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Abstract: We consider the system~ut−a(t)M~uxx = ~f(x, t), where0 ≤ x ≤ π, t ≥

0, assuming that~u(0, t) = ~u1(t), ~u(π, t) = ~u2(t), ~u(x, 0) = ~h(x), and the extra
data~ux(0, t) = ~g(t) are known. The coupling matrixM is a real, diagonalizable
matrix for which all of the eigenvalues are positive reals. The inverse problem is:
How does one determine the unknowna(t)? The functiona(t) is assumed positive,
continuous and bounded. This problem is solved and a method to recovera(t) is
proposed. The method presented in this work enables us to evaluate the unknown
coefficienta(t) in closed form if the data (which can be chosen by experimenter)
are properly chosen.
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1. Introduction

In the article an unknown coefficienta(t) of the system of heat equations is evalu-
ated in closed form from the properly chosen data. The data can be chosen at will by
the experimenter. It is chosen in this work such that the inverse problem of finding
a(t) from the data is solved easily anda(t) is determined precisely, in closed form.
Let us consider the system

~ut − a(t)M~uxx = ~f(x, t) for (x, t) ∈ [0, π]× [0,∞),

with ~u(0, t) = ~u1(t), ~u(π, t) = ~u2(t), and ~u(x, 0) = ~h(x),
(1.1)

where the vector functions{~u1, ~u2,~h} are known. The extra data are

~ux(0, t) = ~g(t). (1.2)

The solution of the system of equations (1.1) is a real vectorfunction given by

~u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .
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The regularity of~u is related to the smoothness of{~u1, ~u2,~h}. Analogously to the
article [5], which was dealing with the studies of the singleparabolic equation of
this kind, in the present work we are not focused on the well-posedness of system
(1.1). We are interested in the following inverse problem:

How to finda(t) given the data?

Inverse problems for the scalar heat equation have been studied extensively (see
[1], [2], [4] and the references therein). An inverse sourceproblem for the multidi-
mensional heat equation in which the source was assumed to bea finite sum of point
sources was treated in [3]. The inverse problem there was to find the location and
the intensity of these point sources from the experimental data. But there was no
method for evaluatinga(t) explicitly, in closed form, as far as we know, except in
[5]. The existence of stationary solutions of certain systems of parabolic equations
was studied actively in recent years, see for example [6] and[7] and the references
therein.

Let us use〈 , 〉 to denote the standard inner product onL2[0, π]. Hence,

〈G,F 〉 =

∫

π

0

G(x)F (x)dx. (1.3)

Evidently, (1.3) induces the following norm onL2[0, π] :

‖F‖ =

√

∫

π

0

F 2(x)dx.

We extend the inner product notation to the case when the firstargument is a vector
function, for which each component is an element ofL2[0, π]. In such case the
result is obtained by evaluating the inner product of each component with the second
argument. For instance,

〈~g, F 〉 =
(

〈g1, F 〉, . . . , 〈gN , F 〉
)T

=

(

∫

π

0

g1(x)F (x)dx, . . . ,

∫

π

0

gN(x)F (x)dx

)T

=

∫

π

0

~g(x)F (x)dx.

(1.4)

Similarly,

〈~u(·, t), F 〉 =

∫

π

0

~u(x, t)F (x)dx

=

(

∫

π

0

u1(x, t)F (x)dx, . . . ,

∫

π

0

uN(x, t)F (x)dx

)T

,
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giving a vector valued function oft.

Let pm(x) =

√

2

π
sin(mx) for m ∈ N = {1, 2, . . .}. Then

pm(0) = pm(π) = 0, ‖pm‖ = 1 and −
d2pm

dx2
(x) = m2pm(x) for 0 ≤ x ≤ π,

such that{pm(x)}∞m=1 is the orthonormal set of the eigenfunctions of the one di-
mensional negative Dirichlet Laplacian on the interval[0, π]. Let us proceed to the
estimation ofa(t).

2. Evaluation of a(t).

Let us introduce the change of variables

~u = ~v + ~u1 +
x

π
(~u2 − ~u1) = ~v + ~r

for our system (1.1). Thus, we arrive at the new system

~vt − a(t)M~vxx = ~f(x, t)− ~rt := ~F (x, t) for (x, t) ∈ [0, π]× [0,∞), (2.1)

with

~v(0, t) = ~0, ~v(π, t) = ~0, ~v(x, 0) = ~h(x)− ~r(x, 0) := ~H(x).

We assume that the coupling matrixM in our system (1.1) is real, constant in space
and time,N × N with N ≥ 2, diagonalizable and its eigenvalues{dk}Nk=1 are
positive reals. Hence, it follows that there exists an invertible real matrixP such
that

PMP−1 = D = diag(d1, . . . , dN),

and
M = P−1DP. (2.2)

By virtue of (2.2), multiplying the system of equations (2.1) on the left byP yields

P~vt − a(t)DP~vxx = P ~F (x, t). (2.3)

We introduce new vector functions:

ṽ(x, t) := P~v(x, t), H̃(x) := P ~H(x) and F̃ (x, t) := P ~F (x, t).

This enables us to write our system in terms of the new variables:

∂ṽ

∂t
− a(t)D

∂2ṽ

∂x2
= F̃ (x, t),

with ṽ(0, t) = ~0, ṽ(π, t) = ~0 and ṽ(x, 0) = H̃(x).

(2.4)
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The reason that we have done this is that (2.4) consists ofN fully decoupled scalar
equations, allowing for solutions to be more easily obtained.

Form ∈ N = {1, 2, . . . } let

ṽm(t) := 〈ṽ(·, t), pm〉, F̃m(t) := 〈F̃ (·, t), pm〉 and H̃m := 〈H̃, pm〉 ∈ R
N ,

with the inner product defined in (1.4). Evidently,

F̃ (x, t) =

∞
∑

m=1

F̃m(t)pm(x), H̃(x) =

∞
∑

m=1

H̃mpm(x). (2.5)

Similarly,

~F (x, t) =

∞
∑

m=1

Fm(t)pm(x), ~H(x) =

∞
∑

m=1

~Hmpm(x), (2.6)

where
~Fm(t) := 〈~F (·, t), pm〉 and ~Hm := 〈 ~H, pm〉 ∈ R

N . (2.7)

Also,
~fm(t) := 〈~f(·, t), pm〉 and ~hm := 〈~h, pm〉 ∈ R

N . (2.8)

Let us seek the solution to (2.4) in the form

ṽ(x, t) =
∞
∑

m=1

ṽm(t)pm(x) =
∞
∑

m=1

〈

ṽ(·, t), pm

〉

pm(x). (2.9)

It is a standard result that such a solution exists. Taking the inner product ofpm
with each side of the system of partial differential equations in (2.4) gives us

〈

∂ṽ

∂t
− a(t)D

∂2ṽ

∂x2
, pm(x)

〉

= 〈F̃ (x, t), pm(x)〉. (2.10)

Since the negative second derivative operator acting on square integrable functions
on the[0, π] interval with Dirichlet boundary conditions is self-adjoint, we obtain

dṽm(t)

dt
+ a(t)m2Dṽm(t) = F̃m(t), (2.11)

for m ∈ N. System (2.11) decouples intoN scalar linear equations of the form
y′ +Ky = b(t), which can be easily solved. The initial condition for (2.11) is

ṽm(0) = 〈ṽ(·, 0), pm〉 = 〈H̃, pm〉 = H̃m, m ∈ N. (2.12)

Let us assume that the functiona(t) is positive, continuous and bounded, such that
0 < a0 ≤ a(t) ≤ a1 and introduce

A(t) :=

∫

t

0

a(s)ds. (2.13)
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Clearly, we have

a0t ≤ A(t) ≤ a1t, limt→∞A(t) = ∞.

Also,
d

dt

(

eDm2A(t)

)

= eDm2A(t)Dm2a(t), m ∈ N.

From (2.11) we derive that

ṽm(t) = e−Dm2A(t)H̃m + e−Dm2A(t)

∫

t

0

eDm2A(s)F̃m(s)ds. (2.14)

Therefore,

ṽ(x, t) =
∞
∑

m=1

[

e−Dm2A(t)H̃m + e−Dm2A(t)

∫

t

0

eDm2A(s)F̃m(s)ds

]

pm(x),

which yields
~v(x, t) = P−1ṽ(x, t) =

=

∞
∑

m=1

[

P−1e−Dm2A(t)H̃m + P−1e−Dm2A(t)

∫

t

0

eDm2A(s)F̃m(s)ds

]

pm(x),

such that~u(x, t) = ~r(x, t)+

=

∞
∑

m=1

[

P−1e−Dm2A(t)H̃m + P−1e−Dm2A(t)

∫

t

0

eDm2A(s)F̃m(s)ds

]

pm(x). (2.15)

Clearly, we have
P−1e−Dm2A(t)P = e−Mm2A(t),

which implies that

P−1e−Dm2A(t)H̃m = e−Mm2A(t) ~Hm, m ∈ N. (2.16)

Similarly,

P−1e−Dm2(A(t)−A(s))P = e−Mm2(A(t)−A(s)), m ∈ N,

such that

P−1e−Dm2(A(t)−A(s))F̃m(s) = e−Mm2(A(t)−A(s)) ~Fm(s), m ∈ N. (2.17)

Hence, by means of (2.15) along with identities (2.16) and (2.17) we arrive at
~u(x, t) = ~r(x, t)+

+
∞
∑

m=1

[

e−Mm2A(t) ~Hm +

∫

t

0

e−Mm2(A(t)−A(s)) ~Fm(s)ds

]

pm(x). (2.18)
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We use extra data (1.2), such that~ux(0, t) =
1

π
(~u2(t)− ~u1(t))+

+
∞
∑

m=1

[

e−Mm2A(t) ~Hm +

∫

t

0

e−Mm2(A(t)−A(s)) ~Fm(s)ds

]

√

2

π
m = ~g(t) (2.19)

and denote

~g1(t) := ~g(t)−
1

π
(~u2(t)− ~u1(t)).

Let us introduce the vector functions

~Q0(z) :=

∞
∑

m=1

e−Mm2z ~Hm

√

2

π
m (2.20)

and

~Q(z, s) :=
∞
∑

m=1

e−Mm2z ~Fm(s)

√

2

π
m. (2.21)

Then we arrive at the system of equation forA(t), namely

~Q0(A(t)) +

∫

t

0

~Q(A(t)− A(s), s)ds = ~g1(t). (2.22)

If we manage to findA(t), then

a(t) =
dA(t)

dt
. (2.23)

Let us consider a relatively simple situation, whena(t) can be found in closed form.
Let

~u1(t) = ~u2(t) = ~0. (2.24)

Then
~g1(t) = ~g(t), ~r = ~0, ~F = ~f, ~H = ~h. (2.25)

Let ~w1 be the eigenvector of matrixM corresponding to the eigenvalued1, namely

M ~w1 = d1 ~w1. (2.26)

We also assume that

~g(t) = g(t)~w1, ~fm = ~hm = ~0, m > 1 (2.27)

and whenm = 1

~f1 = ~h1 =

√

π

2
~w1. (2.28)

6



Then by means of (2.8), (2.7) and (2.25) we have the analogousidentities for ~Fm

and ~Hm with m ∈ N. Therefore, by virtue of (2.22) we arrive at

e−MA(t) ~w1 +

∫

t

0

e−M(A(t)−A(s)) ~w1ds = g(t)~w1.

Evidently,

e−MA(t) ~w1 = e−d1A(t) ~w1, e−M(A(t)−A(s)) ~w1 = e−d1(A(t)−A(s)) ~w1,

which yields

e−d1A(t)

(

1 +

∫

t

0

ed1A(s)ds

)

= g(t). (2.29)

Let φ(t) :=
∫

t

0

ed1A(s)ds, such that

φ′(t) = ed1A(t), φ′′(t) = d1a(t)φ
′(t). (2.30)

Forφ we easily obtain a first order differential equation, using (2.29), namely

φ′(t) =
φ(t)

g(t)
+

1

g(t)
, φ(0) = 0. (2.31)

Apparently, the solution of equation (2.31) is given by

φ(t) =

∫

t

0

1

g(s)
e
∫
t

s

1
g(τ)

dτ
ds. (2.32)

Clearly, (2.30) yields

a(t) =
φ′′(t)

d1φ′(t)
, (2.33)

which enables us to finda(t) in closed form viaφ(t)when special data (2.24), (2.27)
and (2.28) is chosen.
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