N, the function p,,_x, given by ([2.97), satisfies
the estimates (2.98). The ones for py,_; then follow by Lemmata-, 22227 [2.92), (2.91), and (2.78). O

Lemma - proves (2.81] Furthermore, in view of the definition (2.86) of P (7, ), it follows from
(2.98), Lemma 2.9} (2.22) and that for any s > sg, a € N,

i i Li Li Li
[P (7, @i 2 S via 020+ IBILT0 + all 20 181 Vo, (2.99)
N

o~

By (2.87), (2.90), and (2.93)) we deduce that Py (7, ¢) solves

8- Pn(7,0) = [B(1,9), Pn(1,0)] — QY (1,0), Pn(0,9) = ad,

) N1 (2.100)
Q ( ):: QN(T750)+[BOO(Tacp)7PN(Ta<)0)] € OPS :
We now estimate the difference between Py (1) and P(7).
Lemma 2.30. The operator Ry (7, ) := P(T,¢) — Pn(7, @) is given by
RN(T,@)=/ ®(n,7,0)QN (0, )@ (7, m, ) . (2.101)
0
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Proof. One writes

P (7,0) = P(1,0) = Vn(T,0)@(1,0) ", Vn(7,9) := Pn(7,0)®(7,0) — (7, 0)Po(s) , (2.102)

and a direct calculation shows that Vy(7) solves
0-Vn(r,9) = B(r,9)Vn(7.0) = QY (7, 0)(r, ), Vn(0,9) =0.

Hence, by variation of the constants, Vy(7,¢) = — [ ®(7,¢)®(n, @)_195\}) (n,0)®(n, ¢) dn and, by (2.102))
and (2.70)), we deduce (2.101)). O

Next we prove the estimate of Proposition of Rn(7,¢), given by (2.101)). First we estimate
Qg\}) € OPS™~N=1 defined in (2.100). The estimate of Qy, obtained from (2.92), (2.91)), (2-98) , and the
one of [Be(7,9), Pn(7, )], obtained from (2.84)), (2.99), Lemma [2.10] yield that there exists a constant
Ny > 0 so that for any s > sg, a € N,

1 Li Li Li Li
198 (1, @) [EP o s IBIERD 4 [lal| R0 g5 (2.103)

Let Ag,n1,m2 € N with A < Ag and ny +na+Xo+m < N —1, k € S;. In view of the definition
(2.101) of R (7, ), the claimed estimate of (D)™ 9}, Ry (7, ¢)(D)" will follow from corresponding ones of

(D)™ ) (0, 7,0)03 QN (1, 9)2N (7,1, @)(D)"™ (1,1 € [0,1] and Ay + As + Ag = ) which we write as
(D) a3 @, 7, ) (D) M=) (DY #10 QF (n, ) (D)) (D) 22719 (. ) (D)),

Then, we use Lemma to estimate the tame constants of the operators (D ”13>‘1 ®(n, 7, ) (D)~~~
<D>*”2’>‘3*18$2<I>(7,77, ga)(D)”Z’ the estimates (2.103)), (2-21) and Lemmatan 2.16| to estimate the tame

constant of <D>"1+>‘1+18$iQ (n’ ¢)<D>n2+>\3+1 and Lemm together with the assumption (2.78)), to
2.82)

estimate the tame constant of the composition. The bound (2.82) is finally proved.
Item 4 of Proposition [2.28|can be shown by similar arguments. This completes the proof of the latter. O

In the sequel we also need to study the operator obtained by conjugating w - 0, with the time one flow
(o) = ®(0,1,¢) of the transport equation (2.68). Here we analyze the operator ®(¢) o w - 9, (P(p) 1),
which turns out to be a pseudo-differential operator of order one with an expansion in decreasing symbols.

Proposition 2.31. (Conjugation of w-9,) Let N, X\ € N, S > s¢ and assume that B(-;w) is in C>°(T5+ x
T1) and Lipschitz continuous with respect to w € . Then there exist constants on(Xo),on > 0, 6(S, N, Ag) €
(0,1), Co > 0 so that, if

IBIER) <6, (2.104)

so+on(Xo) =

then P(p) := ®(p)ow-0,(P(p) ') is a pseudo-differential operator of order 1 with an expansion of the form

N
©) = pioilp,z3w)0L " + Rn(p)
i=0
with the following properties:
1. Foranyi=0,...,N and s > so, |p1_i||™ S [18]5R0).

2. For any A € N with A < Ao, for any ni,ne € N with ny +ne + Ao < N — 2, and for any k € S4, the
pseudo-differential operator (D)"lagkRN(cpr)W is Lip(7)-tame with a tame constant satisfying, for
any sop < s <S5,

Li
My 03, Rav(o)(D)72 (8) Ss.vno IBIEE -
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3. Let s9 < s1 < S and assume that ||Bi||s, 1oy (r0) <6, @ =1,2. Then

[A12p1-ills; Sor.v [[A128]ls140n, E=0,..., N,
and, for any A < Ag, n1,n2 € N withny +na+ X <N —2, and k € S
(D)™ 83, A2 R (9)(D)" |8 (r151) Ss1,Nomama 1812813 40 (20)
where we refer to Lemma[2.25 for the meaning of Aqs.
Proof. The operator ¥(7, ) := ®(1,¢) ow - J,(P(7,p) ') solves the inhomogeneous Heisenberg equation
6‘1‘\1’(7—7 @) = [B(Ta 90)’ \I,(T7 Qp))] —Ww- 8LP<B(T? (,0)) ) \11(07 (10) =0.

The latter equation can be solved in a similar way as (2.85) by looking for approximate solutions of the
form of a pseudo-differential operator of order 1, admitting an expansion in homogeneous components (cf.
(2.86))). The proof then proceeds in the same way as the one for Proposition and hence is omitted. O

We finish this section by the following application of Proposition [2.2§ to Fourier multipliers.

Lemma 2.32. Let N, g € N, S > sg and assume that Q is a Lipschitz family of Fourier multipliers with
an expansion of the form

Q= Zcm p(@)IMT 4 On (W), On(w) € B(H®, H¥TNHI=m) " s > 0. (2.105)

Then there exist on(Xo), on >0, and (S, N, \g) € (0,1) so that, if
Li
IBIEY ) < 8(S,N, o), (2.106)
then ®()Q®(¢)~! is an operator of the form Q + Qa(p) + R (p) with the following properties:
1. Qa(p) = Zf:;o Qm—n (0, ;W)™ where for any s > s,

$P0 San IBIESY . m=0,...,N. (2107)

||am—n| s Né, ston

2. For any A € N with A\ < Ag, ni,ne € N withny +ng+ A < N —m — 2, and k € S, the operator
(D)™ 83, R (D)™ is Lip(y)-tame with a tame constant satisfying

Li
Moy, — (D)2 (5) Ssvono BI5 Eerngy s VS0 S s <S. (2.108)
3. Let sg < 51 < S and assume that |||, 405 (r0) <0, @ =1,2. Then

||A12am—n||sl Ssl,N HA126H51+0’N7 ’IlZO,...,N,
and, for any A < Ag, n1,n2 € N withny +ne + X < N—m—2, and k € S,
(D)™ 0, A2 RN (2)(D)"* | 5(rze1) Ssv.Nomsoms 18128640 (20)
where we refer to Lemma[2.25 for the meaning of Aqs.
Proof. Applying Proposition to ®(p)0m " ®(p)~! forn =0,..., N, we get

(Zcm n(w)Om~ ”) Zcm n(W)O " Q@(@)‘FR%)(‘P)

where Qg (p) = EnN:o Qe (0, ;W)™ with auy,—p, satisfying (2.107) and the remainder Rg\}) () satisfying
[2.108)). Next we write ®(¢)On®(p)~! = QN + Rg\%)(go) where
R (9) = (B(p) — 1) QnP(p) ! + Qn (V) ! —1d) .

We then argue as in the proof of the estimate of the remainder Ry (7, ¢) in Proposition Using Lemma
and the assumption that Qy is a Fourier multiplier in B(H*, H*TN+1=™) we get that RS\Q,)(QD) satisfies

(2.108), and Ry (p) = RS\P((p) + RE\Q,)(cp) satisfies (2.108) as well. Item 3 follows by similar arguments. O
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3 Integrable features of KdV

3.1 Normal form coordinates for the KdV equation

In this section we rephrase Theorem 1.1 in [I5] adapted to our purposes and prove some corollaries.

We consider an open bounded set = C RS;O so that holds for some § > 0. Recall that V*(d) C &s,
V(§) = V°(8) are defined in and that we denote by r = (6,y,w) its elements. The space V(§) N &, is
endowed with the symplectic form

W= (Zjeg+dyj Adb;) @ Wy (3.1)

where W, is the restriction to L% (T;) of the symplectic form WLg defined in ([1.7]). The Poisson structure

J corresponding to W, defined by the identity {F,G} = W(Xp, Xg) = <VF, jVG>, is the unbounded
operator R N
\7 : Es — Es 3 (97§u ﬁ}\) = (_@\7078:17&)\) (32)

where (, ) is the bilinear form in (1.23).

Theorem 3.1. (Normal KdV coordinates with pseudo-differential expansion, [15]). Let S; C N

be finite, = an open bounded subset of RS;O so that (1.13) holds, for some 6 > 0. Then, for § > 0 sufficiently
small, there exists a canonical C* family of diffeomorphisms W, : V(8) — ¥, (V(8)) C LE(T1), (8,y,w) — q,
v € =, with the property that ¥, satisfies

U, (0,y,0) = Tk (0,0 +y,0), V(0,y,0) € V(5), WweE,

and is compatible with the scale of Sobolev spaces H3(T1),s € N, in the sense that ¥, (V(6) N Es) € Hy(Ty)
and ¥, : V(6) N Es — HF(T1) is a C*—diffeomorphism onto its image, so that the following holds:
(AE1l) For any integer M > 1, v € E, t = (0,y,w) € V(8), V,(r) admits an asymptotic expansion of the

form
M

U, (0,y,w) = (0,0 +y,0) +w+ Y a¥y(5v) 0, Fw+ Ry (x5 v) (3.3)
k=1

where Ry, (0,y,0;v) = 0 and, for any s € N and 1 < k < M, the functions
V((S) X2 — HS(Tl)a (xv V) = a‘ijk(xv V) ’ (V((S) N gé) X2 = HS+M+1(T1)a (L V) = R%(P, V) )
are C™.

(AE2) For any r € VX(8), v € Z, the transpose d¥,(x)" of the differential d¥,(x) : Ex — HE(Ty) is
a bounded linear operator dV¥,(x)" : HY(Ty) — Ei, and, for any ¢ € HL(Ty) and integer M > 1,
dV,(xr)"[q) admits an expansion of the form

M M
aw, (1)@ = (0,0, TG+ Y a® (1)0, G+ S (0, w) A% (0)(@)) +R3F @ w)la) (3.4)
k=1 k=1
where, for any s > 1 and 1 <k < M,
VIS) x Z = H¥(Ty), (1,v) — a® (1;v),
VI(6) x = = B(HL(Ty), H (Ty)), (r,v) — A (x;0),
(V(0) N E) x E— B(H(T1), Bssrria), (5v) = RY (1),

are C*°. Furthermore,
.
ay (v) = —a2i(5;v). (3.5)
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(AE3) For any v € Z, the Hamiltonian H* (-;v) .= H*¥ o ¥, : V1(§) — R is in normal form up to order
three, meaning that

H (0, y,wv) = W)y + = (Q’“d”(D vyw,w) , + ﬂ’“”( Myl -y + REY(0,y,wiv)  (3.6)

2
where wF (1) = (wﬁd”(u)ne&r,
dev D I/ Z dev 12‘rmz7 dev( ) — (8ij]]:dv(y))j,kes+a
neS+
1, N . (3.7)
Qﬁdv(V) = %widv(y7 O) , Vne€ S y w = GZSJ_ wnel%rnx
and RF® . V1(§) x = — R is a C* map satisfying
RE (0, y,w;v) = O((lyll + lwll2)?) , (3.8)

and has the property that, for any s > 1, its L?—gradient
(VH(0) NE) x E = By, (r,v) = VR (1) = (VoR™ (1;), Vy R* (13), VW R* ™ (1))
is a C*° map as well. As a consequence

VRF®(6,0,0;v) =0, di VRF(0,0,0;v) =0, 9,VR""(6,0,0;v) =0. (3.9)

(Estl) Foranyv €=, a € N*+, 1€ V(6), 1 <k<M,%1,....,11 € By, s€N,
105 a0l Sopa 1, (d'03a (50, Bl Sokita H 12511 2o -

Similarly, for any v € Z, a € NS+, r € V() N &, T1,..., 5 € By, s €N,

105 RN (&) | g St lwlly

ORI o il i oot Y (IEsle. TT Iz, ) + el H Il15, -

Jj=1 i#£]

(Est2) Foranyv €Z, a € NS>+ reVI(§),1<k<M,71,.... € By, s>1,
T T o~ ~ o~
195 ey (550) 1 ms Sska 1 ld'0gay (5 ) [Ers - Bl Serta [] e,

Jj=1

T T P~ —~ ~
105 ALL (65 ) sy ) Sk 1, Id'OTALE ()L, - Bl sy ) Ssavta [ 185, -
j=1

Similarly, for anyv € Z, a € NS+ r € V()N &, T1,..- T € By, € HY, s > 1,

T ~
102 R (5 )@ Bsarar Ssnta Iz + llwllzr

l l
Bovais Sott Nl [T 16 lle, + 1dlm > (18]
=1 =1 i#j
l
1@l lwllzs [T €52, -
j=1

Bille, )

ld' (90 REY " (150) (@) 1, - - - &)
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We now apply Theorem [3.1|to prove results concerning the extensions of d¥,(zr)" and d¥, (r) to Sobolev
spaces of negative order. We refer to the paragraph after (1.22)) for the definitions of &, E for negative s.

Corollary 3.2. (Extension of dV¥,(r)" and its asymptotic expansion) Let M > 1. There erists
om > 0 so that for any r € VoM (§) and v € 2 _, the operator dW,(xr)" estends to a bounded linear operator
dv,(x)" : HyM=Y(Ty) — E_p—1 and for any § € Hy ™ ~1(Ty), d¥,(r)T[q] admits an expansion of the form

M
4w, ()" [d = (0,0, + 11, > oci(s w79, G) + RE7! (55540 )| (3.10)
with the following properties:
(i) For any s > 0, the maps
VOM(6) x E = H*(T1), (r,v) = a(sv;d¥ "),  1<k<M,

are C*. They satisfy a®5t(x; v dv’) = ai‘I{T (;v) (cf. Theorem(AEZ)) and for any o € NS+, 71,....,1, €
Eqyy, and (5,0) € V4 (5) X 2,

105 a5 (553 0 )y Ssopra 1,

|0 dast (5 v dU ), Fllls Sonrie H B, (310
(i) For any —1 < s < M + 1, the map
R (5 dP ) - VM (§) x E — B(Hy *(T1), Exrs1—s)
is C*° and satisfies for any o € NS+, T1,... .11 € E,,,, ¢ € Hy *(T1), and (r,v) € V°M(§) x Z,
105 REF (153 d¥ )@l g1 Sara 1l
(3.12)

107 d'R57 (g5 v d¥ D)1 B [@ | gy Ssntta 185 H 512, -

(#i1) For any s > 1, the map
RET (55dWT) + (V7 (8) N Evay) X Z = BHF(T1), Esiars1)

is C> and satisfies for any o € NS+ 71, ..., 11 € Egyo,,, ¢ € H3(Ty), and (x,v) € (V"M (o)n ES+,TM) X Z,

105 RET (63 A9 )@ Bas 1. Ssnra @1z + Nellsrone 1T a2
l

102d" RS (x;v3 AV ) [E1, - B [@ Barsr s Ssbta 11| 22 H 175l &, (3.13)
=1 :

l

l
+ 1191l 2 (Z EllE.rn, [TIENE,,, + e, T] ||@'HEUM) :

j=1 i#j j=1

Proof. By Theorem for any (r,v) € V(§) x E, the differential d¥, (r) : Eo — L3(T,) is bounded and, for
any M > 1, differentiating (3.3)), d¥, (r)[z] admits the expansion for any T (9 Y, w) € Ey of the form

M
AV, =0+ % (50)07 5 + RS (1), (3.14)
k=1
M o~
R ) =38, *w)da®, (5 0)[F]) + dRY; (5 0)[F] + do, ¥ (0, v + y,0)[6,7] -
k=1
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For op; > M, the map RE\Z) 1 VoM (§) x E — B(Ey, HMT1(Ty)) is C*° and satisfies, by Theorem E(Estl),
for any o € NS+, 1 > 1,
105 RS (65 ) Bl gaess Savn ¥y

! (3.15)
e 1 P~ o~ o~ o~
102 d' R (6 ) v B gpares Sara (e [ 16, , -

j=1

Now consider the transpose operator d¥, (r)" : L3(T;) — Ey. By (3.14), for any g € L2(T;), one has

M
aw, () (3] = (0,0, TG+ 10 Y (<140 (a%(w5v) @)) + RS (v 0) T[a). (3.16)
k=1

Since each function a¥, (r;v) is C*° and R(l (;v)T : H-M~Y(T,) — Ejy is bounded, the right hand side of
(3-16) defines a hnear operator in B(H, i 1(T1) E_pn-1), Wthh we also denote by dv,(r)". By (2.11),
the expansion ([3.16) yields one of the form where by (3.15) and Theorem (Estl) the remainder
RS (r;v;d0 ") Satlsﬁes for any o € NS+, 7y,...,7 € Es,,, and ge Hy M=1(T)

105 RS (5 v A9 (@l 2o St 1] g0

l
o en ~ ~ ~ (3.17)
107 d'RSF (v d¥ ) [ers - El@l B Sara @l [T IR e, -

j=1

The restriction of the operator d¥, (r) " : Hy ™ ~'(T1) — E_n_1 to H}(T) coincides with (3.4) and, by the
uniqueness of an expansion of this form,

a®t(t;v;d0 ) = a‘f‘%’;(x;z/), k=1,...,M,
M
R& (5 v5d0 1[G =D (0, w)AY, (v)[@) +RIF (mv)[@), ¥ge Hy(Ty).

k=1

The claimed estimates (3.11)) and (3.13)) then follow by Theorem (Est2). In particular we have, for any
a € NS+7?1,~ .. a/fl € EUM; (/]\G H&(Tl)a

HaaRezt(Zf;V;d\I/T)[a]HEM” SJM,OK Ha\HH; ’

1
(03 exr e b o~ (3.18)
109 d' R (v v; A ) Er - - 8@ By Sava 1@ [T I8 e, -
Jj=1
Finally the estimates (| - ) follow by interpolation between and (3.18] - O

Corollary 3.3. (Extension of d; V¥,(r) and its asymptotic expansion) Let M > 1. There exists
op > 0 so that for any ¢ € VM (0) and v € Z, the operator d, V,(x) extends to a bounded linear operator,
d W, (x): HTM72(Ty) — Hy™=*(Ty), and for any @ € H™2(Ty), d, ¥, (x)[®@] admits an expansion

d U, ( =0+ Z a®®H (1 v;d L )0, R0 + RS (v v, d oL W) [0 (3.19)

with the following properties:
(i) For any s > 0, the maps

Vo) x E— H*(T1),  (r,v) = g (5v;do V), 1<k<M,
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are C*°. They satisfy a®“! (r; v; diV) =a" (x;v) (cf. Theorem (AEl)) and for any o € NS+, Ty,.... 5 €
Eopy, and (5,) € V74 (8) % 5,

109 a5 (5 v; d L)l s Ssomra 1,
1
~ ~ (3.20)
|ogd at (x;v;d L ) [Er, . .. Bl s Ssonita H IEllE,,, -
j=1
(i) For any 0 < s < M + 2, the map
RGG(5d W) 1 VM (8) x E — B(H*(Ty), HYMH175(Ty))
is C*° and satisfies, for any o € N>+ 71,....1 € E,,,, W € H*(Ty), and (r,v) € V"M () x E,
105 REF (x: 3 dL ) [@] || pparsa—o Sara D] gy
!
R PN . = (3.21)
103 d'REF (6 v L W) 1 - B[ e Sopra 1Bl [T 1818, -
j=1
(#i1) For any s > 0, the map
Ry dL®) : (VM (0) N Esion) X E — B(HS (Ty), HYH1H5(Ty))
is C*° and satisfies for any o € N®+, T1,... T € Egjopy, @ € Hi (T1), and (x,v) € (V7 (8) NEsioy ) X E,

105 RS7" (65 v dL W) ]| gasr+s Sonra [0z + [l¥ll e

~

@]l 2,
l
105 d (RSF (v v dLW)[@])[Fr, - Bl e Sonra @l [T I8, ,

ot (3.22)
Beron L[ IEillE,,, + ]2

+ )22 (Z %115 H I&l15.,, ) -
i#]

Proof. By Theorem (AE2), for any (r,v) € V}(8) x Z, the operator d ¥, (r)" : Hi(Ty) — H1(T;) is
bounded and for any M > 1 and g € H}(Ty), d. ¥, (r) "[¢] admits the expansion of the form

st+opng

M
A~ ~ T — ~ A~
diw, (7] =T g+10 Y ah ()07 g+ RS (nv)[d].

=t (3.23)

M
R (6 )[@) =T Y (9, %w) A () [d] + REY (1:0)[d).
k=1

For opr > M + 1, the map Rgfj) VoM (§) x Z — B(HM(Ty), HY*2(T,)) is C* and by Theorem M(Est2)7
satisfies for any o € NS+ and 13,...,7 € E,,,

o 2
105 R (5 )@l yar= Sara a2

3.24)

T N - (

|02 d'"RSY (5; ) v - B @ graree S @z [T 1611, -
j=1

Now consider the transpose operator (dJ_\I!,,(zc)T)—r H{YTy) — H;'(T;). Tt defines an extension of
d1 W, (r) to H '(T), which we denote again by d, ¥, (x). By (3:23), for any @ € H'(T;), one has

M
ALV, (@)@ =@+ > (~1Fo (0 (5 v)@) + R (5 v) T[] (3.25)
k=1
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Since each function ad%’c (1:; v) is C* and the operator Rg\? (x;v)" : H;M72(Ty) — Hy*'(Ty) is bounded,
the right hand side of (| defines a linear operator in B(HO_M_Q(Tl) E_pr—2), Which we also denote

bid\I/l,(g). By (2.11)), the expansion (3.25) yields one of the form where by (3.24) and Theorem

1} (Est2), the remainder R§%! (r; v; d¥ ) satisfies for any o € NS+, fl, .. 51 € Ey,,, and weHy M=2(1)
105 RET (8573 d L W) @) | -1 Sara 8] yna2

l
. PN N " (3.26)
v Mm \Lviay Iy, ... hj|w H7' SMlLa w HyM-2 Ly Egp*
107 d'RE7 (v v3 d L W) o)l gz Smte ll@]] %l

j=1

The restriction of the expansion ([3.25)) to L? (T1) coincides with the one of d; ¥, (x)[@], obtained by differ-

entiating (3.3) (see (3.14)). It then follows from the uniqueness of an expansion of this form that
ae_x]f(;;y;dllll):a?k(;;y)v kil,...,M7

M

RT3 d L 0)[@] = Y (07 w)dia? (w0)[@] + diL RY (w5 v)[@], V€ L3(Ty).
k=1

The claimed estimates (3.20)) and (3.22)) thus follow by Theorem (Estl). In particular, for any o € NS+,
/X\l, cee ;X\l S EO'Mv and w S Li(T1)7

107 RET (v v3 AL ©) @] grarer Sara |92z

a glpext ~ S -~ : =~ (327)
105 d'REF (v v d L W) [Ers - T (@) aees Savga @2z [T I8 N6, -
j=1

The claimed estimates are then obtained by interpolating between ([3.26)) and ( - O
3.2 Expansions of linearized Hamiltonian vector fields
For any Hamiltonian of the form P(u fT (z,u,u,) dx with a C*°-smooth density

f:T1XRXRHR7 (1‘7C07<1)}_>f(z7407§1)? (328)
define

P:=PoV¥,, Pl ywv):=P,0,y,w)) (3.29)

where W, is the coordinate transformation of Theorem As a first result, we provide an expansion of the
linearized Hamiltonian vector field 0,d | V., P.

Lemma 3.4. (Expansion of 0,d, V,,P) Let P(u fT (z,u,uy) dx with f € C*°(T; x R x R). For
any M € N there is op; > 0 so that for any r € V"M(é) and v € E, the operator 8,d V., P(x;v) admits an
expansion of the form

M+3
0xd L VuP(5v)[] =TI > ag (5 v; 02d L VaP) 05 F[] + Rar(x;v; 00d L Vo P)[] (330)
k=0

with the following properties:
1. For any s > 0, the maps
(VM 0) NEetorn) X E—= H*(T),  (5v) = azk(5;v;0:d.VWP),  0<k<M+3,
are C*, and satisfy for any a € N+, T1,.... 1 € Esi0y,, and (r,v) € (VIM(6) NEsioy) X E,
10 as—1(5; v 0o d L VPl Soara 1+ lwll yoton (3.31)

l l

105 d'az 1 (v 0ed L VW P)EL, - Billliy Sonta D (EilEerey, [T Ealle.,,) + 1wl geren TTIE 5, -
j=1 n#j j=1
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2. For any 0 <s < M + 1, the map
VIM(§) x E — B(H*(Ty), H' T 75(Ty)),  (x,v) = Rar(x; 5 0.dL Vo P),
is C* and satisfies for any o € NS+ T1,... 51 € Eyy,, (t,v) € VM (§) x Z, and @ € H*(Ty),
”ayaRM(?%V§ardlva)[ﬁ3]”11£“1*5 Ss,M,a ”@HH;S )
l
N NN . R N (3.32)
107 d (RM(F v; 8xdl-vw7))[w]) [r1,... vFl]”Hé”“*S Ss.M Lo ”w”H;* H ”Fj”EgM .
j=1
3. For any s > 0, the map
(VIM(8) N Egropy) X E — B(H(Ty), HPMH(TY)),  (1,v) = Rar(r; v 0041 VW P),

is C* and satisfies for any o € NS T1,....T € Eqio,, (1,v) € (V7M(8) N Esioy) X Z, and @ €
Hi(Tl);

107 R (&5 5 0w d L Vo P)[W][| graemaser Ssonsa @111z + NJwll gyevon |0 22

l
s [ I8 e,,,
Jj=1

l l
1@l (Il oo [T 18w, + D8 E 0, [T IEE.,,)

j=1 j=1 i#j

185 d' (R (8 v; 00d 1 Vo P)[@)) [F1s - -, 7]

H;+1W+1 <s M,l,a H’LU|

(3.33)

Remark 3.5. The coefficient as in (3.30) can be computed as as(x; v; 0,dL V., P) = —(aglf) (z,u, ul?)‘u:q/ ©"
Proof. Differentiating (3.29) we have that
VP(5v) = (d¥, (1) [VP(L,(1))] (3.34)

where, recalling ,
VP(u) =y [(9g f) (@, s uz) — (9, )@, u,us)) ] (3.35)

and I3 is the L2 orthogonal projector of L?(Ty) onto L3(Ty). By (3.34)), the w— component VuP(x;v) of
VP(r;v) equals (d1V,(x)) " [VP(¥,(r))]. Differentiating it with respect to w in direction @ then yields

d1 VP v)[@] = (AP, ()" [dV PP, (1) [d P, @)[@]]] + (du(d P, (x) " [@)) [VP(‘I’V(x))] (3-36)

Analysis of the first term on the right hand side of (3.36] - Evaluating the differential dV P(u) of ( at
u=U,(¢r), one gets

d(VP)(,(x)[h] = My (ba2(x; )02 h + b (8;0)0zh + bo(x;v)h)
ba (;a V) acl (,@7 u, uw) = (p) b1 (?; v) = (b2 (x; V)):L’ ) (3.37)
(Fa V) ((8(0 )(m,u,uw) - ((agoCl f)(a:,u,ux))m) |u:\1/,,(1r) )

By Lemma 2.2] and Theorem [3.1] one infers that for any s > 0, the maps

(V3(6)088+3)XE_>H;3 (Xay)Hbl(?7V)7 i:O71a2a
are C*° and satisfy for any o € NS+ Ty,...,7 € E,y3, and (1,v) € (V?’(J) n €3+3) x =,

10901 V)| s Ssa 1+ [Jw]] govs

Hs Nela Z”?]

o ~ (3.38)
[05d b (x;v)[F1, - - -, ]|

Eova L[ Iy + ] oo H 5515 -

i#]
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By Corollary [3.2] (expansion of (d, ¥,)T), Corollary [3.3] (expansion of d | ¥,,), (3:38) (estimates of b;), (3-37)
(formula for d(VP)(¥,(x))), and Lemma 2.11] (composition), one obtains the expansion

M+3

0,(d1 W, (1)) " [AVP(T, () [di, ()] =T Y af?, (51)03F + Ri(r;v) (3.39)
k=0
where agl)(gc; v) = ba(r; v), the functions ag )k(zc, v), k=0,...,M+ 3, and the remainder R;(r;v) satisfy the
claimed properties of the lemma, in particular (3.31))-(3.33).

Analysis of the second term on the right hand side of (3.36): Since dV,(r) is symplectic, d¥,(r)" =
J1d¥,(r)~'0, where J is the Poisson operator defined in (3.2)), implying that for any @ € H1 (T,),

dy (dW, (x) ") @] = —T 1, (1)~ (dLdW, (1)[@]) AV, (x )-131
= —dV,(x) 9, d(d. T, (x)[@]) [TdT, ()" -].
By this identity we get
On (1 (oW, (©)) T[N [VP((1)] = =0ad¥, (1) 0, d(d LW, (0)[]) [T, (1) VPR, )] (3.40)
Arguing as for the first term on the right hand side of (cf. ([3:39)) one gets an expansion of the form

M+3
0 (d (dr 0, (0)T[]) [VPW, ()] =11 > af, (6:1)22 7% + Ra(x;v) (3.41)

k=3

where the functions ag )k(;, v), k=3,..., M + 3, and the remainder Ry (r;v) satisfy the claimed properties

of the lemma, in particular (3.31))-(3.33).

Conclusion: By (3.36]) and the above analysis of the expansions (3.39)) and (3.41), the lemma and Remark
[3.5] follow. O

As a second result of this section we derive an expansion for the linearized Hamiltonian vector field
02 d V , HF® where HF¥ (:;v) = HF¥ o U, (cf. Theorem (AE3)).

Lemma 3.6. (Expansion of &CdJ_Vw"de”) For any M € N there is opy > M + 1 so that, for any
(x,v) € V7™ () x E, the operator O,d Vo, H ¥ (r;v) admits an expansion of the form

0pd 1 Vo H* ¥ (1;0)[] = 0,97 (D;v)[-] + 0,d 1L VW R (1;v)[ ],

kd LSy kdvy ql—k kd (3.42)
0zd VW R¥ (1) [ = T > a1 k(51 0pd L Vi R¥™) 0L 7F[] + Rar (513 00d . Vi, R¥)[
k=0
with the following properties:
1. For any s > 0, the maps
VoM(8) N Estoy,) X E — HY(TY), (,v) — a1-_p(x;v; 0pd L V, R*) 0<k<M+1,

are C* and satisfy for any o € NS+ T1,... )51 € Esiy,, and (1,v) € (VM (8) N Esioyy) X Z,

165 a1 -1 (&3 v: 00 d LV R¥ ) | 11 Sospa 1yl + [l oo
l
d'05 a1 (x5 v; 0d L Vi R¥) 1, - Bty Ssbia D, (EllEes,, [] IEall2,,,)
= by (3.43)
l
+ Uyl + [wll evone) TT 185115, -
j=1
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2. For any 0 <s < M + 1, the map
Rar (55 05d 1 Vi, RFWY : VM (§) x 2 — B(H*(Ty), H)'T175(Ty))

is C*° and satisfies for any o € NS+ T1,... .51 € By, (t,v) € VM (§) x E, and @ € H *(Ty),

105 Rar (55 B VRA) @] o1+ Sonrn (Il + el a1l (3.44)
l
40 Roas (653 O, d . VRE @I - Fill o= Soornia @l [ il - (345)
Jj=1

3. For any s > 0, the map
Rar (55 05d 1 Vi R¥) 0 (VM (8) N Egpony) X E — B(HY (Ty), HTMTH(TY)),

is C* and satisfies for any o € N+ T1,....T1 € Esyoy, (1,V) € (Esion NVIM(S)) X 2, and @ €

Hi(Ty),
105 Roas (53 v; 0xdy VREW)[@] | pys-sran (3.46)
Ssa (Yl 4wl geron) @2z + (yll + [lwll gos ) @] & '
l
'SR (55 v 02 d L VRF) [@][E1, . Bl groerrsr Sensna 1@)ms [ 112,
l = (3.47)
@2 Y (18ileay, [T IEallen,, ) + 1@l ezl pesess TTIE5lIE,
i=1 nti j=1
Proof. Differentiating H*® (r;v) = H* (W, (1)), we get
Ve M (5 v) = (do W, (1) T [VEH (0, (r)] (3.48)
where, recalling (|1.4)),
VHR (u) = TIg (3u? — ugy) (3.49)

and T3 is the L2-orthogonal projector onto L3(T;). Differentiating (3.48) with respect to w in direction @
we get
dy Vo H ™ (;v)[@] =

R R (3.50)
(AW, (1) " [aVH (0, (@) [dL Y, (0)[@]] + (di(d W, (x) " [@]) [VHY (9, ()] -
On the other hand, by
ALV H ™ (5v) = Q9 (D;v) + dy Vi RM (1)
and by d1V,RF(6,0,0;v) = 0, implying that
d Vo, 1 (6,0,0;v) = QF(D;v),
L (60,0,0;) = Q¥ (D; v) o)

dy VR (r;0) = dy Vo 1P (0, y, wiv) — d o Vi, HF(0,0,0;v) .

In order to obtain the expansion (3.42)) it thus suffices to expand d | V., H*% (0, y,w;v))[@] and then subtract
from it the expansion of d; V., H**(0,0,0;v))[w]. We analyze separately the two terms in (3.50)).

Analysis of the first term on the right hand side of (3.50)): Evaluating the differential dVH*® (u) at u =
U, (r), one gets

d(VHY") (0, () [h] = Tig (= 92k + bo(s50)h)  bos:v) = 6, (x). (3.52)
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By Theorem [3.11(AE1) and the estimates (Est1), the function by(r; v) satisfies, for any s > 0,

107 bo (& ) | g S 1A+ 1wl g,

. ~ (3.53)
Hau dlbO(Fa V)[XD cee a;l ||H& ~8,l,a Z H?]

Bonr [ il + llw]l e H 51l -

i#]

By Corollary (expansion of (d  ¥,) "), Corollary (expansion of d; ¥,,), (3.53) (estimates of by), (3.52))
(formula for d(VH")(V,(x))), and Lemma m (composition), one obtains the expansion

0p(dL W, (1)) " [AVH " (W, (1)) [dL P (6)[]]]
M+1

=T (— 32 — (% (5 v) +a® (5002 + > ol (5)0 ) + Ri(xv) 50
k=0 .

M+1

! 85+ Zal k;xv 81 k)"_Rl(xa )

where the functions agl_)k(;; v),k=0,...,M+1 and the remainder R;(r;v) satisfy the properties stated

in Lemma [3.4] in particular (3.31)-(B.33).

Analysis of the second term on the right hand side of : By one has
Oy (Ao (AW, () " [) [VH (¥, (v)] = —0,d¥, (xr) "0, d(dr ¥, (0)[]) [TdP, () ' VH (¥, (r))] -

Arguing as for the first term on the right hand side of (3.50]) one obtains an expansion of the form

M+1

O (d (A1, ()T [VHM (0, (1)) =T Y af?,(550)03 7" + Ra(x;v) (3.55)
k=0

where a( )( nv) =0 (cf. (3.10)) and where the functions ag )k(;, ), kE=1,...,M+ 1 and the remainder
Ro(r; v) satisty the properties of Lemma in particular (3.31))-(3.33).
Conclusion: Combining (3.50)), (3.51)), (3.54), and (3.55)) one obtains the claimed expansion (3.42)) with

a1k (v v; 0,dy Vo RF) = 0V, (r;v) — al”,(6,0,0;v) + a\?, (r;v) — a{?,.(6,0,0;v)
R (x; v 8de_Vde”) = Ry1(r;v) — R1(0,0,0;v) + Ra(z;v) — R2(6,0,0;v) .

Since ag )k(x, v), Ri(z;v), and a1 k(;, v), Rao(x;v) satisfy properties I of Lemma in particular (3.31)-
- the claimed estimates - then follow by the mean value theorem. O

3.3 Frequencies of KdV

In this section we record properties of the KdV frequencies w®® used in this paper In Section |§| we need

to analyze 0,Q%%(D;I). Recall that by (3.7), Q¥ (D; ) is defined for I € = C R b Actually, it is defined
on all of ]R;O (cf. (L10)) and according to [m Lemma 4.1] 9,Q%%(D; I) can be ertten as

8,0 (D; T) = —0% + Q*%(D; 1) (3.56)

where Q*¥(D; I) is a family of Fourier multiplier operators of order —1 with an expansion in homogeneous
components up to any order.

Lemma 3.7. For any M e N and I € R>O, QFA(D; I) admits an expansion of the form

Q™ (D: 1) = Q*Y(Di 1) + Ry (D I; QYY) QFv(&1) = Za RGO )xo(€)(@2rE) 7%, (3.57)
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where the functions a_i(I; Q*W) are real analytic and bounded on compact subsets of RS;O, a_(I; QkdY)
vanishes identially for k even, and Ry (D; I; Q*%) is a Fourier multiplier operator with multipliers

R (D)

R (n; 1; QM) = Ganprte Rulnl; Q*) = —Rpy(n; I; Q%) ,  Wn € S, (3.58)

where the functions I — Ry7(I) are real analytic and satisfy, for any j € Sy, B €N,

sup [R47 ()] < Car, sup |9 Ry7 ()] < Cars
neS+ nesS+ ’

uniformly on compact subsets of RS;O.
Proof. The result follows by [I5] Lemma C.7]. O
In Section [7} we shall use the following asymptotics of the KdV frequencies
wkdv(1.0) — (2mn)® = O(n™1), nowk®(I1,0)=0(1), (3.59)

uniformly on compact sets of actions I € RS;O.

Lemma 3.8. ([16, Proposition 15.5]) (Non-degeneracy of KdV frequencies) For any finite subset

S+ C N the following holds on ]RS;[) :

(i) The map I — det((dr,wk™ (1,0))knes, ) is real analytic and does not vanish identically.

(i) For any ¢ € Z3and j, k € S+ with (¢,7,k) # (0,4, 4), the following functions are real analytic and
do not vanish identically,

Z Lok 4 wf‘iv #0, Z Lk 1 wfd” —whdv £0. (3.60)

neSy neS4

Remark 3.9. It was shown in [10] that for any I € ]RS;O, det ((Or,wk™ (I,0))knes, ) # 0.

4 Nash-Moser theorem

In the symplectic variables (0, y,w) € V(§) N Es defined by Theorem with symplectic 2-form given by
(3.1), the Hamiltonian equation (I.1)) reads

ata = _vyHE 5 31&31 = VQHE ) atw = amvae 5 (41)
where H. := H. o ¥, and H. given by (1.4]). More explicitly,

He(0,y,w;v) = H(0,y,w;v) +eP(0, y, w;v),

4.2
deU:devO\IJy, P:PO‘IJD’ I/E:E7 ( )

where H¥4? (6, y, w; v) has the normal form expansion (3.6). We denote by X4 the Hamiltonian vector field
associated to H.. For e = 0, the Hamiltonian system (4.1]) possesses, for any value of the parameter v € E,
the invariant torus TS+ x {0} x {0}, filled by quasi-periodic finite gap solutions of the KdV equation with
frequency vector w*® (v) := (wk™(v,0)),es, introduced in (L.11)).

By our choice of Z, the map —w*® : & — Q := —w*%(Z) is a real analytic diffeomorphism. In the sequel,
we consider v as a function of the parameter w € €2, namely

v=v(w) = (W) (—w) . (4.3)

For simplicity we often will not record the dependence of the Hamiltonian H. on v = (wk¥)~1(—w).
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Consider the set of diophantine frequencies in €2,

_ . g N
DC(y, 7) = {weQ.|w-£| > Ve € 78 \{o}}. (4.4)

For any torus embedding TS+ — V(§) N &, ¢ = (8(v),y(v), w(p)), close to the identity, consider its lift
IR o RS+ x RS+ x HS(T1), i(e) = (¢,0,0) + (o), (4.5)

where ¢() = (O(p), y(), w(p)), with O(p) := () — ¢, is (27Z)%+ periodic.
We look for a torus embedding I such that F,(¢,() = 0 where

w - 0,0(p) + (VyHe) (i)
Fult, Q) = | w-Opylp) — (WH (@) = ¢ | - (4.6)
w - Qow(p) — 0x(VuHe)(ily ))
The additional variable ¢ € RS+ is introduced in order to control the average of the y-component of the

linearized Hamiltonian equations — see Section |5} Actually any invariant torus for X3, . = X + (0,¢,0)
with modified Hamiltonian

Hec(ly,w) :=Ho(0y,w) +(-0, (R, (4.7)

is invariant for Xy, see (5.5). Notice that H. ¢ is not periodic in 6, but that its Hamiltonian vector field is.
The Lipschitz Sobolev norm of the periodic part ¢(¢) = (O(p),y(¢), w(p)) of the embedded torus (4.5)) is

L[5 = 10177 + [ly [P + w7
where Hw||£ip(7) is the Lipschitz Sobolev norm introduced in (2.1)) and

i _ Li Li i _ Li Li
[01XPD) = |0l = 10152, gorys MWD = ylFEY o= IylP o, ey (48)

Theorem 4.1. (Nash-Moser) There exist 5 > (|S;+| +1)/2 and g9 > 0 so that for any 0 < € < gq, there
is a measurable subset Q. C Q satisfying

meas(2)

enb meas () =1 (49)

and for any w € Q) there exists a torus embedding i, as in (4.5) which satisfies the estimate
liw = (2, 0,077 =0(y7?),  y=e", 0<a<l,

and solves
w - (%Zw(sﬁ) - XHE (Zw((p)) =0.
As a consequence the embedded torus i,,(TS+) is invariant for the Hamiltonian vector field X () with v =

(Wkd) =Y (—w), and it is filled by quasi-periodic solutions of ([A.1)) with frequency vector w € Q.. Furthermore,
the quasi-periodic solution I, (wt) = wt + v, (wt) is linearly stable.

Theorem is proved in Section [§] The main issue concerns the construction of an approximate right
inverse of the linearized operator d, ¢ F.,(¢,¢) at an approximate solution. This construction is carried out

in Sections [f [6] and [7]
Along the proof we shall use the following tame estimates of the Hamiltonian vector field X4, with

respect to the norm | - |5, Recalling the expansion (3.6) provided in Theorem [3.1 n and the definition of
P in (3.29), we decompose the Hamiltonian H. defined in (4.2)) as

He =N +P. where

Ny, wiv) = )y + de"( )yl -y + Q(de”(D vhw, w),, . Per=RM 4 eP. (4.10)
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Lemma 4.2. There exists 01 = 01(S4+) > 0 so that for any s > 0, any torus embedding I of the form (4.5))

with HL||§;11(;’1) <6, and any maps T,71, 7 : TS+ — E, the following tame estimates hold:

o i Li Li Li
1, (DII5PO <y e(1+ [[el[ 220 + ([ ZB00 )| Lt

s+o1 soto1 s+oy1
o i Li Li Li Li
ldXp, ()LD <o (e + el RIEES + e SR 21 5R0)

NN i ~ 1 Li ~ 1Li ~ 1 Li ~ 1 Li Li —~ 1 Li ~ i
142 X3¢, (D[22, ) EP) < 1[5 R (2 2200+ 12 150 2l S+ [ 528 (1525 2 SR

Proof. Note that Xp, = eXp + Xpgraw and d?Xy, = d?X s + d®Xp,. The claimed estimates then follow
from estimates of e Xp, obtained from Lemmata and from estimates of Xpra. obtained from

Lemmata and the mean value theorem. O

5 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of F(¢,{) = 0 (cf. (4.6))
we construct an almost-approximate right inverse (see Theorem of the linearized operator
¢ Fu(t, Q[ (] = w- 9ot — d X3 (D)[1] = (0,¢, 0) (5.1)

where H. = N + P. is the Hamiltonian in . Note that the perturbation P. and the differential
d, ¢ Fu(t,¢) are independent of ¢. In the sequel, we will often write d, ¢F,,(¢) instead of d, ¢ F, (¢, ).

Since the 6, y, and w components of d,Xy,_(i(p))[] are all coupled, inverting the linear operator
d, ¢ Fu(t,¢) in is intricate. As a first step, we implement the approach developed in [3], [7], [9], to
approximately reduce d, ¢F,(¢, () to a triangular form — see below.

Along this section we assume the following hypothesis, which is verified by the approximate solutions

obtained at each step of the Nash-Moser Theorem [8.1

e Ansatz. The map w — t(w) := I(¢;w) — (p,0,0) is Lipschitz continuous with respect to w € Q, and,
for v €(0,1), po := po(7,S4) > 0 (with T being specified later (cf. Section[d))

lellfP™ Sey™2, IZIEP) Se, (5.2)
where Z is the “error function” defined by
Z(SD) = (217 Za, Z3)(<)0) = fw(ba C)(‘P) =w: 8<PZ(S0) - X’He (Z(QD» - (Oa ¢, O) . (53)
We first notice that the 2-form W given in (3.1]) is
W= (Zjes+dyj Adb;) & Wi = dA

where A is the Liouville 1-form

~ ~ 1,
A(97y7w) [&y,w] = ZjeS+yj9j + 5(81, w, w)Li . (5.4)
Arguing as in [3] Lemma 6.1], one obtains
GRS |1 Z)| 5P (5.5)

An invariant torus ¢ with Diophantine flow is isotropic, meaning that the pull-back i*A of the 1-form A
is closed, or equivalently that the pull back t*W satisfies I*W = i*dA = di*A = 0 (cf. [7]). For an
approximately invariant torus embedding i, the 1-form

1
ok L T _
PA=D o an(@)dens a(e) = ([0,000)] y(9)) + (07 (), Do w(9)) ez (5.6)
is only “approximately closed”, in the sense that
i = dish =Sk jes. Ay (@) Ny, Aug(9) 1= 0,p,0,(0) — Dpyar(p) (5.7)
k<j

is of order O(Z). More precisely, the following lemma holds.
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Lemma 5.1. Let w € DC(7y,7) (cf. (4.4)). Then the coefficients Ax; in (5.7) satisfy

i _ Li Li Li
1A 5P <oy (1 Z5R + (12115550 |5 28) (5.8)

for some o = o(1,S4) > 0.

Proof. The Ay; satisfy the identity w - 9, Ar; = W(9,Z()ey, 9,0(0)e;)+ W (Dplo(0)ey, ,Z()e;) where
e, k € S, denotes the standard basis of RS+ (cf. [7, Lemma 5]). Then (5.8) follows by (5.2) and (2.10).

As in [7], [B] we first modify the approximate torus I to obtain an isotropic torus Zs which is still
approximately invariant. Let A, := Zk€S+ 82k

Lemma 5.2. (Isotropic torus) Let w € DC(vy, 7). The torus is(e) = (0(v),ys(v), w(p)) defined by
us(9) = () = [0,0(2) 7 p(0) s ps(0) = ATY L Do Aki(e) (5.9)

is isotropic and there is o = o(1,S4) > 0 so that, for any s > sg

lys — ylI5PO) < [lelf5 R0 (5.10)
lys — ylEP0) <o IZIEED + el 20 201557 (5.11)
1P (s, QIO S N1 ZIEE + [l ||Z||f;i<;> (5.12)
ld,es 5P S 2155 + [l 2] e ) (5.13)

Remark 5.3. In the sequel, w will always be assumed to be in DC(vy,T). Furthermore, o := o(7,Sy) will
denote different, possibly larger “loss of derivatives” constants.

Proof. The Lemma follows as in [3, Lemma 6.3] by Lemma (5.6)-(5.8) and the ansatz (5.2). O

In order to find an approximate inverse of the linearized operator d, ¢F.,(ts), we introduce the symplectic
diffeomorpshim Gy : (¢,m,v) — (8,y,w) of the phase space TS+ x RS+ x L2 (Ty), defined by

0 ¢ 0(¢) -
y|=Gs|n|:= yégig+[3¢9(¢)]_%—[(30@)(9(@)] 9, v (5.14)
w v w + v

where @ := w o §~1. It is proved in [7, Lemma 2] that G5 is symplectic, since by Lemma ls is an
isotropic torus embedding. In the new coordinates, Is is the trivial embedded torus (¢, n,v) = (¢,0,0) and
the Hamiltonian vector field X3, . (with H. ¢ defined in (4.7)) is given by

X = (dG(;)_lXHM oGs where K=Kee:=HecoGs. (5.15)

The Taylor expansion of I in 7, v at the trivial torus (¢,0,0) is of the form
1
K(¢,n,v,¢) =0(¢) - ¢+ Koo(®) + Kio(e) - 1+ (Kor (), v)rz + §/C2o(¢5)77 "1
1
+ (K:ll((b)na /U) L2 + 5 (K:02(¢)’U7 ’U) L2 + ICZ3(¢7 7, ’U) (516)
where K>3 collects the terms which are at least cubic in the variables (n,v), Koo(¢) € R, Kio(¢) € RS+,
Ko1(¢) € L2 (Ty), Kao(e) is a [S4| x [Sy| real matrix, Ko2(¢) : L% (T1) — L2 (Ty) is a linear self-adjoint

operator and K11(¢) : RS+ — L2 (T;) is a linear operator of finite rank. At an exact solution of F,(¢,{) =0
one has Z = 0 and the coefficients in the Taylor expansion (5.16)) satisfy Koo = const, K19 = —w, Kg1 = 0.
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Lemma 5.4. There exists o := o(7,S;) so that

19500157 + (K10 + w || XPO) 4 [KCor [[5PO) S, 121152 [|e]| 2200 | 2| L)

So+o
Li
IIICzo—Q’"“’( EPO) Sqe e,

Lip(vy —2y, 1 Lip(7) Lip(y Lip(v) (5.17)
||’C1177H < s E7Y ||77Hs+a + H ||s+<7 ||77||so+o ’
i — Li Li Li
IKTIEPO S5 ev 2 llollEn™ + el lolsgs
Proof. The lemma follows as in [7], [3], by applying Lemma and (5.2), (5.10]), (5.11), (5.12)). O

Denote by Id; the identity operator on L? (Ty). The linear transformation dGs|(p,0,0) = dG5(,0,0)
then reads

¢ 040() 0 0 é
Gilison | 1) 1= dowse) @@ @00 | 7). (518)
v bw(p 1 v

It approximately transforms the linearized operator d, ¢ F.(ts5) (see the proof of Theorem into the one
obtained when the Hamiltonian system with Hamiltonian K (cf. (5.15)) is linearized at (¢,n,v) = (¢, 0,0),
differentiated also with respect to ¢, and when 0, is exchanged by w - 0,

o w00+ 0pKa0(@)[9] + Kao(@)i + K (0D
o | 7 w20 (960(9)) (<] — 96 (960() T[C])[8] — Do Koo(0)[8] — [06K10(0)] 11 — [0 Ko ()] D
3 w - 0,0 — 0:{05K01 (9)[] + K11 (9) + Koa ()0}
(5.19)
Using (5.2) and (5.10), one shows as in [3] that the induced operator 7 := ((i),m v) > dG;s[i] satisfies
4G5 (12, 0, 0) @I, dGis(0,0,0) ™ ALY S [P + o087 7] 1P (5.20)
G (0, 0,0) (7, 5™ S, 7 [EPO @) 5P + [ | 1P B ]1E PO + el 25 12 ||L‘p(”)|\L2H5L-$p(7)-
(5.21)
In order to construct an “almost-approximate” inverse of (5.19)) we need that
ﬁw = HL (w . 84, — 8IIC02(Q0)) ‘Li (522)
is “almost-invertible” up to remainders of size O(N, ?,) (see precisely (5.26)) where
N, :=KP, Yn>0, (5.23)
and B
K, =K} , x:=3/2, (5.24)

are the scales used in the nonlinear Nash-Moser iteration in Section[8 Based on results obtained in Sections
[Bl[7} the almost invertibility of £, is proved in Theorem [7.11] but here it is stated as an assumption to avoid
the involved definition of the set £2,. Recall that DC(+y, 7) is the set of diophantine frequencies in Q (cf. (4.4)).

e Almost-invertibility of L,. There exists a subset Q, C DC(vy,T) such that, for all w € Q,, the
operator L, in (5.22)) admits a decomposition

L,=LS+Ry+RE (5.25)

with the following properties: there exist constants Ko, No,o,71,u(b),a,p,sp > 0 so that for any
sy <s<8andw € Q, one has:
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(i) The operators R.,, RY satisfy the estimates

i _ —a Li T — Li Li

IRAIEPD) Sg ey 2N (RIS E + NG A~ 2000 L o IR D) (5.26)
Li Li = Li Li

IRS Rl S Ko (hlls 2o + NT A el oIRGB >0, (5.27)

(ii) For any g € HT7(TS+ x Ty), there is a solution h := (L5)"'g € HS (TS x Ty) of the linear
equation LSh = g, satisfying the tame estimates

_ i Li — Li Li
1£35) gl 5P <547 (gl + NG A 2 o lgllei ) (5.28)

In order to find an almost-approximate inverse of the linear operator (5.19) and hence of d, ¢ F,,(ts), it is
sufficient to invert the operator

L Dy + Kao() + Kua ()0
D[Qﬁ?ﬁv@\a ]:: w - a@” 8¢9( ) C (529)
£<1} -0 }Cll( )

obtained by neglecting in (5.19)) the terms 05K10, 0pK00, 0pKo0, 0sKo1, Op (8¢9(¢)T[C]) and by replacing
L, by LS (cf. (5.25)). Note that the remainder £, — LS = R, + R} is small and that by Lemma and
" (9¢]C10, 8¢¢]C00, 8¢IC00, 6¢’C01 and 8¢(8¢9(@)T[C]) are O(Z)

We look for an inverse of D by solving the system
. . g1
D[qb? 7/7\7 67 ] = g2 . (530)
93
We first consider the second equation in (5.30), w - 0,7 = g2 + 8¢9(<p)—'—6. Since 0,0(p) =1d + 0,0(yp), the
average (0,0"), = WI‘S“ Jros 0,07 (p)dg equals the identity matrix Id of R®+. We then define
C=—{g)s (5.31)
so that (go + 3¢9(¢)TZ>¢ vanishes and choose
D=1+, M= (w-0,) " (92+90(¢) () (5.32)

where the constant vector 7y € RS+ will be determined in order to control the average of the first equation

in (5.30). Next we consider the third equation in (5.30), (LS5)0 = g3 + 0.K11(¢)7, which, by assumption
(5.28) on the inveritibility of L5, has the solution
0= (L5) g3 + 8K (9)n) + (£5) ™ 0:K11 ()0 - (5.33)

Finally, we solve the first equation in (5.30)). After substituting the solutions Z, 7, defined in (5.32)), and v,
defined in ([5.33]), this equation becomes

w - 5¢¢A5 = g1 + MiTjo + Mags + Mzgs + MaC (5.34)

where M; : o — M;(p), 1 < j <4, are defined as

My(p) := —Kao(p) — K11(p) " (L5) " 0:K11(p) (5.35)
Ms(p) := Mi(p)lw - 8,] 7", (5.36)
Ms(p) == —Ku1(p) " (£35)™ 1, (5.37)
Miy(p) := Ma()9g0() " . (5.38)
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In order to solve equation (5.34) we have to choose 7y such that the right hand side of it has zero average.
By Lemma by the ansatz (5.2) and (5.28)), the p-averaged matrix is (M), = Q8% (v) + O(ey~2). Since

the matrix Qg (v) = (01, Wk (V)i nes, is invertible (cf. Lemma (z)7 Remark , (My), is invertible
for 772 small enough and (M;) ! = Q5% (v) ™" + O(ey~?). We then define

Mo := — (M), ((91%0 + (Maga), + (M3gs), + <M4E><p) : (5.39)
With this choice of 7y, the equation (5.34) has the solution
¢ = (w-0y) " (g1 + Mi[o] + Mags + Msgs + M4® . (5.40)

Altogether we have obtained a solution ((E, n,7, Z) of the linear system ([5.30)).
Proposition 5.5. Assume the ansatz ( with po = p(b) +o and the estimates - ) hold. Then, for any
w € Oy and any g: (gl,gg,gg) with 91,92 € H5+o (TS+, RS+) g3 € HS+‘7(’]I‘S+ x Ty), and spy < s < S, the

system (5.30) has a solution ((15,77,1) C) =D~1g, where gb, n, v, C are defined in ([5.31)-(5.33)), (5.39)-(5.40)
and satzsfy

_ i — Li T — Li Li
D glEP0) <5 42 (gl B + Ne v el EE) o lalls ). (5.41)

Proof. The proposition follows by the definitions of C (cf. - m (cf. - v (cf. -
(15.39)), qS (cf. (5.40)), the definitions of M;, 1 < j < 4, in -, the estimates of Lemma and
the assumptions (5.2]) and - O

Let Gy : (¢,m,v,¢) — (Gs5(¢,m,v), ¢) and notice that its differential d65(¢,n,v,C) is independent of (.
In the sequel, we denote it by d(~¥5 (¢,m,v) or déé‘(dm,v)' Finally we prove that the operator

~ _ -1
To := To(1) := dGs] (0,0 D" 0 (dG5](,0,0) (5.42)

is an almost-approximate right inverse for d, ¢ 7., (1). Let ||(¢, 1, v, Q)| := max{|| (¢, n, v) | FP77, [¢|Lp(M)},

Theorem 5.6. (Almost-approximate inverse) Assume that - ) hold (Almost-invertibility of
L, w € Q). Then there exists oo = 02(T,S4) > 0 so that, if the ansatz ( -i holds with o > spr+p(b)+o2,
then for any w € Q, and any g := (g1,92,93) with g1,g2 € H*T7 (T R>+), g5 € H{™7 (T x Ty), and
sy < s <8, To(u)g, defined by (5.42), satisfies

i — Li T — Li Li
ITo(gll =) 55 =2 (IgIeE? + Mg A IR o lallen, ) (5.43)

Moreover To(t) is an almost-approzimate inverse of d, ¢ Fu, (L), namely

dcFo(t)oTo(t) —Id =P + P, + PL (5.44)

where
IPglsn™ Ss v~ 1P QIR (14 N R0 4o, gl 0, (5.45)
1Pugllsir™ Ss v N2y (1+ NGy el o o) lgllnb s, (5.46)
IPLgllei <oy 250 (lglleP), 1y + Ngw—l||L||£;f<ﬁg<b)+@+,,Hgnii;’(ﬁiz) L Wb>0. (547)

Proof. The bound (5.43 - ) follows from the definition of T(¢) (cf.(5.42] - the estimate of D~ (cf. ), and
the estimates of dGs(p,0,0) and of its inverse (cf. - By formula (5.1)) for d, ¢ F., (¢ ( ) and since only
the y—components of is and I differ from each other (cf. )7 the diﬁerence Eo i =d, cFu(t) —d cFulis)
can be written as

1
£l ) = / Byd, X (6,95 + 5(y — ys), w)ly — v, ds. (5.48)
0
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We introduce the projection II : (7, C) — 7. Denote by u := (¢,n,v) the symplectic coordinates defined by
Gs (cf. - Under the symplectic map G, the nonlinear operator F,, (cf. (4.6)) is transformed into

Fu(Gs(u(p)), €) = dGs(ulp))w - dpulp) = Xic(ule), Q)] (5.49)

where K = H. ¢ o G5 (cf. (5.15)). Differentiating (5-49) at the trivial torus us(p) = G5 '(15)() = (,0,0),
we get

dic Fo(ts) = dGs(us)(w - Op — duc Xic(us, C))déa(u(s)_l + &1, (5.50)
& 1=d*Gs(us) [dGs(us) ™ Fuu(us,¢), dGs(us)~'TI[-]] . (5.51)

In expanded form w - 9, — dy,c X (us,() is provided by (5.19). Recalling the definition of D in (5.29) and
the discussion following it, we decompose w - 9, — dy ¢ Xi (us, () as

w0y — dycXrc(us,¢) =D+ Rz + R, + R (5.52)
where
N N R 9pKr0(e )[9)
Rz[,7,5, (] i= | —0pKoo(#)[0] — 0 (0s0(¢) T [¢]) ] — [0 5KC10(0)] 117 = [05KCo1 ()] O
—05(0K01(0)[0 )
and
N N 0 N 0
Rw[d)a A’ 'l/l")\, C:I = 0 ) |:¢7 /y\’@ C:I = O
R[] R[]
By (5.48) and (5.50))-(5.52)) we get the decomposition
d,.cFout) = dGs(us) oD o (AGs(us)) " + & + &, + EX (5.53)
where B )
E=E+& + dGé(u[s)RZ (dG(;(u[;))_ s (5.54)
Eu = dGs(us)Ry (dGs(us)) ™, EF := dGs(us)RE (dGs(us)) . (5.55)

Letting the operator Tg = To(¢) (cf. (5.42)) act from the right to both sides of the identity (5.53) and
recalling that us(¢) = (¢, 0,0), one obtains

dycFu()oTog—ld=P+P,+PL, P:=E0Ty, P,=E 0Ty, Pr:=EoTy.

To derive the claimed estimate for P we first need to estimate £. By (5.2 , (15.5] (estimate for ¢), (5
(estimates related to ¢5), - - estimates of the components of RZ and ([5.20) - estlmates of
dGs(ugs) and its inverse) one infers that
o~ i — Li Li Li Li Li Li Li
112 CIEPO) Sy v (IZ IR IR + 1218 15 + 121 Nl WS ) . (5.56)
for some o > 0, where Z is the error funCthIl Z = F.( (cf. (5-3)). The claimed estimate (5.45) for
P then follows from , the estimate of Ty, and the ansatz . The claimed estimates ([5.46)),

5.47) for P, and, respectively, Pt follow by the assumed estimates ([5.26)-(5.27) of R, and R}, the estimate
5.43) of Ty, the estimate (5.20) of dGs5(us) and its inverse, and the ansatz ((5.2)). O

The goal of Sections |§| and m below is to prove that the Hamiltonian operator L, defined in (5.22)),
satisfies the almost-invertibility property stated in ([5.25))-(5.28)).
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6 Reduction of £, up to order zero

The goal of this section is to reduce the Hamiltonian operator L, defined in , to a differential operator
of order three with constant coefficients, up to order zero — see below for a precise statement. In
the sequel, we consider torus embeddings I(¢) = (¢,0,0) + () with ¢(-) = o(- ;w), w € DC(v,7) (cf. (@A),
satisfying

ISP S er2 e < §(S) (6.1)

where po := po(7,S4+) > sg, S > sg are sufficiently large, 0 < §(5) < 1 is sufficiently small, and 0 < v < 1.
The Sobolev index S will be fixed in . In the course of the Nash-Moser iteration we will verify that
is satisfied by each approximate solution — see the bounds (8.8]). For a quantity ¢g(¢) = ¢(7) such as an
operator, a map, or a scalar function, depending on I(¢) = (¢, 0,0) + ¢(p), we denote for any two such tori
embeddings i, I3 by Aj2g the difference

A12g = g(t2) — g(t1) .

6.1 Expansion of L,
As a first step, we derive an expansion of the operator £, = IT | (oJ < 0p — 0. K02 (<p)) L2 defined in ([5.22]).
€1

Lemma 6.1. The Hamiltonian operator 0,Ko2() acting on L2 (T1) is of the form

02 K02(¢) = 1 0:(d LV He)(Is(¢)) + R(p) (6.2)

where H. is the Hamiltonian defined in and the remainder R(p) is given by
R =3 o (b 05) x5, Yh€ LA(T), (6.3)
with functions g;,x; € HY, j € Sy, satisfying, for some o := o(1,S4) > 0 and any s > so
gl + I IEPD <o e+ el (6.4)
Let s1 > sg and let i1, 05 be two tori satisfying with po > s1 +o. Then, for any j € Sy,
[A12g;lls, + 1A12X]ls1 Sy lle2 = tallsi+o -

Proof. The lemma follows as in [9, Lemma 6.1], using Lemma and the ansatz (6.1)). O

By Lemma the linear Hamiltonian operator £, has the form
Lo=L0 R, L£O:=w 0,-11,0,(d1VHe)(i5(p)) (6.5)

where here and in the sequel, we write w - 0, instead of I w - 0| r2 in order to simplify notation. We now

prove that the Hamiltonian operator E&O), acting on Lﬁ_ (T), is a sum of a pseudo-differential operator of
order three, a Fourier multiplier with ¢p—independent coefficients and a small smoothing remainder. Since

H. = HF +eP (cf. (@2) and 0,d) V,HF* = 0,0 + 0,d, V., RF¥ (cf. (3.6)) we have
LY =w- 9, + 82 —TLQ*(D;w) — T 9,dy Vo RF® (i5) — el 8pd 1 Vo P(i5) (6.6)
where we write 93 instead of 8§|Li and where Q*¥"(D;w) is given by (cf. (3.56))
QMY (Diw) = QMY (Div(w)) = 004" (D;v(w)) + 07, (6.7)

with v(w) defined in (4.3). The operator Q*%’(D;w) is a Fourier multiplier with ¢—independent coefficients.
It admits an expansion as described in the following lemma.
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Lemma 6.2. For any M € N,

M
QM (Diw) =) ¥ (@)0;" + Rur(QEF'sw) (6.:8)
k=1
where for any 1 < k < M, the function Q — R, w ~ c*¥(w) is Lipschitz and where Ry (Q*%;w) :
L2 (Ty) — L2 (T4) is a Lipschitz family of diagonal operators of order —M — 1. Furthermore, for any
ni,ne € N, ny +ny < M + 1, the operator (D)"* Ry (QF%;w)(D)"2 is Lip(y)-tame with a tame constant
satisfying M pyni» ,, (Qrvw)(Dyn2 (8) < C(s, M) for any s 2 sg and C(s, M) > 0.

Proof. The claimed statements follow by Lemma O

Lemma 6.3. For any M € N, the Hamiltonian operator /35)0), acting on L% (Ty), defined in (6.5), admits
an expansion of the form

£ = w0, — T (002 +2(a),02 + alV0, + Op(r”) + QX4 (Dsw) ) + R (is(9)iw)  (6.9)

where ago) = aéo)(go,x;w), a§°) = ago)(go,x;w) are real valued functions satisfying for any s > sg
lag” + 1EP Sonr @+ LE) . Nai” 1570 Sanr e+ el ) (6.10)
for some opr > 0. The pseudo-differential symbol 7"(()0) = r(()o)(go,m,f;w) has an expansion in homogeneous
components
(g, 2, & w Za 2 (0, w3 w) (i27€) 0 (€) (6.11)
(with xo defined in (2.18)) where the coefficients ag,l = ai%(go,x;w) satisfy
sup [aCIYPD Soar e+ NS Vs 2 50, (6.12)

k=0,...,M
the remainder is defined by
R (i5(9);w) = ~Ras (75(0); v(w); ad 1 Voo dev) —sRM(z5(¢)~ V(w); 921 V. P) (6.13)
and the latter two remainder terms are given by (3.42)) and ( with v(w) = (W)~ (—w).
-

Let s1 > sg and let 1,05 be two tori satisfying (6.1]) for uo 2 1+ o Then, forany 0 <k<M+1,

0 0
121265 s, Sovnr eller = tallsitonss 181208, 1oy Sornr lr = eallortons - (6.14)

Proof. By the definition of E&O), the expansion (3.42)) of 9,d; V,,R*®, the expansion (3.30) of 9,d VP,
and the formula for the coefficient of 92, described in Lemma one obtains with

o (g, 23w) = —1 + as(I5(); v(w); Dod 1L Vi P)
a§0)(ap, xyw) = a1(l5(p); v(w); 8de_Vkad”) +ea1(Ls(9); v(w); 0,dL VP),
a%) (0, 73 0) = a_(I5(); V(w); Bud L Vo R¥) + ca_1(i5(); v(w); 0ed L VW P), k=0,...,M,

and v(w) = (WF")~!(~w). By Lemma 1, the functions a;_(r; v(w); 9xd L V,R¥), 0 < k < M + 1,
satisfy the hypothesis of Lemma M(zz) In view of (5.10 n one then infers that for any s > sg
lla1—k(Z5(); v(w); Oad 1 Vi de”)llL‘p(”) Son e8]

s+onm

for some opy > 0. Similarly, by the first item of Lemma [3.4] the functions ag_j(Is(); v(w); 0zd1 V4 P),
0 <k < M + 3, satisfy the hypothesis of Lemma (1), implying that for any s > s,

s (i5(); v(); Dd s Vu PIEPD Sonr 1+ el 3557)
for some oy > 0, proving (6.10)), (6.12). The estimates (6.14) follow by similar arguments. O

We remark that in the finitely many steps of our reduction procedure, described in this section, the loss
of derivatives opr = op(7,S4) > 0 might have to be increased, but the notation will not be changed.
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6.2 Quasi-periodic reparametrization of time

We conjugate the operator £, (cf. (6.5])) by the change of variable induced by the quasi-periodic reparametriza-
tion of time
v=9p+ 04(1)(<p)w or equivalently =19+ d(l)(ﬂ)w

where a(P) : TS+ — R, is a small, real valued function chosen below (cf. (6.17)). Denote by
(@Vn) (g, x) == h(p + oD (Q)w,z), (@) 71h)(I,z) := h(® + &V ()w, z), (6.15)

the induced diffeomorphisms on functions. The goal is to achieve that the operator E&l), defined in (6.20]),

is of the form (6.21)), so that its highest order coefficient aél) satisfies (6.23). The latter property will allow
us in Section to conjugate E(l to an operator with constant highest order coefficient (cf. (6.40))).

Since by - the coefficient ol satisfies a{”) = —1 + O(e), the expression (al’ (¢, ))% is well defined
where ()3 denotes the branch of the third root of z € (—o0,0), determined by (—1)3 = —1.

Lemma 6.4. Let m3 be the constant

1 dx -3
)= o o ([ ) ©19
and define, for w € DC(y,T), the function
. T 1 d -3
AW (W w) = (w- 9,) " |:?7’L3(/'[[*1 M) - 1} . (6.17)

Then for any M € N, there exists a constant opr > 0 so that the following holds:
(i) The constant mg satisfies

Ims 4+ 1[FPO) <) e (6.18)
and for any s > so, oM, &M satisfy
i “ i — Li
O N [ N (RN [ s (6.19)
(i) The Hamiltonian operator
£ = Lawg, (@1 p) =M1 +w-99aM) =1+ W (w-9paV), (6.20)
p
admits an expansion of the form
L0 = w9y — ( Mo2 + 20,02 + alVa, + op(r{M) + Qv (D; )) +R\Y (6.21)
where the coefficients a = agl)(ﬁ,x;w), agl) = (1)(19 x;w) are real valued and satisfy
1 i 1 i Li
las” + 1170 Soar e+ [lsran ) N IFPD Sonr e W), Vs =50, (6.22)
and p
_1
[ — 6.23)
T, (a3 (9, z;w))s
The function r( ) = 7‘01)(19 7, & w) is a pseudo-differential symbol in S° and admits an expansion of the form
M
re) (0,2, & w) = Y ) (9, ww)(i27) Fxo(€) (6.24)
k=0
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where for any 0 < k< M, s > sq,
a5 Sonr e+ ellR5) - (6.25)

s+on

Furthermore, the function p appearing in (6.20) satisfies
i Li
lo = 1EPO, ot = 1EPO) <o e+ B (6.26)

s+o’M

Let s1 > sg and let i1, 12 be two tori satisfying (6.1)) with puo > s1 + op. Then

o 1
|Arzma], [|A120D [, [| 81230 |5, [[A12a8 (161 s 181205 sy Ssuonr o1 — e2llsions » 627

HAl?a HSI ~s1,M ||L1_L2||51+0'1\/I7 Vk=0,...,.M.

(iii) Let S > sy where sy is defined in ([2.54). Then the maps (®())*! are Lip(v)-1-tame operators with a
tame constant satisfying
m(¢(1))i1(8) Ssom 1+ ||LHL,AP(’Y) Vsop+1<s<S. (6.28)

s+on

For any given \g € N there exists a constant opr(Ng) > 0 so that for any m € Sy, A\,n1,ny € N with A < Xg
and ny +ng + Ao < M +1, the operator 82," (D)"le\? (D)™ s Lip(vy)-tame with a tame constant satisfying

Mos (pymr) pyna (8) Ssiar €+ il Voar s <. (6.29)
If in addition s1 > sp; and [1,i2 are two tori satisfying with po > s1 4+ op(No), then
H8>\m <D>n1A12R§\14) (DY) Ssi,mx0 161 = 2llsy+0mr (r0) - (6.30)
Proof. Writing IT, as Id + (IT, — Id) the expression for E&O) becomes
L0 = w9, = (0§02 +2(a),02 + a9, + Op(r(”) + QU (D5w) ) + REP (13(0)s) + R (15(); )
where using that (Id — 1, )92h = 0 for any h € H$, the operator Rg\? = R%?(Zg(go); w) can be written as
R = (1~ 101 (0§ + 12 + 2(af”), 02 + a0, + Op(r{”) ) (6.31)

Since (Id—1II, )h = Zjes (h, e*iz”j””)L2 e?™I% for any hin L2, RE\? is a finite rank operator of the form (6.3])

with functions g;, x; € Hf satisfying (6.4) (use , (6.12)).
The estimate (6.28)) follows by Lemma [2.1}(ii7) and (6.19). Notice that

oW ow 9,0 (@) = p)w 0y, p:=0V(1+w 9pal)),

and that any Fourier multiplier g(D) is left unchanged under conjugation, i.e. ®Mg(D)(®M)~1 = ¢(D).

Using (6.5) and (6.9), we obtain (6.21]) where

o

M ._ o S
af) 1= o (- a¢d<1>>’ (6.32)

agl) = %Q)(l)(a(lo)), 7"(()1) is of the form with a(l) = %fI)(l)(a(_O,i), and the remainder Rg\? is given by
1 _ 1 9 _ 1 _
Ry = ;@“)R%?(@(l)) '+ ;cb“)RSB}(La(so))(@(”) t-JeWRE) @) (6.33)

We choose (1) such that (6.23) holds, obtaining (6.16)), (6.17). We now verify the estimates, stated in items
(4), (i7). Recall that we assume throughout that (6.1) holds. The estimates (6.18)-(6.19) follow by (6.16]),
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6.17), (6.10), and by using Lemma (#41), Lemma The estimate (6.26)) on p follows by the definition
6.20)), (6.17), and by applying Lemma (i1), Lemma Hence, by Lemma and the estimates ,
6.12)), and (6.26)), we deduce ([6.25). The estimates (6.27)) are obtained by similar arguments. Let us now
prove item (#i7). The estimat follows from Lemma (zzz) Since (®M)*! commutes with every
Fourier multiplier, we get

D BOR 15(e)(@V) (D) = (D) R 1502 (D) (6.34)

where I54(¢) = I5(p + aM(p)w). By Lemma (5.10), and (6.19) one has ||L5,QHT;ip(7) < ||L|\I;f§1[)
Moreover, by (6.3]), we have

Lo R(g) @)=Y

1
p (h, (@M gj))Lg;(cp“)Xj) , Yhel?, (6.35)

JES+
and by (6.31]), the conjugated operator Q(I)Rg\fl) (®1))~'h has the same form. The estimates (6.29) then
follow by (6.34), (6.13), and Lemmata (3.4} [3.6] to estimate the first term on the right hand side of

(6.33) and by (6.35)), (6.28]), (6.4) and Lemma [2.22] to estimate the second and third term in (6.33]). The
estimates (6.30) are proved by similar arguments. O

6.3 Elimination of the (p, z)-dependence of the highest order coefficient

The goal of this section is to remove the (¢, z)-dependence of the coefficient agl)(ap, x) of the Hamiltonian

operator ES), given by (6.20])-(6.21)), where we rename ¥ with . Actually this step will at the same time also

remove the coefficient of 92. We achieve these goals by conjugating the operator ES) by the flow ) (7, ),
acting on L? (T), defined by the transport equation

9,03 (1,0) =119, (b (7,0, )0 (1,0)), 3 (0,9) =1d, , (6.36)
for a real valued function
8P (¢, )
1+ 78 (p,2)
where 8 (¢, x) is a small, real valued periodic function chosen in below. The flow &3 (7, ¢) is

well defined for 0 < 7 < 1 and satisfies the tame estimates provided in Lemma Since the vector
field I1, 9, (b®h), h € Hj(Ty), is Hamiltonian (it is generated by the Hamiltonian %le b2 h? dx), each

2 (1,0), 0 < 7 < 1, p € TS is a symplectic linear isomorphism of H¢ (T;). Therefore the time one
conjugated operator

b = 4 (r, o, ) =

L£P = LM (@)™ o™ = 0@ (1,0), (6.37)

is a Hamiltonian operator acting on H? (Tq).
Given the (7, p)-dependent family of diffeomorphisms of the torus Ty, z — y = 2 +78?) (¢, ), we denote
the family of its inverses by y — = =y + 5P (7, ¢, y).

Lemma 6.5. Let /5’(2)(90,3;;@) = B(Q)(l, w,y;w) be the real valued, periodic function

1/3
ms

B0 yw) =0, (6.38)

—3 1
(a8 (¢, y;w))1/3 )

(which is well defined by (6.23)) and let M € N. Then there exists oar > 0 so that the following holds:
(i) For any s > sg
IBE NP NP Sonr (1 + 1l E50)) (6.39)

s+on

(i) The Hamiltonian operator Eﬁ,z) in (6.37) admits an expansion of the form

L2 =w-9, - (m302 + a?)ax + Op(r(()Q)) + QMY(D;w)) + RS\? (6.40)
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where a(12) = a'? )(ga,x w) is a real valued, periodic function, satisfying
laf? D Sonr &+ el - (6.41)
The pseudo-differential symbol r(2) = r(()Q)(go,:c,f;w) is in S° and satisfies, for any s > sq, the estimate
Op(r§)5ies” Senr =+ L) (6.42)

Let s1 > s and let [1,12 be two tori satisfying (6.1) for po > s1 + onr. Then, for any k=0,..., M,

18128 (s [1A128P 4, 1812057 |61 18120005 0,610 Sronr o1 = 2l 4ons - (6.43)

(iii) Let S > syr. Then the symplectic maps (®2)*! are Lip(y)-1 tame operators with a tame constant
satisfying .
Mgy () Ssor L+ e, Wsp+1<s<8S. (6.44)
Let A\g € N. Then there exists a constant op(Ng) > 0 such that, for any A\;ni,ne € N with A < Ao and
ni+ny 4+ Xo < M — 1, the operator 3 (D)"l’Rg\? (D)™, m € S, is Lip(y)-tame with a tame constant
satisfying
Li
My (pymr® (pyea (8) Ssatne €+ ellgEr gy Vonr <5< 8. (6.45)

Ym

Let s1 > sy and 11,12 be tori satisfying (6.1) with po > s1 4+ op(Xo). Then

n 2 n
10, (D) TALRED)Y™ |51y Sovrtno 111 = t2llsy 4o (ro) - (6.46)

Proof. The proof of this lemma uses the Egorov type results proved in Section According to (6.21]),
(6.24)), the conjugated operator is given by

£2 =@M (p?)-1 (6.47)
=w- 0, - ®Pa{N (@)1 — 20 (a§),82(0@) ! — dP)a{V g, ()

M

Z(I)(z (1)8 <I>(2 )1 (I)(z)Qiidlv(D;w)(@(z))q + @(2)725\14)(‘1,(2))71 + 3@ (w -0, (<I>(2))*1).

k=0
By (6.38), (6.18), (6.22) and Lemmata[2.1] the estimate (6.39) follows. Using the ansatz (6.1)) with yo > 0
large enough, the estimate (6.39) implies that ||3(2) ||I;;Pjr(;p)/1(>\o) S, €772, where the constant o (o) is

the constant appearing in the smallness conditions (2.78), (2.104), (2.106). Now we apply Proposition [2.2§]
to expand the terms

@M@ 20@) (0(M),02(@) 1, @V oL F@P) ! 0<k< M1,

Lemma-to expand the term &) Q4 (D; w)(®?)~1 and PI‘OpOSlthntO expand ®3 (w-0, (fb(z))*l).
Using also the estimates (6.10]), (6.12)), (6. 39|) one deduces , . By the choice of 3@ in and
Proposition the coefficient of the highest order term of (13(2) <I>(2) (and of E‘(A, ) is given by

([L+ B2 (0, )P a5 (0. 9) ly—as s (o) =

which is constant in (¢, 2) by (6.23). Since ®® is symplectic, the operator cé ) is Hamiltonian and hence
by Lemma the second order term equals 2(ms3),02 which vanishes since mj3 is constant. The remainder

¢(2)RS\14)(¢(2))_1 can be estimated by arguing as at the end of the proof of Proposition M (estimate of

RN (T, p)), using Lemma to estimate &), (®®)~1, the estimate (6.29) for R\, the estimate (6.39) of

8@ 32 and the ansatz (6.1) with pg large enough. The estimates (6.44) follow by (2.72)) and (6.39). The
estimates (6.43)), (6.46) are derived by similar arguments. O
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6.4 Elimination of the z-dependence of the first order coefficient

The goal of thls section is to remove the a- dependence of the coeflicient a( )( x) of the Hamiltonian operator

ESJQ) in , (16.40). We conjugate the operator £w 2) by the change of variable induced by the flow ®®) (7, ),
acting on Li(']l}), defined by

0,2 (r,9) =TI (0¥ (¢, 2)0; ' @P (7, )), P (0) =Td., (6.48)

where b3 (g, x) is a small, real valued, periodic function chosen in below Since the vector field
II, (b0, 1h), h e Hl(’]l‘l) is Hamiltonian (it is generated by the Hamlltonlan 5 f b3) (95 h)? dx), each

oG (1,¢) is a symplectic linear isomorphism of Hf for any 0 < 7 < 1 and ¢ € ']I‘S+ and the time one
conjugated operator

LB =B @ (@)™ e® .= a®)(1), (6.49)
is Hamiltonian.

Lemma 6.6. Let b(3)(<p,x;w) be the real valued periodic function

B9 (i) = 0 (o (i) — (@Pai)) . @) i= [ P (pmw)de (650)

Ty
and let M € N. Then there exists opr > 0 with the following properties:
(i) For any s > s,
||b B)HLlp(’Y) < s,M €+ H ”gfa(;\; (6'51)
and the symplectic maps (®B)EL are Lip(v)-tame and satisfy
Mgy (5) Sonr 1+ ell3557) - (6.52)
(i) The Hamiltonian operator in (6.49) admits an expansion of the form
LY = w0, — (m3d? + a'P ()0, + Op(r§)) + Q% (D;w)) + REY (6.53)
where the real valued, periodic function a( )(ga, )= <a§2)>m(g0;w) satisfies
3) )1 Li Li
s 15 Saar e+ IellSE0) (6.54)
and réB) = rég)(go,x,f;w) is a pseudo-differential symbol in S° satisfying for any s > so,
Op(rEGEE Sounr &+ IR (6.55)
Let s1 > sg and let 1,12 be two tori satisfying (6.1)) with puo > s1 + op. Then
3
18026, 181205 oy Sovr o2 = zllsr s+ 82200060510 Sevr 10 = 2l sy, - (6:56)

(#ii) Let S > spr, Ao € N. Then there exists a constant opr(Ng) > 0 so that for anym € Sy and \;ni,ny € N
with A < Ao and ny + na + A\g < M — 1, the operator (D)"langM(?’) (D)"2, is Lip(y)-tame with tame
constants satisfying
Li
Mys oy oy () Ssarna €+ IellFan, Vop <5< 5. (6.57)

[ stoar(Xo)?

Let s1 > sy and let U1, 02 be tori satisfying (6.1) with po > s1 4+ oar(No). Then

1 3
182, (D)™ Ao RS (D)™ |s1e1) Ssrntng 61 = t2llsr torr () - (6.58)

m
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Proof. The estimate (6.51)) follows by the definition (6.50)) and (6.41]), (6.18]). We now provide estimates for
the flow

B (1) = exp(THJ_b(3)(<p7m;w)8;1) , Vre[-1,1].
By (2.20), Lemma d (6:51)), one infers that for any s > so, [IL 639 1|L1psw()) Sem e+ It H?f;}{)

Therefore, by Lemma[2.12] there exists op; > 0 such that, if . ) holds with pg > oy, then, for any s > s,

sup @) (r) —1d|§P) <, e+ [Je 20 (6.59)
TE[-1,1]

The latter estlmate together with Lemmam 2.16], imply (6.52]).
By (6.40) and using Lemma [6.2] E 2| for the operator Q*¥(D;w), one has that

@(3)4}2)(@(3))* =w-0,—® (3) (mgai’ + a(12)8$)(<13 3))71 — Q*Y(D; w) + R(()I) + Rg\i)

where

R = —2@0p(rP) (@) + 63 (w - 9, (@) 1) — (@) —1d, ) HL(ZCW )0, ) (@)1
k=1

(6.60)

—Hl<§:c o )((<I><3>)*1 —IdL),

R = o0 )R(2 )= — (@@ —1d ) Rpr(w, Q¥) (@) 7! — Ry (w, QF) ((@P) ! —1d ).

Note that R(() ) is a pseudo-differential operator in OPS? (cf. Lemma . Moreover, by a Lie expansion,
recalling (6.48]), one has

q)(g) (mg@i + (1(12)830) (@(3))_1 = mg@i + a(12)8w + [HLb(3)8;1, m36§z + af)aw]
1
+ / (1= )@@ () [MLb@ 0, [I6D07 1m0 + P, || 0(r) " dr
0
= m30 + (agz) —3m3b) o, + RE)H) ,

R o= —3msb®) — mab®) 071 + [P0, 1, al?8,] + (T, — 1d)p® 0,1, msd?)

1 @ (6.61)
+/ (1—T)<I><3>(T)[mb@)am1 [H 6391 msd® + (P, Hq><3( )~ldr e OPS".
0

Note that R((JH) is a pseudo-differential operator in OPS® (cf. Lemma . Hence, lj and the
choice of b®) in (6.50)) lead to the expansion (6.53)) with R(3) given by and

op(r$?y == =R + RYD. (6.62)

The estimate - follows by (|6

The estimate (6.55) on the operator Op(ry (3 )) follows by the definitions (6.60)), (6.61)), (6.62)), by applying
the estimates (6.18)), (6.41]), (6.42)), (6.51)), m, [2-20), (2.21), @2-22)), (2.24), (2-26) (using the ansatz (6.1)
with o large enough). Next we estimate the remainder Rg\?, defined in . We only consider the second
term in the definition of Rg\?}), since the estimates the first and third terms can be obtained similarly. We
recall that the operator R (Q*%;w) is p-independent. For m € S; and \,ni,ne € N with A < )\ and
n1 + ngo + Ao < M — 2, one has

(D)3, (@) - IduRM(Q’i%v;w><<b<3>>*1)<D>”2 (6.63)
= Y Cuaa(D)mON (@9 — 1A )Ry (QF4w)d2 () H(D) 2
A1t+Aa=A

S G (D)0 (8 ~1d. (D) "1)(<D>”1RM< bw)(D) ) (D) =02 (@)1 (D)™2)

A1+A2=A
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By the estimates (2.21)), (2.24), (6.59) and Lemma one has

n —nq Li Li
M, o2t @010,y (5) S [(D) 00 (@ —1d (D)~ |20 s e+ LT,
-n — no |Li Li
m(D)*wagil (<I>(3>)*1<D)’"2 (8) SS ‘<D> 28«21 ((I)(S)) 1<D> 2|O,§,E)’Y) SSJVI 1 + ||L||SJ:)U('ZI)(>\(]) ?
and therefore, by Lemmata [2.14} and using (6.1]), the operator (6.63)) satisfies (6.57). The estimates
(6.56)), (6.58) follow by similar arguments. O

6.5 Elimination of the ¢-dependence of the first order term
The goal of this section is to remove the ¢-dependence of the coefficient a§3)(4p) of the Hamiltonian operator

£ in 6.49)), (6.53). We conjugate the operator £ by the variable transformation ®*) = &® (¢),

(@Ww)(p,2) = wlp,z + 6D (0), (W) 'h)(p,2) = hip,z — bW (),

where b () is a small, real valued, periodic function chosen in (6.65) below. Notice that ®®) is the time-
one flow of the transport equation d,w = b*(¢)d,w. Each ®*)(p) is a symplectic linear isomorphism of
H$ (T,), and the conjugated operator

££)4) = <I>(4)££)3) (<I>(4))71 (6.64)
is Hamiltonian.

Lemma 6.7. Assume that w € DC(v, 7). Let b™® () be the real valued, periodic function

_ 1
b(4)(g0;w) =—(w-0,) l(a(lg)(cp;w) — ml) , mypi= W /1r§+ 0(13)(905“) dp (6.65)

and let M € N. Then there exists o > 0 with the following properties:
(i) The constant mi and the function b satisfy

I |[MPO) <ppey 2, 0@ EPO) <y (e 4 U|FEY)), Vs > s (6.66)

s+onm

(ii) The Hamiltonian operator in (6.64) admits an expansion of the form

LY =w- 8, — (ms0% +m10; + Op(r§”) + Q¥4 (D;w)) + R (6.67)
where 7‘(()4) = ré4)(<p, x,&w) is a pseudo-differential symbol in SV satisfying for any s > s,
4)\|Li Li
0p(r6 )65 Sear e+ IULE) L Vs = s0. (6.68)

Let s1 > sg and let 1,2 be two tori satisfying with pg > s1+ oar. Then
[Avomal, 816D s, Sornr i1 = t2llssonrs 18120D0 50,500 Sornr 11 = 225y 4o - (6.69)
(iii) Let S > sp;. Then the maps (P! are Lip(y)-tame operators with a tame constant satisfying
Mooy (s) Ssoar L+ [ell57), Vsg <5< 5. (6.70)

Let Ay € N. Then there exists a constant opr(Ag) > 0 so that for any A\,ni,ne € N with A < X\g and
ny + ny 42X < M — 3, the operator 9} <D>”1RS§I) (D)™, m € Sy, is Lip(y)-tame with a tame constant
satisfying

Li
Mos (pymrt pyna (8) Ss.arae €+ Il oy Yo <s<S. (6.71)

Let s1 > sy and let Iy, 02 be two tori satisfying (6.1) with po > s1+ opr(Xo). Then

n 4 n
0, (D) TALRS DY 51y Sovtno 111 = t2llsy 4o (ro) - (6.72)
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Proof. The estimates are direct consequences of (6.54]) and of the ansatz (6.1)). Notice that
W ow- 9,0 (@W) M =w. 0, — (w-9,b)a,

and for any pseudo-differential operator Op(a(p,x,€)) a direct calculation shows that

2W0p(a(p,2,6))(#) " = Oplalp, x + b (9),0)),
and hence, by recalling (6.53]) and by the definition (6.65), one obtains (6.67|) with
Op(ré‘”(so,x,&)) Op(rg” (2 + b<4>( ) s)) . Ry = eWRE (@) (6.73)

The estimates follow by Lemmau, 2.1] using (6.66), (6.55)) and the ansatz (6.1). The estimates - for
the operator R follow by (6.57 - arguing as in the proof of the estimates of the remamder Ry (1, ¢)
(Wlth B given by b(4)) at the end of the proof of Proposition The estimates ) follow by Lemma

and . The estimates , - ) follow by similar arguments. O

7 KAM reduction of the linearized operator

The goal of this section is to complete the diagonalization of the Hamiltonian operator L, started in Section
@ It remains to reduce the Hamiltonian operator ££J4) in (6.67). We are going to apply the KAM-reducibility
scheme described in [9].

Recall that [,L(:l) is an operator acting on H7. It is convenient to rename it as

L() ::w-&P +iD0+R0 (71)

where w € DC(7, 7) (cf. (4.4)) and in view of (6.7), (3.7), (4.3)
Dy := diag;cg. (uj) s H = me(2m) —mi2m) — (W), gj(w) = W™ (v(w), 0) — (27))°, (7.2)
Ro := —Op(ry") + R} (7.3)

Notice that ,uoj = —u] for any j € S, . By (3.59) we have

sup |4g;[**, sup |jl|¢;["P <1, (7.4)
jest jes+
and, by (6.13), and ey 3 < 1,
1 = p0 "™ <ap 5% — 5%, V5 €St (7.5)

The operator R satisfies the tame estimates of Lemma below. We first fiz the constants

b:=[a]+2€eN, a:=3n+1, 7 :=27+1,

7.6
ud):=so+b+oy+omd)+1, M:=2(so+b)+4, (7.6)

where the constants oy, oar(b) are the ones introduced in Lemma and where M is related to the order

of smoothing of the remainder R} in (6.67) (cf. (6.71)). Note that M only depends on the number of
frequencies [S4 | and the diophantine constant 7.

Lemma 7.1. Let b and M defined in and S > sy with sy given by (2.54)).

(i) The operators Ro, [Ro,ds], 050 [Ro,a] 00 FPRg, O0*P[Ro, 0z, m € Sy, are Lip(y)-tame with tame

‘Pvn
constants
M(s) := mex { Mg, (5), M, 0,1(5)s Mazo g, (5), Maz0 g 0,1 (5) } 5 (7.7)
M (s,b) := max {om, 929 R, (3),9}{6;9:4)[11076:”](8)}7 (7.8)
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satisfying, for any syr < s < S,

Mo (s, b) := max{Mo(s), Mo(s,b)} Sg &+ o[22 . (7.9)

Assuming that the ansatz (6.1]) holds with po > sar + u(b), the latter estimate yields My (sar,b) S ey~ 2.
(ii) For any two tori i1, l2 satisfying the ansatz (6.1]), one has for any m € S; and any A € N with A < so+b
102, AvaRolls(areanys 103, [A12Ro, alllscreary S ller = t2llsp+uew) - (7.10)

m

Proof. (i) Since the assertions for the various operators are proved in the same way, we restrict ourselves
to show that there are tame constants 20t so+b[R0’8 ]( s), m € S;, satisfying the bound in (7.9). The two

operators Op(r (()4)) and ’Rgél) in the definition of Ry are treated separately. By Lemma each

operator 930 "° [Op(r(()4)), 0] = —Op(@SOH’O 7"(()4)), m € S;, is Lip(y)-tame with a tame constant satisfying,
for sp < s <85,

l-b Lip(’y) (s (4), | P ()

m, ’Op(aso+b8 (4))

sO+b[Op(Té4)) R ]( .

0,s4+s0+b+1,0 (711)

Lts

<b €+ || I|s+so+b+1+aM .

Next we treat 930° R4, 0,], m € S,. Notice that

9[RS, 0, = 92 PR (D)D) 710, — (D)L, (D)a PR, .

Pm

Since there is a tame constant 9t py-14, (s) bounded by 1 it then follows by (6.71)) that, for any sp; < s < S,

Myeo ot 5.1 (5) S5 €+ el Famie) - (7.12)

Combining (7.11)), (7.12) and recalling the definition of (b) in (|7.6)) one obtains tame constants 93?8;9? (Ro.02] (s),

m € S, satisfying the claimed bound.
(73) The estimate (7.10) follows by similar arguments using and (6.72) with s = spy. O

We perform the almost reducibility scheme for Ly along the scale
N_;:=1, N, ::NS‘V, v>0, x:=3/2, (7.13)
requiring at each induction step the second order Melnikov non-resonance conditions (7.18)).

Theorem 7.2. (Almost reducibility) There exists T := T(7,S4) > 0 so that for any S > sy, there is
No := No(S,b) € N with the property that if

Ny Mo(spr,0)y + <1, (7.14)
then the following holds for any v € N:
(S1), There exists a Hamiltonian operator Ly, acting on HY and defined for w € Q, of the form

L, :=w-0,+iD, +R,, D,:=diag;ecipi, pj€R, (7.15)

where for any j € S*, 4 is a Lip(y)-function of the form

1 (@) = W0w) + 14 (w), (7.16)

with
ply= o PO < 0(8)ey 2, (7.17)
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and where u;o) is defined in (7.2). If v =0, Q) is defined to be the set Q) :=DC(v,7) , and if v > 1,
7% ="
(o 7

The operators R, and (D,)°R, are Lip(vy)-modulo-tame with modulo-tame constants

Q=) = {w S R R e

: V[l < Npo1jij €8H) (T8)

ML (s) = MG (s),  M(s,0) := M oo (s), (7.19)
satisfying, for some Cy(spr,b) > 0, for all s € [sp, 5],
M (5) < Cu(sar,0)Mo(s,b)N, 2, M (s,b) < Cy(s27,0)Mo (s, 0) N, _y . (7.20)

Moreover, if v > 1 and w € Q), there exists a Hamiltonian operator W,_; acting on HY, so that the
corresponding symplectic time one flow

D, 1 :=exp(¥,_1) (7.21)

conjugates L,_1 to
L,=®, 4L, ;9" . (7.22)
The operators W,,_1 and (D,)°¥,_1 are Lip(y)-modulo-tame with a modulo-tame constant satisfying,
for all s € [sp, S], (with 11, a defined in (7.6)))
C(5M7 b)
Y

C(EM,b)

Ny N, 2,0 (s, b)), m?
Y

(010w, (8) =

mh, (s) < NT N, _oMo(s,b). (7.23)

(S2), For any j € S*, there exists a Lipschitz extension Y Q= Rof uy Q) = R, where ﬁjo = m3(2mj)3 —
mi12nj —gq;(w) (cf. (7.2)) and m1 : @ — R is an extension of my satisfying | |[MPO) < en=2;if v > 1,

v—1-

|ﬁ;’ - ﬁ;71|Lip(7) < m,ﬁ/71(5M) < fmo(ﬁM,b)Nfa

(S3), Let i1, iz be two tori satisfying (6.1) with po > sy + (o). Then, for all w € Q' (1) N QY2 (2) with
Y1,72 € [’7/27 2’}’], we have

IRy (e1) = Ro (e2)llBarenry S5 N2 ler = allsp+uew)s (7.24)
11{00)° (R (¢1) = R (o))l Beareary S No—tlltr — 2lsps+puo) - (7.25)

Moreover, if v > 1, then for any j € S*,

(5 (1) = 75 (2)) = (ry ™ (ea) = 757 (22))] S MlIRo (1) = Ro (e2)ll[scrone) (7.26)

77 (e1) =757 (e2)] Ss ller = t2llspstuv) - (7.27)
(S4), Let iy, is be two tori as in (S3), and 0 < p < /2. Then
CONS il = 2llsyvnmy <p - = Q) S77(2).
Theorem [7.2] implies that the symplectic invertible operator
U, =®,_10...005, n>1, (7.28)

almost diagonalizes Ly, meaning that (7.31)) below holds. The following corollary of Theorem and Lemma
can be deduced as in [9)].
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Theorem 7.3. (KAM almost-reducibility) Assume the ansatz (6.1) with po > sy +p(b). Then for any
S > s there exist Ny := No(S,b) > 0, 0 < &g := §p(5) < 1, so that if

Ngey™ < do (7.29)
with 7 :=7(7,S;) given by Theorem the following holds: for any n € N and any w in

n+1
QL =0 ﬂ Q) (7.30)

with Q) defined in (7.18)), the operator Uy, introduced in (7.28)), is well defined and L,, := U,LoU, ! satisfies
L, =w:-0,+iD, +Ry (7.31)

where D,, and Ry, are defined in (7.15)) (with v =n). The operator Ry, is Lip(7y)-modulo-tame with a modulo-
tame constant L
M (s) Ss No*y (e + 1 2P5)), Ve <s<S. (7.32)

Moreover, the operator L,, is Hamiltonian, U,, U are symplectic, and UF' —1d, are Lip(7)-modulo-tame
with a modulo-tame constant satisfying

1 Li
M s, (8) Ss v TING e+ EG)) s Ve <s < S, (7.33)

where Id | denotes the identity operator on L% (T1) and 71 is defined in (7.6).

7.1 Proof of Theorem [7.2]

PROOF OF (S1),. Properties (7.15] - ) for v = 0 follow by . with 7“ = 0. Moreover also
(7.20) for v = 0 holds because, arguing as in Lemma 7.6 in [9], the followmg Lemma holds:

Lemma 7.4. imﬁ(s), o’ 0(s,0) Sp Mo(s,b) where Mo (s,b) is defined in (7.9).

PROOF OF (S2),. For any j € S*, p is defined in . Note that mg(w) and g;(w) are already defined on
the whole parameter space 2. By the Kirszbraun Theorem and - there is an extension mq on Q of my
satisfying the estimate |m;|“P(") < ey~2. ThlS proves (S2),,.

PROOF OF (S3),. The estimates ({ - at v = 0 follows arguing as in the proof of (S3), in [9].
PROOF OF (S4),. By the definition of Qg one has Q3 (e1) =DC(v,7) CDC(y — p,7) = Q) (22).

Iterative reductibility step. In what follows we describe how to define ¥,,, ®,, L, 1 etc., at the iterative
step. To simplify notation we drop the index v and write + instead of v 4+ 1. So, e.g. we write L for L,,, L,
for L,41, ¥ for ¥,, etc. We conjugate L by the symplectic time one flow map

D = exp(¥P) (7.34)
generated by a Hamiltonian vector field ¥ acting in H]. By a Lie expansion we get
PLP ! = P(w- 9, +iD)® ' + PRP !

1
=w-0, +iD —w- 9,V —i[D, ¥] + xR + xR — / exp(TV)[R, Ulexp(—7Y) dr (7.35)
0 .
1
+ / (1 —7)exp(r¥P) {w -0,V +i[D, V], \If} exp(—71V) dr
0

where the projector Il is defined in (2.15)) and I3 := Id | —IIy. We want to solve the homological equation

—w- 0,V —iD, V] +TyR=[R]  where [R] :=diag;cs R(0). (7.36)
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The solution of (7.36) is

Y (¢
PP a1 V(65,4 # (0,5.9), < N, j,j' e st -
j()'_ (w4 pj — pjr) (7.37)
0 otherwise .

The denominators in (7.37) are different from zero for w € Q) (cf. (7.18)).

Lemma 7.5. (Homological equations) (i) The solution ¥ of the homological equation (7.36), given by
[7.37) for w e Q) ,, is a Lip(7y)-modulo-tame operator with a modulo-tame constant satisfying

Ml (s) S N7y tomb(s), o

((’9@)"\1!(8) S} NTlfy_lmn(svb) ) (738)

where 11 := 27 + 1. Moreover ¥ is Hamiltonian.
(ii) Let 1, I be two tori and define A2V = (1) — U(e1). If v/2 < y1,72 < 2v then, for any w €
9314-101) N 933-102);

A2 g(meary < CN*TY (1Rl Bcreany 11 = t2llspr+u0) + I A12RIBereary) 5 (7.39)
[1000)° A 129l 5aroary o N2 2 (I11{0p) R(2) | B(rrean) 11 — 2l nr o) +111(0p) °Ar2R| || B(rronsy) - (7.40)

Proof. Since R is Hamiltonian, one infers from Definition[2.4 and Lemma (¢4¢) that the operator ¥ defined

in (7.37) is Hamiltonian as well. We now prove (7.38). Let w € Q). By (7.18)), and the definition of ¥ in
(7.37), it follows that for any (¢,7,7") € Z5+ x St x S*, with |[¢| < N, (¢,7,5") # (0,4, 7),

W5 (O S @7 R (O (7.41)
and )
M AR (0) y Abesi
Aw‘lﬂ t :7J_R‘J' Z;w - 5 Opiin(w :lwg—i- A
O Ogjjr(wr) 7 ( 2)5€jj’(wl)5éjj/(WQ) gt (@) = i( 1 = )

By ([3), (T16), (T17) ome gets [Audesy] S ((6) + |5% — 7%)lwr — wsl, and therefore, using also (7-18), we

deduce that y y y
ALY (O] SOy HALRS (O] + (0> 2[R (£ w2)l[wr — wal - (7.42)

Recalling the definition (2.33)), using (7.41)), (7.42)), and arguing as in the proof of the estimates (7.61) in [0
Lemma 7.7], one then deduces (7.38]). The estimates (|7.39)-(7.40) can be obtained by arguing similarly. [

By (7-35)(7:36) one has

Ly =®L® ' =w 0, +iD; + Ry
which proves (7.22)) and (7.15)) at the step v + 1, with

iD, :=iD + [R],

1 1 7.43
R, = [I}R — /0 exp(7P)[R, Ulexp(—7T) dr + /0 (1 — 7)exp(7¥) [lIxR — [R], U]exp(—7¥) dr. (7:43)

The operator L, has the same form as L. More precisely, Dy is diagonal and Ry is the sum of an operator
supported on high frequencies and one which is quadratic in ¥ and R. The new normal form D, has the
following properties:

Lemma 7.6. (New diagonal part) (i) The new normal form is
Dy =D —i[R], Dy := diagjeg. ) pl=p;+r; €R, r;:=—iRJ(0), VjeSh, (7.44)

with _ _
phy =k, ud = M) = [ MPO) < o (sy)

1) For any tori 1(w), la(w) and any w € Q1 (11) N Q2 (12), one has
v v

lrj(e1) —rj(e2)] S [Aw2R|||Baer) - (7.45)
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|R§(0)|Lip(“/) < IM¥(spr). Since R(p) is Hamiltonian, Lemma implies that r; = —iRg(O)7 j € St, are odd
in j and real. The estimate (7.45) is proved in the same way by using |A1oR%(0)] < C|[|A19R|gzren). O

Proof. By the definition (7.19) of 9t*(sys) and using ([2.30) (with sp; = s1) we have that |uj‘ — iy |HPO) <

Induction. Assuming that the statements (S1),-(S4), are true for some v > 0 we show in this paragraph
that (S1),41-(S4),,1 hold.

PROOF OF (Sl)l,H By Lemma - for all w E 97 1 the solution ¥, of the homologlcal equation (7.36),
defined in s well defined and, by 1 , , satisfies the estimates atv+1. In partlculan
- d (7.6

the ebtlmate ( ) for v+ 1, s =57 an ) imply
MY, (sar) So NN, 2y Mo (sar,b) < 1. (7.46)
By Lemma and using again Lemma one infers that

<I)i1 (5M 1 3

N N

)
m?a bq)il (5M) 1 + m(@ Y, (5M) 5 1 + Nglv_lmi(sMab) 5

o (8) ST+MG (s) So 1+ NJy~ e (s) (7.47)
$) S 1+ Mg, yow, (5) + My ()M, 0w, (sa1)

(7.14),(7.20),(7.38)
~Y

g
mw ot

—_~ o~

14+ N7y~ (s,0) + N2TUN, vy~ (s) .

By Lemma [7.6| . by the estlmate and Lemma the operator D, 41 is diagonal and its eigenvalues
pythl, — Rosatisfy (7.17) at z/+ 1.
Now we estimate the remainder R, 41 defined in (7.43).

Lemma 7.7. (Nash-Moser iterative scheme) The operator R,41 is Lip(v)-modulo-tame with a modulo-
tame constant satisfying

MY, (5) S N, PO (5, D) + Nty 1908 ()90, (51 - (7.48)

The operator (9y)°Ry41 is Lip(y)-modulo-tame with a modulo-tame constant satisfying

M (5,0) Ko MY (5,0) + Nty " (5, 0)IML (504) + NPy~ O (sr, BN (5) - (7.49)
Proof. The proof follows by Lemmata using the estimates (7.20), (7.38), (7.47)). O

The estimates (| , and , allow to prove that also ) holds at the step v+ 1. It implies
(see [0, Lemma 7. 10])
(

Lemma 7.8. 917(54_1 s) < Cu(sp1,b) N, 2My(s,b) and 93??,+1(8,b) < Cy(spr,b) N, DMy (s,b).

PROOF OF (S2),,;. By Lemma for any j € St, i ”'H @ + ¥ where |r |LP(Y) < DMy (507, D) N, 2.

Then (S2),41 follows by defining /f’“ =y 4Ty where 7 : Q — R is a Lipschitz extension of r (cf.
Kirszbraun extension Theorem).

PROOF OF (S3),4+1. The proof follows by induction arguing as in the proof of (S2),41.
PROOF OF (S4),4+1. The proof is the same as that of (S3),41 in [2 Theorem 4.2]. O

7.2 Almost-invertibility of L,
By (7.31), for any w € 9}, we have that Ly = U, 'L,U, where U, is defined in (7.28) and thus

L, = V;anVn , Y, = Un<I>(4) N (7.50)
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Lemma 7.9. There exists 0 = o(7,Sy) > 0 such that, if (7.29) and (6.1) with po > spr + p(b) + o hold,
then the operators VE! satisfy for any sy < s < S the estimate

i Li T — Li Li
IVERIEPO) S [RIERD + Ny 00D ). (751)
Proof. By the estimates (6.28)), (6.44), (6.52), (6.70), using Lemmata [2.14] [2.15] [2.18| and (7.33)). O

We now decompose the operator L, in (7.31)) as
L, =25 +R, +Ry (7.52)

where
Ly =Mk, (w- 9, +1Dn) g, + g, , Ry :=1g (w0, +iD,) g, —Ix , (7.53)

the diagonal operator D,, is defined in (|7.15)) (with v =n), and K, := Ké‘n is the scale of the nonlinear
Nash-Moser iterative scheme introduced in ([5.24)

Lemma 7.10. (First order Melnikov non-resonance conditions) For all w in
A a1

the operator £5 in (7.53)) is invertible and

=0 () ={wea:|w L+ af| =297, Y<Ky, jeST}, (7.54)

_ i — Li
1(£5) gL < 4|5, . (7.55)
By (7.50)), (7.52), Theorem [7.3] estimates (7.55)), (7.56)), (7.51), and using that, for all b > 0,
Li Li i Li
IRERIEED < KB RIEPG), , IREREPO) < (R LR (7.56)

we deduce the following theorem, stating the almost-invertibility assumption of £, of Section

Theorem 7.11. (Almost-invertibility of £,) Let a,b, M as in (7.6)) and S > sp;. There exists o =
o(1,S4+) > 0 such that, if (7.29) and (6.1) with po > sy + w(b) + o hold, then, for all

weQ) =) (1):= N}, (7.57)
(see (7.30)), (7.54) ), the operator L,, defined in (5.22)) can be decomposed as
L,=LS+Ry+RS, (7.58)

LS =V 18V, Ru:=V,'R,V., RL:=V,'R}V,,

where LS is invertible and satisfies (5.28) and the operators R,, and R} satisfy (5.26)-(5.27).

8 Proof of Theorem [4.1]

Theorem is a consequence of Theorem below where we construct iteratively a sequence of better and
better approximate solutions of the equation F, (¢, () = 0 where F,, is defined in (4.6).

8.1 The Nash-Moser iteration

We consider the finite-dimensional subspaces of L?, x L? x L7, defined for any n € N as

- { @ Y, w )(4,0), O = Hn@7 Yy = Hny, w = Hnw}

where L? = L?(T; x RS+) (cf. (4.8)) and where I1,, :=Ilg, : L2 — Ns>oH 3 is the projector (cf. (2.2))

I, : w= Z we,je (ot2mje) s T = Z we, je i(t-pt2mjz) (8.1)
€75+ jest [(€,5)| <Ky
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with K, = KX (cf. (5.24)) and also denotes the corresponding one on L2, given by L2 — Ny>oHS,
p= ZZGZ& peet? — Elf|<Kn peel??. Note that II,,, n > 1, are smoothing operators for the Sobolev spaces

H$. In particular II,, and I} := Id — II,, satisfy the smoothing properties (2.3). For the Nash-Moser
Theorem stated below, we introduce the constants

7:=max{o;,00}, bi=[a]+2, a=3n+1, T=2r+1, y=3/2, (8:2)
ar == max{125 + 13, pr + 3+ x(u(b) + 20)}, az:=x 'a; — pu(b) — 27,

2
bri=ar+u(b) +37 +4+ g, =3(u(d) +20 +2) + 1, S:=sum b, (8.4)

where o7 is defined in Lemma o9 in Theorem and a, p(b) in ((7.6). The number p is the exponent
in (5.23) and is requested to satisfy

13
pa>(x—1ai +x(@+4) = ja1 + (@ +4). (8.5)

In view of the definition (8.3) of a;, we can define p := p(7,S,) as

126 + 17+ x(u(b) + 27)

a (8.6)
We denote by ||W||Llp = max{||¢ HLlp ,[¢[MPY the norm of a function
W= (,¢:Q— (H; x Hj x H?Y) x RS+, wis W(w) = (1(w), C(w))-
The following Nash-Moser Theorem can be proved in a by now standard way as in [9], [I].
Theorem 8.1. (Nash-Moser) There exist 0 < g < 1, Cy > 0 so that if
eKi? < by, mo:=max{pT+3, d6+4+ai}, Ko:= 7l yi=et, 0<a< l, (8.7)

T2
where T :=T(7,S4) is defined in Theorem then the following holds for all n € N:

(P1),, Let [/NVO :=(0,0). Forn > 1, there exists a Lip(y)-function W,, : RS+ — E,_; x RS+, w = W, (w) :=
(tn, Cn), satisfying

T Li _
Wl ey S €777 (8.8)

Let Uy, := Uy + W,, where Uy := (¢,0,0,0). Forn > 1, the difference H, := U, — U,_1, , satisfies

Li — I Li a
||H1||5I;+M(b)+g 5 gy 2 ) HH ||5k§)—(‘,-’y/1)/(b)+g ~ €y QKn 21 ’ f07” n Z 2. (89)
(P2),, Let Gy := Q and define forn > 1,
gn = gnfl N Qx(znfl) ’ (810)

where Q) (i,—1) is defined in (7.57). Then for any w € G,

| Fu (T)|5P) < Ope K2 K_i:=1. (8.11)

n—1>

(P3), (High norms) W[50, < CueKAL ), Yw € G,

Proof. We argue by induction. To simplify notation, we write within this proof || - || for || - ||*P().
STEP 1: Proof of (P1,P2,P3)o. Note that (’Pl)o and (P3)g are trivially satisfied and hence it remains to

verify (8.11)) at n = 0. By (4.6] ., , , and Lemma u there exists C, > 0 large enough so that
F (U, LIP('Y) < C
e (Uo)ll5ar €
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STEP 2: Proof of the induction step. Assuming that (P1,P2,P3), hold for some n > 0, we have to prove that
(P1,P2,P3),+1 hold. We are going to define the approximation U,,+1 by a modified Nash-Moser scheme.
To this aim, we prove the almost-approximate invertibility of the linearized operator

L = Ln(w) = dy.c Fu(in(w)) (8.12)

by applying Theorem to Ly, (w). To prove that the inversion assumptions (5.25)-(5.28) hold, we apply
Theorem [7.11| with ¢ = 7,,.

By choosing ¢ small enough it follows by (8.7) that Ng = K} = 4P = ¢~ P2 satisfies the requirement of
Theorem and that the smallness condition ([7.29)) holds. Therefore Theorem applies, and we deduce
that hold for all w € Q) (i), see (7.57).

Now we apply Theorem to the linearized operator Ly, (w) with Q, = Q) (i) and S = sy + by, see
. It implies the existence of an almost-approximate inverse T,, := T, (w, i, (w)) satisfying

ITnglls Ssnrror v (lgllssz + K3y Hinllstnwyrallglsnz) . Vour < s < sar+D1, (8.13)

where we used that @ > o9 (cf. (8.2))), o2 is the loss of regularity constant appearing in the estimate (5.43)),
and Ny = K}. Furthermore, by (8.7), (8.8) one obtains that

Ko Py HWallsy e < 1, (8.14)
therefore (8.13)) specialized for s = s); becomes

ITngllsr Sor v 29 llsrs o - (8.15)
For all w € Gny1 = G NA] () (see (8.10)), we define

Upir :=Up+Hps1,  Hpir o= (ns1sCng1) i= —IL, T, Fou(U,) € E, x RS+ (8.16)
where IT,, is defined by (see (8.1]))
IL(1,¢) := (e, ¢) - T (1€)== (I4,0), V(1,0). (8.17)
We show that the iterative scheme in is rapidly converging. We write
FoUns1) = FulUn) + Ly Hyi1 + Qn (8.18)

where L,, := dL,{‘Fw(U'rL) and @, is defined by (8.18). Then, by the definition of H,11 in (8.16)), we have
(recall also (8.17))

-Fw(Un+1) = fw( n) - LanTan-Fw(Un) + Qn
= 1 Foo(Un) + Ro + Qu + P (8.19)
where ~ R
Ry = L,IT, 1, F,(U,),  Pni=—(L,Ty — 1)L, Fou (U,). (8.20)

We first note that for any w € Q, s > s5; one has by the triangular inequality, (4.6)), Lemma and ({8.2)),

.8) N ~ N
H]:w(Un)Hs Ss ||]:w(U0)”s + ”}—w(Un) - ]:w(UO)”s S,s e+ ||Wn||s+3 (8~21)

and, by (83), (-7), E11) o
K3y M Fu (U < 1. (8.22)

We now prove the following inductive estimates of Nash-Moser type.

Lemma 8.2. For all w € G, 11 we have, setting ps := u(b) + 37 + 3,
1Fe (Ut ) lsar Ssarron K825 (e + [Wallaasvor) + Ko7 PHIFL (O3, + e 2V I Fu (Un)llsn (8:23)

n

IWillspr4r Searton Koe, Wt llsprsbr Senstor KEOT T2 (e 4 [Wllspin,) s 7> 1. (8.24)
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Proof. We first estimate Hn+1 defined in

Estimates of H, ;. By (8.16) and ., , , we get

[ g 1lls 040, §sM+b1 _2(K0||f( ) lanr4on + KECPTRKIP 7 s 00 1P (Un) s )

E21).622 _ N
§5M+b1 Kﬁ(b)+207_2 (6 + ||Wn||51v1+b1) (825)

YT =Ko<Kn () 42742 -
§5M+b1 K’ﬁ (5 + ||Wn||5M+b1) ) (826)

||HTL+1||5M §5M+b1 2I(U”]: ( )||5M . (827)

Next we estimate the terms Q,, in and P,, R, in in || ||s,, norm.
Estimate of Q,. By (8.8 -, . - -, and since x2 —a; < 0 (see (8 ) we deduce that

(Wi + tH 1]y 45 S 5’}/ 2K2" for all t € [0, 1]. Since v~ = Ko, by we can apply Lemmaand by
Taylor’s formula, using , ., -, .7 and 7! = Ky < K,,, we get

1Qnllsss Ssarror [Hnrallz, 15 Ssaror K THIFL (ORI, - (8.28)
Estimate of P,. By (5.44), L, T, — Id = P(i,) 4+ Pu(in) + P2 (in). Accordingly, we decompose P, in
(8:20) as P, = —P\" — P, ., — P\

n,w’

where
P =T, P (i), Fou(U,), P =T, P (i), Fou (Ty,), Pl i =T,Px (i), Fo(U,).

By (2.3),

1P (O lsps+7 < IMaFu(Un)llssg+z + Iy Foo (Un) sy 4
< K7 (1FoUa)llsas + Ky 1Fu (Un)llsys-40,).

By (5.45), (8.14), (8.29)), and using that (8.21)), (8.22), v~' = Ky < K,, we obtain

1P sas Sonrror ¥ Kot 1P (Un) lsys (1Feo (Un)llsas + Ko™ 1Fu(Un)llss+:)
Sear+vy Ko7 PN Fo(On) lsns (1F(Un) lsas + K572 e + [Wallsyr,))
Ssoror Kot P Fu(Un)ll2,, + E37H70 e + [[Wallsys4v,) - (8.30)

By (00, B1), ), E3), we have
~yTl=Ko<K,

||P7l,w||5M 55M+b1 57_4]\[7:—&11[(0”]: ( )||5M SSOJH; EN : K0+4||]: ( H5M’ (831)

where a is in . By (5.47 , ., . -, and then using , vl =Ky < K, we get

H anEM ~SM+Db1 Kﬂ(b)+20 b1 _Q(H}- ( )||5M+b1 +‘€||W ||5M+b1)

Sonrby KEOTSTH200 (L 1 s y). (8.32)

~

(8.29)

Estimate of R,. By the definition of L, one has that for any U= (t, ¢ ) L, U is given by

Lnﬁ =w- 8(,9/11\_ d, Xy, ((QO, 0, O) + Zn) m - (0, Zv O)

B2 0 0,7 — d. X ((9,0,0) + i) 7] — du Xp. ((,0,0) + i) ] — (0,,0) (8.33)
where we recall that d, Xx((¢,0,0) + i,)[]] = (Q’S“f”(u)[ yl, 0 de”(u,D)[@]). By the estimate of d, Xp_

of Lem one then obtains || LyUlls,, < [|Ullsy 45 Using (820 (8:20), (8:13), (8-8), (2-3) and then (8.14),
8.22),

‘ ) 8 22 = KO < Kn7 we get

1Rallsas Soarror KR T7H2701 e 4 [Woalay4m,). (8.34)
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Estimate of F,,(U,+1). By (8.19), (2-3), (8:21)), (8:28), (8-30)-(8.32), (8.34), (8-8), we get (8.23). By (8.16))
and (8.13) we now deduce the bound (8.24) for W, := H;. Indeed

1=Ky
IWillsarsor = 1Hillsprtor Ssartor 7 2 NFo(U0)lsprtbr45Ssntn €70 S Kge.
Estimate (8.24) for W, ;1 := W, 4+ H, 41, n > 1, follows by (8.26). O

Lip(v)

By Lemma we get the following lemma, where for clarity we write || - ||s instead of || - ||s as above.

Lemma 8.3. For any w € Gp41

1P (Uni )50 < CuK™, [Waia [0, < CuKl1e (8.35)
Li Li _ o —a
1 [520) s S ev 72, ||Hn+1||s;i’2(b>+a Sey PKECTTR A 0> (8.36)

Proof. First note that, by (8.10)), if w € G, 41, then w € G,, and so (8.11)) and the inequality in (P3),, holds.
Then the first inequality in (8.35) follows by (8.23), (P2),, (P3)n, 7' = Ko < K, and by (8.3), (84),

(B-5)-(8.6). For n =0 we use also (8.7).
The second inequality in (8.35|) for n = 0 follows directly from the bound for Wi in (8.24)), since uy > 2,

see (8.4) and C, > 0 large enough (i.e., € small enough); the second inequality in (8.35)) for n > 1 is proved
inductively by taking (8.24)), (P3),, and the choice of u; in (8.4)) into account and by choosing Ky large
enough.

Since Hy = Wy, the first inequality in (8.36) follows since ||H1l|s,,+um)+5 < 7 2Fu(Uo)lsp+nm)+25 S

ey~2. If n > 1, estimate (8.36) follows by (2.3), (8.27) and (8.11)). O

Denote by H,;1 a Lip(y)-extension of (Hn11)|g,,, to the whole set Q of parameters, provided by the
Kirzbraun theorem. Then ﬁnH satisfies the same bound as H,; in and therefore, by the definition
of as in , the estimate holds at n + 1.

Finally we define the functions

Wn—i—l = Wn + Hn+1 ) Un—l—l = Un + Hn+1 = UO + Wn + f{n-&-l = UO + Wn+1 )

which are defined for all w € €. Note that for any w € G, 41, V~Vn+1 = Whpy1, Un+1 = Up41. Therefore
(P2)n+1, (P3)n41 are proved by Lemma [8.3] Moreover by (8.9), which at this point has been proved up to
the step n 4+ 1, we have

i Lip(7) ntl Lip(y -2
HWn+1||5M+M(b)+E = Zk:l || k||5M+u(b)+7 < Ciey
and thus (8.8)) holds also at the step n + 1. This completes the proof of Theorem O

We now deduce Theorem Let v = &® with a € (0,a9) and ag := 1/72 where 7 is defined in .
Then the smallness condition holds for 0 < € < gg small enough and Theorem applies. Passing
to the limit for n — oo we deduce the existence of a function U (w) = (loo(w), (o (w)), w € £, such that
Fo(Uso(w)) = 0 for any w in the set

N G =G0 () 2400 1) B0 g, N[N G n[ N 9] (8.37)
n>0 n>1 n>1 n>1
Moreover L L
e = Uollgit )45 S 1720 100 = Tnllci ) 5 S V72K, n> 1. (8.38)

Formula (5.5)) implies that (. (w) = 0 for w belonging to the set (8.37), and therefore i, = I (w) is an
invariant torus for the Hamiltonian vector field X4, filled by quasi-periodic solutions with frequency w. It
remains only to prove the measure estimate (4.9).
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8.2 Measure estimates
Arguing as in [9] one proves the following two lemmata.

Lemma 8.4. The set

Goo =G0 [ (22 00)| 1 [ ) 927 (00)] (8.39)

n>1 n>1

is contained in G, for any n >0, and hence Goo C(),,>0 Gn-

For any j € S*, the sequence py o — R, n >0, in Theorem (Sz)n is a Cauchy sequence with
respect to the norm | - [MP("). We denote the limit by 13,

pe = lm 7 (teo), J € St. (8.40)

n—oo

By Theorem [7.2| one has for any j € S*,

P ==, = ()M S ey AN n > 0. (8.41)
Lemma 8.5. The set
)5 — 57| . s L, el
QY = {(UEDC<4’Y,T) Hw b+ p = pgr| > o V(4 4,7) € Z°t x S— xS,
4|53
|- €4 p5°| > Z@{ Y(¢,5) € 75+ xSL} (8.42)

is contained in Goo, Q) C Goo, where G is defined in (8.39)).
In view of Lemma and it suffices to estimate the Lebesgue measure |2\ Q2 | of Q\ QL.

Proposition 8.6. (Measure estimates) Let 7 > [S;| + 2. Then there is a € (0,1) so that for ey™3
sufficiently small, one has |\ QL | < ~*.

The remaining part of this section is devoted to prove Proposition By (8.42), we have
Q\ QL =Q\DC(4y,7) U U Rejor U U Qe (8.43)
(0,5,5") €L+ xS+ xS (£,7,5')#(0,4.5) (£,5) €2+ xS+

where Ry ; j/, Q¢ ; denote the 'resonant’ sets

o] 00 47 j3 _j/3
Rejj = {w €DC(4v,7) ¢ |w-l+p° —pi| < |<5>T|} (8.44)
4v5)3
Q= {w €DC(4y,7) : |w- £+ pj°| < ’ZJ;T' } (8.45)

Notice that R, ;; = 0. Furthermore, it is well known that [Q\ DC(4v, 7)| < 7. In order to prove Proposition
we shall use the following asymptotic properties of ;5°(w). For any w in DC(4v,7), we have ﬁ?(Loo) =

1453 (too) and we write u5°(w) = p9 (too) + 15°(w), Where by (7.2), m3® := m3(too), M := M1 (o),

13 (to0) = m3° (W) (2m5)° — me®(w)2m) — g5 (w) -
On DC(4~,7), the following estimates hold

00 Lip(y) oo [Lip(7) —2
|m3” + 1 S €, |m?°| S e,
() ) () (8.46)
sup |]q; ™", sup |4]|g;[" ? 1, |r$e|LiP() ? ey 2.

jESt JESt

From the latter estimates one infers the following standard lemma see [2, Lemma 5.3]).
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Lemma 8.7. (i) If Ry, # 0, then |53 — j"3| < C(€) for some C > 0. In particular one has j*+ j"* < C{¢).
(ii) If Qo # 0, then |§> < C{t) for some C > 0.

Lemma [8.7| can be used to estimate |Ry ; /| and |Qy ;| for || sufficiently large.

Lemma 8.8. (i) If Ry j» # 0, then there exists Cy > 0 with the following property: if || > Ci, then
Re g0l S 13% — 3536 =+,
(i) If Qu; # 0, then there exists Cy > 0 with the following property: if |¢| > C4, then |Qp ;| S 52 (€) =T+,

Proof. We only prove item (i) since item (i) can be proved in a similar way. Assume that Ry ; j» # 0. Let
@ such that @ - ¢ = 0 and introduce the real valued function s — ¢g ; 1 (s),

V4
Ge,jj0(8) = frji (@ + Sm) ; fejjr (W) = w4 p5°(w) — p57 (w) -

Using that by Lemma 8.7} |2 — 5| < C(¢), one infers from (8.46) that, for y~2 small enough and || > C4
with C large enough, |d ;7 (52) — ¢e, ;.57 (s1)| > %|32 — 51| Since DC(4+, 7) is bounded one sees by standard
arguments that

¢
[{seR: @+ 5iqy € Regj | S 1% — 321~

The claimed estimate then follows by applying Fubini’s theorem. O

It remains to estimate the Lebesgue measure of the resonant sets Ry ; j» and Qy ; for |[¢| < Ci.

Lemma 8.9. Assume that || < Cy and that ey is small enough. Then the following holds:
(i) If Re ;0 # 0, then there are constants a € (0,1) and Cy > 0 so that |j],]j'| < Cs and |Re; /| S °.
(1) If Qp; # O then there are constants a € (0,1) and Cy > 0 so that |j| < Cy and |Qp ;| S °.

Proof. We only prove item (i) since item (i7) can be proved in a similar way. If [¢| < C; and Ry ;» # 0,
Lemma (z) implies that there is a constant Cy such that [j],|5’| < j2 + j2 < Cs. For ey~3 small
enough one sees, using (8.46)), the definition (7.2 of ug, and the bounds |¢| < Cy,|jl,]j'| < Cs, that

lug® — w;-“d”| < ey~? <, implying that for some constant C3 > 0,

Rejjy C{we : |w-l+ Wk (y(w),0) — wf,d”(v(w),0)| < Csv}. (8.47)

J

By Lemma the function w — w-£+wk (v(w), 0) —w;?,d”(u(w), 0) is real analytic and not identically zero.
Hence by the Weierstrass preparation theorem (cf. the proof of [8, Lemma 9.7]), we deduce that the measure
of the set on the right hand side of (8.47)) is smaller than 4* for some a € (0,1) and ~ small enough. O

By (8.43) and Lemmata 8.9| we deduce that

2\ QLI S+ > 07T $5",
1> Cal31,1571<C40)

where we used the assumption that 7 — 2 > |S;|. This concludes the proof of Proposition
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