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Abstract: We consider the system —a(t) M, = f(z,t), whered < z < 7, t >

0, assuming that(0,¢) = @, (t), @(r,t) = @y(t), @(z,0) = h(z), and the extra
datai,(0,t) = g(t) are known. The coupling matriX/ is a real, diagonalizable
matrix for which all of the eigenvalues are positive realfie Tnverse problem is:
How does one determine the unknowh)? The functiona(t) is assumed positive,
continuous and bounded. This problem is solved and a methogcovera(t) is
proposed. The method presented in this work enables us hoa¢®dhe unknown
coefficienta(t) in closed form if the data (which can be chosen by experinmgnte
are properly chosen.
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1. Introduction

In the article an unknown coefficientt) of the system of heat equations is evalu-
ated in closed form from the properly chosen data. The datheahosen at will by
the experimenter. It is chosen in this work such that therse@roblem of finding
a(t) from the data is solved easily an(t) is determined precisely, in closed form.
Let us consider the system

—

Uy — a(t)Miy, = f(x,t) for (z,t) € [0, 7] x [0, 00), (1.1)
with @(0,t) = @y(t),  d(m,t) =d(t), and @(xz,0) = h(z), '

where the vector functionii,, i», 1} are known. The extra data are

,(0,1) = F(t). (1.2)
The solution of the system of equations (1.1) is a real vdataction given by

iz, t) = (uy(z,t), ug(, t), ..., un(z, 1))’
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The regularity ofi is related to the smoothness{af;, s, ﬁ}. Analogously to the

article [5], which was dealing with the studies of the singégabolic equation of
this kind, in the present work we are not focused on the wadlepiness of system
(1.1). We are interested in the following inverse problem:

How to finda(t) given the data?

Inverse problems for the scalar heat equation have beeredtedtensively (see
[1], [2], [4] and the references therein). An inverse soynaeblem for the multidi-
mensional heat equation in which the source was assumeaditbrbe sum of point
sources was treated in [3]. The inverse problem there wasddliie location and
the intensity of these point sources from the experimerdtd.dBut there was no
method for evaluating(t) explicitly, in closed form, as far as we know, except in
[5]. The existence of stationary solutions of certain syst@f parabolic equations
was studied actively in recent years, see for example [6][a@ihdnd the references
therein.

Let us us€ , ) to denote the standard inner product/oi0, ]. Hence,

(G, F) = /OW G(z)F(x)dx. (1.3)

Evidently, (1.3) induces the following norm dit|0, 7] :

17l =/ [ P

We extend the inner product notation to the case when thafgsiment is a vector
function, for which each component is an element’.6f0, 7]. In such case the
result is obtained by evaluating the inner product of eachjgmnent with the second
argument. For instance,

(5. F) = (gl,F>,. <gN,F>)T

( x)dzx, ..., /07r gN(x)F(x)dx> (1.4)
U(z, t)F

J, o

e
</0 uy (z x)dxa---aAWUN<$,t)F(x)dx> 7

Similarly,



giving a vector valued function af
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Let p,,(z) = \/isin(mx) forme N={1,2,...}. Then
T

Ppm,

dx? () = m*pn(z) for 0 <z <,

Pm(0) =pp(m) =0, |pn]=1 and —

such that{p,,(x)}:o_, is the orthonormal set of the eigenfunctions of the one di-
mensional negative Dirichlet Laplacian on the inteff@alr|. Let us proceed to the
estimation ofu(t).

2. Evaluation of a(t).

Let us introduce the change of variables

— — — x—» — — —
u:v+u1+;(u2—u1):v+r

for our system (1.1). Thus, we arrive at the new system
T — a() MU,y = f(2,t) — 7 = F(x,t) for (z,t) € [0,7] x [0,00),  (2.1)
with

7(0,t) =0,  @(mt)=0,  &(x,0) =h(z)—7(z,0):= H(z).

We assume that the coupling matrix in our system (1.1) is real, constant in space
and time, N x N with N > 2, diagonalizable and its eigenvalugg,}y , are
positive reals. Hence, it follows that there exists an itibbr real matrix” such
that

PMP' =D =diag(d,,...,dy),

and
M = P7'DP. (2.2)

By virtue of (2.2), multiplying the system of equations (Roh the left byP yields
P, — a(t)DP#,, = PF(x,t). (2.3)
We introduce new vector functions:
o(z,t) == Pi(z,t),  H(z):= PH(z) and F(x,t):= PF(x,t).

This enables us to write our system in terms of the new vaggabl

(2.4)

with 6(0,t) =0,  o(mt)=0 and o(x,0) = H(x).



The reason that we have done this is that (2.4) consistsfolly decoupled scalar
equations, allowing for solutions to be more easily obtdine
Form e N={1,2,...} let

O () := (0(-, 1), P, En(t) = (F(-,t),pn) and H,, := (H, p,) € R,

with the inner product defined in (1.4). Evidently,

Fla,) =Y Bu®pn(e),  H@) =Y Hupulo). (2.5)
Similarly,
Fa,t) =Y Fullpm(e),  H@) = Hupm(@), (2.6)
where B B B
Eo(t) = (F(-,t),pn) and H, = (H, p,)cR". (2.7)
Also, B . B .
fm(t) = <f('7t)7pm> and hm = <h7pm> € RN' (28)
Let us seek the solution to (2.4) in the form
5@, ) = 3 T Op(@) = Y (50, 1), D Y (). (2.9)

It is a standard result that such a solution exists. Takiegirther product op,,
with each side of the system of partial differential equagion (2.4) gives us

<% — a(t)D%,pm(x)> = (F(z,1), pm(z)). (2.10)

Since the negative second derivative operator acting oarsqategrable functions
on the|0, 7] interval with Dirichlet boundary conditions is self-adjjwe obtain

AU, (t . ~
%ﬁl+dwﬁm%®=ﬁmm (2.11)
for m € N. System (2.11) decouples infg scalar linear equations of the form
y' + Ky = b(t), which can be easily solved. The initial condition for (2.1s
O (0) = (0(-,0), pm) = (H,pp) = Hp,  m €N, (2.12)

Let us assume that the functieft) is positive, continuous and bounded, such that
0 < ap < a(t) < ay and introduce

A(t) ::/0 a(s)ds. (2.13)



Clearly, we have
agt < A(t) < aqt, limy_oo A(t) = 00.

Also,

% (eDmQA(t)> = P A0 Dm2a(t), m € N.

From (2.11) we derive that
t
D (t) = @ PAO o @ Pm*A) / e AGE (s)ds. (2.14)
0

Therefore,

o] t
o@, )= [e‘Dm“(”H +eomao [ eDm2A<S>Fm<s>ds]pm<x>,
0

m=1

which yields
U(x,t) = P~ 'o(x,t) =

(e o]

=2 \P

=1
such thaﬁl’(:c, t) =7z, t)+

-1 7DmA )Hm—l—P 1 fDmA / eDm2A(s )dS]pm<5L’),

t
p-lePmPAN | p-lg-Dm At)/ eDm2A(s)ﬁm(3)d5]pm(x). (2.15)
0

Clearly, we have
P—le—Dm2A(t)P _ e—Mm2A(t)

Y

which implies that

Similarly,
Ple PrPAM-AG) p — g MM (AD-AG) ) e N,
such that
pleg PmiA O-AG [ (s) = e‘MmQ(A(t)‘A(S>)ﬁm(s), m € N. (2.17)
Hence, by means of (2.15) along with identities (2.16) andqRwe arrive at
u(z,t) = rlz,t)+

[e.9]

+

m=1

t
eMmQA(t)ﬁm_'_/ e*MWLQ(A(t)*A(S))F’)m(S)dS pm(gj‘) (218)
0
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We use extra data (1.2), such thiat0, t) = %(@(t) — Uy (t))+

£
m=1

and denote

t

— — 2

e—Mm2A(t)Hm Jr/ e—Mmz(A(t)_A(S))Fm(s)ds] —m=g(t) (2.19)
0

(1) = (1) — = (walt) — (1)

Let us introduce the vector functions

R > 2, = 2
R —Mm=z
Qo(2) := Zle Hy[ =m (2.20)
and
= - 2, = 2
Qz,s) = Z e MmEE (s)4/ = m. (2.21)
m=1 7T

Then we arrive at the system of equation fit), namely

Gaw)+ [ LG - Als), s)ds = i), (2.22)

If we manage to findi(t), then

a(t) = %Ef). (2.23)

Let us consider a relatively simple situation, when) can be found in closed form.
Let
w1 (t) = da(t) = 0. (2.24)

Then B . o
@) = g(t), 7 =0, F=F, H=h. (2.25)

Let «; be the eigenvector of matrik/ corresponding to the eigenvaldg namely
MU71 - dl’u_jl. (226)
We also assume that

git) =gy,  fun=hn=0, ~m>1 (2.27)

fl="h, = \/gwl. (2.28)

and whenn =1



Thenﬁby means of (2.8), (2.7) and (2.25) we have the analoglensities forF,,
and H,,, with m € N. Therefore, by virtue of (2.22) we arrive at

t
e MAW g, 4 / e MUAO=AD g ds = g(t)w;.
0

Evidently,
e MAW g — g AW g e MAW-AW) 7 — g (AD-A() 7,
which yields
t
g hAW) <1+ / edlA(s)ds> = g(t). (2.29)
0
t
Let(t) == / e ) ds, such that
0
¢(t) =0, ¢"(t) = dia()¢'(1). (2.30)
For ¢ we easily obtain a first order differential equation, usia@9), namely
o) 1
Pt =L 4 —, #(0) = 0. (2.31)
=0 T Y

Apparently, the solution of equation (2.31) is given by

t
1 Pl _gr
t)y= [ ——€s s ds. 2.32
o = [ == . 2:32)
Clearly, (2.30) yields
d)//(t)
t) = —~ 2 2.33
at)= g5 (2.33)
which enables us to find(¢) in closed form viay(¢) when special data (2.24), (2.27)
and (2.28) is chosen. [ |
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