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1. Introduction

Consider the problem,

2
g—? = % +au*(1 —u) —o(x)u, z€R, t>0, (1.1)
wherea > 0 is a constant. Equations of this kind are crucial in the stofdyop-
ulation dynamics (see e.g. [7]). In this contex{y,¢) denotes the density of a
population at time in locationz, the diffusion term describes its migration, the
second term in the right side is the reproduction rate, aadki$t term is the mortal-
ity rate. In the case of sexual reproduction, the reproduaatate is proportional to
the second power of the population density and to the avait@sourcesl — u),
given by the difference of the rate of production of resosraed the rate of their
consumption. Stationary solutions of equation (1.1) ahetems to
d?*u

e +au*(l —u) —o(z)u=0, xR (1.2)
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Stationary solutions of reaction-diffusion equationsajéaeg at infinities are called
pulses Their existence along with stability and other relatediegsshave been ac-
tively studied for both local and nonlocal models in recesdng, for instance, in [1],

[2], [3], [4], [5], [6], [8], [12], [13]. In the present artie, we only focus on the

persistence of pulses and their asymptotic approximatotie leading order of the
small parameter when a perturbation is applied to equatidr).(Similar studies in

the context of standing solitary waves of the nonlinear 8dimger equation, when
a perturbation is applied to either a scalar potential m®dlin it or to the nonlinear

term, were exploited in [9].

The unperturbed stationary problem in our case is given by

d2w0

72 + awi (1 — wp) — oo(x)wy =0, x €R. (1.3)

In the article we will consider the spaé¢€’(R) equipped with the norm

2
d*u
[l oy = llull7zgy + ) (1.4)
L2(R)
By virtue of the standard Sobolev embedding, we have
[ul|Loo®) < cellull 2y, (1.5)

wherec, > 0 is the constant of the embedding. We first make the followisig a
sumption on the parameters of our unperturbed problem aldthgts solution that
we are going to consider.

Assumption 1.Let the constant > 0 and the function
oo(z) € C*(R), lim,_100(x) =6 > 0.
We also assume that equation (1.3) admits a pulse solutign) > 0, = € R,

satisfying
wo(z) € C®(R) N H*(R), lim,_,+owo(x) = 0.

When a perturbation is applied to our stationary probler®)(ive arrive at

2

% + aw?*(1 —w) — [oo(z) + o1 (z)]Jw =0, = €R. (1.6)

Assumption 2. Let the parameter > 0 and the nontrivial function

o1(z) € C®(R), M, 1oo(z) = 0. (1.7)



We seek solutions of equation (1.6) in the form
w(x) = wo(z) + wy(z). (1.8)
Then, by means of (1.6) along with (1.3), we get

Lowy(z) = a(1 — 3wo(z))w(x) — aw)(x) — eoy(z)(wo(x) + wy(x)),  (1.9)

where
d2
da?

Under Assumption 1, it is easy to see that the essentialrspedf L is

Ly = + a(3wi(z) — 2wo(x)) + oo(x) : H*(R) — L*(R). (1.10)

ess(Lo) = [5, +00). (1.11)

If oo(x) were a constant function on the real line, then the opetiatavould have

a zero modeﬂ, which easily follows by differentiating both sides of etjoa
Xz

(1.3). However, in the present article we assume the funeti¢x) to be generic

such that operator (1.10) would have a trivial kernel.

Assumption 3. The kerneker(L,) = {0}.

By means of (1.11) along with Assumption 3, the operdtgt : L*(R) —
H?(R) is bounded, that is,
1 Lo || < oo. (1.12)

Let us denote a closed ball in the Sobolev spHEER) as
B, :={ue H*R) | |ulm@ < p}, p>0. (1.13)

We look for solutions of problem (1.9) as fixed points of theihary nonlinear
equation

Lou(z) = a(1 — 3wo(x))v*(z) — av®(z) — eoy(x)(wo(x) + v(z)). (1.14)

For a given function(z) this is an equation with respectidz). We mention that
similar ideas for problems involving non-Fredholm opersia their left sides have
been exploited in [10] and [11]. We introduce the operdatasuch thatu = T'v,
whereuw is a solution of equation (1.14). Our main result is as foow

Theorem 4.Let Assumptions 1, 2 and 3 hold. Then equation (1.14) defieanap
T : B, — B,, which is a strict contraction for all < p < p* and0 < ¢ < &* for
somep* > 0 ande* > 0. The unique fixed point,(x) of this mapT is the only
solution of problem (1.9) i3, such that

wy(2) = —< L for(@)wo(2)] + O(?). (1.15)
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Note thatO(<?) in the right side of formula (1.15) denotes the terms of thieos?
and higher in thé7?(R) norm. The proof of Theorem 4 is given in the next section.

2. Proof of Theorem 4

First of all, we establish the uniqueness of solutions obfam (1.14). Suppose
that there is @ € B, such that (1.14) has two different solutians u, € B,. Then
their difference)(z) := ui(z) — uz(z) € H*(R) solves the homogeneous problem

Loy = 0. (2.16)

By means of Assumption 3, equation (2.16) admits only adtsolution, a contra-
diction. This proves the unigueness of solutions of (1.14).

Next, for arbitraryv(xz) € B,, we estimate the right side of problem (1.14) in
the absolute value from above by

[a(1 + 3||wo | oo ) |V Loo () +

+allvl| Lo gy +ellorllze@llv(@)] + ellorll L lwo (). (2.17)

Note thato, (x) € L>*(R) due to Assumption 2. By means of the Sobolev embed-
ding (1.5), expression (2.17) can be bounded from above by

[a(1+ 366Hwo|’H2(R))CeHU”H2(R)+

+ac; vl fp@ + ellollie@)v(@)] + ellow]| @ lwo(@)]- (2.18)
The fact thawv(z) € B, yields the upper bound for (2.18) given by

[a(1 + 3ce||wol| r2r) ) cept+

+aczp® + el|on|| L) |v(2)] + ellon]| e my[wo (). (2.19)
Therefore, from (1.14) we easily deduce that

lullzr2y < 126 I{[a(L + Beellwollzr2r) Jeep+

+acp® + ello1 || Lo p + ll o] Loy lwo | 2wy }- (2.20)
Apparently, the estimate

1Zo  I{ace (1 + eellwollr2r) ) o™+

+acip® +ellon oo (p + lwollm2w)} < p (2.21)

can be achieved for al > 0 andes > 0 small enough. Note that the upper bound
on the values of > 0 here will depend omp. This means that

ull 2@y < p, (2.22)
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thatis,u € B, as well. Hence the problem (1.14) defines the Map5, — B, for
all p > 0 ande > 0 sufficiently small.

Our goal is to establish that this map is a strict contractiém fact, let v,
v, € B,. The argument above gives us = Tvy, us = Tv, € B, as well. By
means of equation (1.14) we obtain

Louy (7) = a(1 — 3wo())vi(x) — avi(x) — coy(x)(wo(x) +vi()),  (2.23)
Lous () = a(1l — 3wo(z))v3(x) — avd(x) — coy(x)(wo(x) + va(x)).  (2.24)
Formulas (2.23) and (2.24) give us
Lo(u1(z) — uz(z)) = (vi(z) — va2(2)) X
x{a(1—3wy(z)) (v (z)+v2(2)) —a(vi(z)+v(z)ve(2) 403 (2)) —c01 (7)}. (2.25)
We estimate the right side of equality (2.25) from above sdbsolute value by
v (z) — va(2)[{a(l + 3w e ) ([[vil[Loe ) + [[val Lo )+

+a(flvrl[Te@ + lvillze@llv2ll i@ + 102l 7o my) + €llorllem ). (2.26)

With the help of the Sobolev embedding (1.5), expressiodgj2can be bounded
from above by

|v1(z) = va(2){ace(1 + 3ce|lwoll @) (o1l 2y + [lv2]l 52m))+
+ac2(villzemy + lorll 2@ lvall 2@y + 102l fz@) + ellorlliem}.  (2.27)
The fact thaw,, v, € B, gives us the upper bound for (2.27) as
[v1(z) — va (@) [{2ace(1 + 3ce||wo| g2w) ) p + 3aczp® + ello|lo®}.  (2.28)
Therefore, by means of (2.25) we arrive at

|ur — ua | 52 (m)

<|| Lo 1{2ace(1 + 3ee||wol| 2wy p + 3acZp® + el|on || Looqry Hlve — vol | m2r)
(2.29)
Evidently, the bound

| Ly 1H{2ace(1 + 3cel|wol| m2(r )p—|—3ac +5”‘71HL°°(R)} <1 (2.30)

can be attained for ap > 0 ande > 0 sufficiently small. Therefore, the map :
B, — B, defined by equation (1.14) is a strict contraction. Its usifjwed point
w,(z) is the only solution of problem (1.9) in the ba#,. Note that the function
w,(z) is nontrivial fore > 0, which easily follows from equation (1.9), since by
means of Assumptions 1 and 2 the intersection of suppor®sup) N suppuy(x)

is a set of nonzero Lebesgue measure on the real line. Cl#algesulting solution
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w(z) of problem (1.6) given by formula (1.8) belongs & (R). Let the radius of
the ball B, be small enough, namely,

p < |lwollmr2(m)- (2.31)
Then by means of (1.8) along with (2.31) via the triangle ureify we have
[wl[r2®) 2 [lwollm2®) — [[wyllr2@) = lwoll @) —p >0 (2.32)

and hencev(x) is nontrivial as well.
Finally, we finish the proof by obtaining the asymptoticsttoe functiomw, ()
to the leading order in the parameterClearly, (1.9) yields

wy(x) = Lo~ [a(l — Buwo(w))wy(2)—

—aw,(x) — eoy(z)uwp(w)] — Lo o1 (@)wo()]. (2.33)

Apparently, the leading term in the small parametean the right side of (2.33) is
given by
—eLo oy (2)wo(x)]. (2.34)

Clearly, (2.34) can be estimated from above in H#&R) norm by
ell Lo o (@)l oo @y llwo () || 2 ey < o0 (2.35)
under Assumptions 1 and 2 along with (1.12). Evidently, weettae upper bound
(1 — Bwp(z))w?(x) — aw?(x) — coy (x)wy(x)] < a(l + 3]luwo|| L(z)

xwpllz @ lwp(@)] + allwy | Lo @y lwp(2)] + elloilzo@wp(@)]. (2.36)

By means of the Sobolev embedding (1.5), the right side afuabty (2.36) can be
estimated from above by

[ace (1 + eel[wollzr2)) 1wy |2y + acellwpllr @y + ellor]lLe@)lwy(2)]. (2.37)

Therefore, the remaining term in the right side of (2.33) lcafounded from above
in the H?(R) norm by

1Zo ™ lllace (1 + Beelwoll ey lwp |2y +

+aczllwp| B2y + ellorll L@l wpll m2@) = O(€?), (2.38)
namely, the identity (1.15) holds. [ |
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