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Abstract

The aim of the current paper is to present, in a concise way, our recent, very general, mathe-
matically rigorous studies [1, 2] on the dynamical properties of fermions and quantum-spin sys-
tems with long-range, or mean-field, interactions. In particular, they show that long-range dynam-
ics in infinite volume are equivalent to intricate combinations of classical and quantum short-range
dynamics, opening new theoretical perspectives, as explained in [3]. This phenomenon is a direct
consequence of the highly non-local character of long-range, or mean-field, interactions. Note
that [1–3] are altogether about 200 pages long. Therefore, as a simple example allowing to em-
phasize the key points of [1–3], we consider here the strong-coupling BCS-Hubbard model. The
dynamical properties of this model are technically easy to study, albeit non-trivial, and this ex-
ample is thus very pedagogical. From the physical point of view, this model is also interesting
because it highlights the possible thermodynamic impact of the (screened) Coulomb repulsion on
(s-wave) superconductivity, in the strong-coupling approximation. Its behavior at thermodynam-
ical equilibrium was rigorously known, but not its infinite-volume dynamics.
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1 Introduction
More than seventy years ago, Bogoliubov proposes an ansatz, widely known as the Bogoliubov ap-
proximation, which corresponds to replace, in many-boson Hamiltonians, the annihilation and cre-
ation operators of zero-impulsion particles with complex numbers to be determined self-consistently.
See [4, Section 1.1] for more details. However, even nowadays, the mathematical validity of this ap-
proximation with respect to the primordial dynamics of (stable) many-boson Hamiltonians with usual
two-body interactions is an open problem.

In the context of many-fermion systems, ten years after Bogoliubov’s ansatz, a similar approxi-
mation is used in the BCS theory of (conventional) superconductivity, as explained by Bogliubov in
1958 [5] and Haag in 1962 [6]. In 1966, this approximation is shown [7] to be exact at the level of
the thermodynamic pressure for fermion systems that are similar to the BCS model. See also [8, 9].
The validity of the approximation with respect to the primordial dynamics was an open question
that Thirring and Wehrl [10, 11] solve in 1967 for an exactly solvable permutation-invariant fermion
model. An attempt to generalize Thirring and Wehrl’s results to a general class of fermionic models,
including the BCS theory, has been done in 1978 [12], but at the cost of technical assumptions that
are difficult to verify in practice.

In 1973, Hepp and Lieb [13] made explicit, for the first time, the existence of Poisson brackets in
some (commutative) algebra of functions, related to the classical effective dynamics. This is done for a
permutation-invariant quantum-spin system with mean-field interactions. This research direction has
been strongly developed by many authors until 1992, see [14–33]. All these papers study dynamical
properties of permutation-invariant quantum-spin systems with mean-field interactions.

Thereafter, the mathematical research activity on this subject considerably decreases until the
early 2000s when emerges, within the mathematical physics community, a new interest in such quan-
tum systems, partially because of new experiments like those on ultracold atoms (via laser and evapo-
rative coolings). See, for instance, the paper [34] on mean-field dynamics, published in the year 2000.
There is also an important research activity on the mathematical foundation of the Gross-Pitaevskii1

(GP) or Hartree theories, starting after 1998. For more details on the GP theory and mean-field dy-
namics for indistinguishable particles (bosons), see [35–39] and references therein. In which concern
lattice-fermion or quantum-spin systems with long-range, or mean-field, interactions at equilibrium,
see, e.g., [40–43]. Concerning the dynamics of fermion systems in the continuum with mean-field
interactions, see [44–53], as well as [36, Sections 6 and 7]. Such mean-field problems are even related
to other academic disciplines, like mathematical economics, via the so-called mean-field game the-
ory [54] developed from 2006 by Lasry and Lions. Mean-field theory in its extended sense is, in fact,

1The so-called GP limit is not really a mean-field limit, but it looks similar.

2



a major research field of mathematics, even nowadays, and is still studied in physics, see, e.g., [55]
and references therein.

The current paper belongs to this research field, since it is an application of our recent studies [1,2]
on the dynamical properties of fermion and quantum-spin systems with long-range, or mean-field,
interactions. See also [3], on which [1, 2] are conceptually based.

By long-range interactions for fermion systems, we mean for instance something like the BCS
interaction, which, written in the x-space, is of the form

− 1

|ΛL|
∑

x,y∈ΛL

a∗x,↑a
∗
x,↓ay,↓ay,↑ , (1)

where a∗x,s (resp. ax,s) creates (resp. annihilates) a fermion with spin s ∈ {↑, ↓} at lattice position x in
a cubic box ΛL

.
= {Z ∩ [−L,L]}d (d-dimensional crystal). For more details, see Section 2.1, in par-

ticular discussions until Equation (6). (1) explicitly shows the long-range character of the interaction.
It is a mean-field interaction since

1

|ΛL|
∑

x,y∈ΛL

a∗x,↑a
∗
x,↓ay,↓ay,↑ =

∑
y∈ΛL

(
1

|ΛL|
∑
x∈ΛL

a∗x,↑a
∗
x,↓

)
ay,↓ay,↑ .

This is an important, albeit elementary, example of the far more general case studied in [1,2]. Indeed,
the results obtained in [1, 2] are far beyond previous ones because the permutation-invariance of
lattice-fermion or quantum-spin systems is not required:

• The short-range part of the corresponding Hamiltonian is very general since only a sufficiently
strong polynomial decay of its interactions and a translation invariance are necessary.

• The long-range part is also very general, being an infinite sum (over n) of mean-field terms
of order n ∈ N. In fact, even for permutation-invariant systems, the class of long-range, or
mean-field, interactions we are able to handle is much larger than what was previously studied.

• The initial state is only required to be periodic. By [1, Proposition 2.2], observe that the set of
all such initial states is dense within the set of all even states, the physically relevant ones.

Long-range, or mean-field, effective models are essential in condensed matter physics to study,
from microscopic considerations, macroscopic phenomena like superconductivity. What’s more, they
are possibly not merely effective interactions. We discuss this issue in more detail in Section 3.

Observe also that, following Bóna [56], [1–3] show that classical mechanics does not only appear
in the limit ~ → 0, as explained for instance in [55, 57]. In fact, Bóna’s major conceptual contri-
bution [56, Section 1.1-a] is to highlight the emergence of classical mechanics without necessarily
the disappearance of the quantum world. In [3], a more general approach is proposed, leading to a
new mathematical framework in which the classical and quantum worlds are entangled. Such a fea-
ture is demonstrated in [1, 2] for the dynamics of macroscopic lattice Fermi systems with long-range
interactions, as shortly explained in Section 4.3.4.

The aim of the current paper is to present, in a concise way, central results of [1, 2]. These ar-
ticles are indeed quite long and very technical and Section 2 is a pedagogical explanation of their
key points, by using the strong-coupling BCS-Hubbard model as a paradigm. This model is techni-
cally easy, albeit non-trivial, and it is rigorously studied at equilibrium in [41] in order to understand
the possible thermodynamic impact of the Coulomb repulsion on (s-wave) superconductivity, in the
strong-coupling approximation. The origin of this model and all its dynamical properties are ex-
plained in Section 2. Without the Hubbard part of the interaction, one gets the usual strong-coupling
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BCS model and the results of [21, Section A] are recovered. Section 4 explains the general re-
sults of [1, 2] in simple terms. In particular, we formulate them in Section 4.4 in the special con-
text of permutation-invariant models, making the link with previous results on permutation-invariant
quantum-spin systems.

Here, we focus on lattice Fermi systems which are, from a technical point of view, slightly more
difficult than quantum-spin systems, because of the non-commutativity of fermionic creation and
annihilation operators on different lattice sites. However, all the results presented here or in [1,2] can
be applied to quantum-spin systems via obvious modifications.

2 The Strong-Coupling BCS-Hubbard Model

2.1 Presentation of the Model
The most general form of a translation invariant model for fermions (spin set S) with two-body inter-
actions in a cubic box ΛL

.
= {Z∩ [−L,L]}d (d-dimensional crystal) of volume |ΛL|, L ∈ N0 is given

in momentum space by

HFull
L =

∑
k∈Λ∗

L, s∈S

(εk − µ) ã∗kãk

+
1

|ΛL|
∑

k,k′,q∈Λ∗
L

s1,s2,s3,s4∈S

gs1,s2,s3,s4 (k, k
′, q) ã∗k+q,s1

ã∗k′−q,s2
ãk′,s3 ãk,s4 . (2)

See [58, Eq. (2.1)]. Here, Λ∗
L is the reciprocal lattice of quasi-momenta (periodic boundary condi-

tions) associated with ΛL and the operator ã∗k,s (respectively ãk,s) creates (respectively annihilates)
a fermion with spin s ∈ S and (quasi-) momentum k ∈ Λ∗

L. The function εk represents the kinetic
energy of a fermion with (quasi-) momentum k and the real number µ is the chemical potential. The
last term of (2) corresponds to a translation-invariant two-body interaction written in the momentum
space.

One important example of a lattice-fermion system with long-range interactions is given in the
scope of the celebrated BCS theory – proposed in the late 1950s (1957) to explain conventional type
I superconductors. The lattice version of this theory is obtained from (2) by taking S

.
= {↑, ↓} and

imposing
gs1,s2,s3,s4 (k, k

′, q) = δk,−k′δs1,↑δs2,↓δs3,↓δs4,↑f (k,−k, q)
for some function f : It corresponds to the so-called (reduced) BCS Hamiltonian

HBCS
L

.
=
∑
k∈Λ∗

L

(εk − µ)
(
ã∗k,↑ãk,↑ + ã∗k,↓ãk,↓

)
− 1

|ΛL|
∑

k,q∈Λ∗
L

γk,qã
∗
k,↑ã

∗
−k,↓ã−q,↓ãq,↑ , (3)

where γk,q is a positive2 function. Because of the term δk,−k′ , the interaction of this model has a long-
range character, in position space. The choice γk,q = γ > 0 in (3) is a very interesting simplification
since, even when εk = 0, the BCS Hamiltonian qualitatively displays most of basic properties of real
conventional type I superconductors. See, e.g. [59, Chapter VII, Section 4]. The case εk = 0 is known
as the strong coupling limit of the BCS model. The dynamical properties of the BCS Hamiltonian
HBCS

L with γk,q = γ > 0 can be explicitly computed from results of [1, 2], but we prefer here to
consider another BCS-type model including the Hubbard interaction, as a richer example.

An important phenomenon not taken into account in the BCS theory is the Coulomb interaction
between electrons or holes, which can imply strong correlations. This problem was of course already

2The positivity of γk,q imposes constraints on the choice of the function f .
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addressed in theoretical physics right after the emergence of the Fröhlich model and the BCS theory,
see, e.g., [60]. This is a drawback of the conventional BCS theory since the Coulomb interaction
can be very important, for instance in cuprate superconductivity: In all cuprates, there is undeniable
experimental evidence of strong on-site Coulomb repulsions, leading to the universally observed Mott
transition at zero doping [61, 62]. Recall that this phase is characterized by a periodic distribution of
fermions (electrons or holes) with exactly one particle per lattice site. Doping copper oxides with
holes or electrons can prevent from this situation. In this case, at sufficiently small temperatures,
a superconducting phase is achieved, as first discovered in 1986 for the copper oxide perovskite
La2−xBaxCuO4 [63].

However, even after three decades of theoretical studies, including the metaphoric string theory
approach to condensed matter via the AdS/CFT duality, and in spite of many significant advances,
there is still no widely accepted explanation of the microscopic origin of cuprate, or more generally
high-Tc, superconductivity. A large amount of numerical and experimental data is available, but no
particular pairing mechanism (through, for instance, antiferromagnetic spin fluctuations, phonons,
etc.) has been firmly established [64, Section 7.6]. In fact, the debate seems to be strongly polarized
between those using a purely electronic/magnetic microscopic mechanism and those using electron-
phonon mechanisms.

It is not the subject of this paper to discuss further theories for high-Tc superconductivity, as we
recently did in [65]. In fact, even if many theoretical approaches have been successful in explaining
various physical properties of superconductors, only a few mathematically rigorous results related
to a microscopic description of such a material via a quantum many-body problem are available.
We present below a model, named here the strong-coupling BCS-Hubbard Hamiltonian, which is
rigorously studied at equilibrium in [41] in order to understand the possible thermodynamic impact of
the Coulomb repulsion on (s-wave) superconductivity. An interesting mathematical outcome of [41]
on the strong-coupling BCS-Hubbard Hamiltonian is the existence of a superconductor-Mott insulator
phase transition, like in cuprates which must be doped to become superconductors.

The results of [41] are based on an exact study of the phase diagram of the strong-coupling BCS-
Hubbard model defined, in a cubic box ΛL

.
= {Z∩ [−L,L]}d (d ∈ N) of volume |ΛL| for L ∈ N0, by

the Hamiltonian

HL
.
= −µ

∑
x∈ΛL

(nx,↑ + nx,↓)− h
∑
x∈ΛL

(nx,↑ − nx,↓)

+2λ
∑
x∈ΛL

nx,↑nx,↓ −
γ

|ΛL|
∑

x,y∈ΛL

a∗x,↑a
∗
x,↓ay,↓ay,↑ (4)

for real parameters µ, h ∈ R and λ, γ ≥ 0. The operator a∗x,s (resp. ax,s) creates (resp. annihilates)
a fermion with spin s ∈ {↑, ↓} at lattice position x ∈ Zd, d = 1, 2, 3, ..., whereas nx,s

.
= a∗x,sax,s is

the particle number operator at position x and spin s. They are linear operators acting on the fermion
Fock space FΛL

, where
FΛ

.
=
∧
CΛ×{↑,↓} ≡ C2Λ×{↑,↓}

(5)

for any Λ ⊆ Zd and d ∈ N. The first term of the right-hand side of (4) represents the strong-coupling
limit of the kinetic energy, also called “atomic limit” in the context of the Hubbard model, see, e.g.,
[66,67]. The second term corresponds to the interaction between spins and the external magnetic field
h. The on-site interaction with positive coupling constant λ ≥ 0 represents the (screened) Coulomb
repulsion as in the celebrated Hubbard model. The last term is the BCS interaction written in the
x-space since

γ

|ΛL|
∑

x,y∈ΛL

a∗x,↑a
∗
x,↓ay,↓ay,↑ =

γ

|ΛL|
∑

k,q∈Λ∗
L

ã∗k,↑ã
∗
−k,↓ãq,↓ã−q,↑ . (6)
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See (3) with γk,q = γ > 0. This homogeneous BCS interaction should be seen as a long-range
effective interaction, the precise mediators of which are not relevant, i.e., they could be phonons, as
in conventional type I superconductors, or anything else.

2.2 Approximating Hamiltonians
The thermodynamic impact of the Coulomb repulsion on s-wave superconductors is analyzed in [41],
via a rigorous study of equilibrium and ground states of the strong-coupling BCS-Hubbard Hamil-
tonian: An Hamiltonian like HL defines in the thermodynamic limit L → ∞ a free-energy density
functional on a suitable set of states of the CAR algebra U of the lattice Zd. See [41, Section 6.2] for
more details. Minimizers ω of the free-energy density are called equilibrium states of the model and,
for any L ∈ N0, the Gibbs states ω(L), defined on the algebra B(FΛL

) of linear operators acting on the
fermion Fock space FΛL

(5) by

ω(L) (A)
.
= TraceFΛL

(
A

e−βHL

TraceFΛL
(e−βHL)

)
, A ∈ B (FΛL

) , (7)

at inverse temperature β > 0, converges3 in the thermodynamic limit L → ∞ to a well-defined
equilibrium state. The important point in such an analysis is the study of a variational problem over
complex numbers: By the so-called approximating Hamiltonian method [8,9,68] one uses an approx-
imation of the Hamiltonian, which is, in the case of the strong-coupling BCS-Hubbard Hamiltonian,
equal to the c-dependent Hamiltonian

HL (c)
.
= −µ

∑
x∈ΛL

(nx,↑ + nx,↓)− h
∑
x∈ΛL

(nx,↑ − nx,↓) + 2λ
∑
x∈ΛL

nx,↑nx,↓

−γ
∑
x∈ΛL

(
ca∗x,↑a

∗
x,↓ + c̄ax,↓ax,↑

)
, (8)

with c ∈ C, see also [10,11]. The main advantage of using this c-dependent Hamiltonian, in compari-
son with HL, is the fact that it is a sum of shifts of the same on-site operator. For an appropriate choice
of (order) parameter c ∈ C, it leads to the exact thermodynamics of the strong-coupling BCS-Hubbard
model, in the limit L→ ∞: At inverse temperature β > 0,

lim
L→∞

1

β |ΛL|
lnTraceFΛL

(
e−βHL

)
= sup

c∈C

{
−γ|c|2 + lim

L→∞

{
1

β |ΛL|
lnTraceFΛL

(
e−βHL(c)

)}}
(9)

and the (exact) Gibbs state ωL converges4 to a convex combination of the thermodynamic limit L →
∞ of the (approximating) Gibbs state ω(L,d) defined by

ω(L,d) (A)
.
= TraceFΛL

(
A

e−βHL(d)

TraceFΛL
(e−βHL(d))

)
, A ∈ B (FΛL

) , (10)

the complex number d ∈ C being a solution to the variational problem (9). Since γ ≥ 0, this can be
heuristically be seen from the inequality

γ |ΛL| |c|2 +HL (c)− HL = γ
(
c∗0 −

√
|ΛL|c̄

)(
c0 −

√
|ΛL|c

)
≥ 0 ,

3In the weak∗ topology.
4In the weak∗ topology.
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where
c0

.
=

1√
|ΛL|

∑
x∈ΛL

ax,↓ax,↑ (11)

(resp. c∗0) annihilates (resp. creates) one Cooper pair within the condensate, i.e., in the zero-mode for
fermion pairs. This suggests the proven fact [41, Theorem 3.1] that

|d| = lim
L→∞

ω(L) (c∗0c0)

|ΛL|
(12)

for any5 d ∈ C solution to the variational problem (9). The parameter |d| is the condensate density of
Cooper pairs and so, |d| > 0 corresponds to the existence of a superconducting phase, which is shown
to exist for sufficiently large γ ≥ 0. See also [41, Figs. 1,2,3].

2.3 Dynamical Problem in the Thermodynamic Limit
An Hamiltonian like the strong-coupling BCS-Hubbard Hamiltonian drives a dynamics in the Heisen-
berg picture of quantum mechanics: As is usual, the corresponding time-evolution is, for L ∈ N0, a
continuous group {τ (L)t }t∈R of ∗-automorphisms of the algebra B(FΛL

) of linear operators acting on
the Fermion Fock space FΛL

(see (5)), defined by

τ
(L)
t (A)

.
= eitHLAe−itHL , A ∈ B(FΛL

), t ∈ R .

The generator of this time evolution is the linear operator δL defined on B(FΛL
) by

δL (A)
.
= i[HL, A]

.
= i (HLA− AHL) , A ∈ B(FΛL

) ,

that is,
τ
(L)
t (A) = exp (itδL) (A) , A ∈ B(FΛL

), t ∈ R .

If γ = 0 then it is well-known that the thermodynamic limit of {τ (L)t }t∈R exist as a strongly continuous
group {τ t}t∈R of ∗-automorphisms of the CAR algebra of the infinite lattice, as explained in Section
4.1.2. If γ > 0 then the situation is not that obvious. A first guess is to approximate {τ (L)t }t∈R by
{τ (L,c)t }t∈R, where

τ
(L,c)
t (A)

.
= eitHL(c)Ae−itHL(c) , A ∈ B(FΛL

), t ∈ R , (13)

for any L ∈ N0 and some complex number c ∈ C. In this case, the linear operator

δL,c (A)
.
= i[HL (c) , A] , A ∈ B(FΛL

) , (14)

is the generator of the dynamics {τ (L,c)t }t∈R. A natural choice for c ∈ C would be a solution to the
variational problem (9), but what about if the solution is not unique ? As a matter of fact, as explained
in Section 4.1.3, in the thermodynamic limit L→ ∞, the finite-volume dynamics {τ (L)t }t∈R does not
converge within the CAR C∗-algebra of the infinite lattice for γ > 0, even if d = 0 would be the
unique solution to the variational problem (9)!

The validity of the approximation with respect to the primordial dynamics was an open question
that Thirring and Wehrl [10, 11] solve in 1967 for the special case

HL|µ=λ=h=0 = − γ

|ΛL|
∑

x,y∈ΛL

a∗x,↑a
∗
x,↓ay,↓ay,↑ , (15)

5This implies that any solution |d| to the variational problem (9) must have the same absolute value.
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which is an exactly solvable permutation-invariant model for any γ ∈ R. An attempt to generalize
Thirring and Wehrl’s results to a general class of fermionic models, including the BCS theory, has
been done in 1978 [12], but at the cost of technical assumptions that are difficult to verify in practice.
This research direction has been strongly developed by many authors until 1992, see [14–33]. All
these papers study dynamical properties of permutation-invariant quantum-spin systems with mean-
field interactions. Our results [1–3], summarized in Section 4, represent a significant generalization of
such previous results to possibly non-permutation-invariant lattice-fermion or quantum-spin systems.
To understand what’s going on in the infinite-volume dynamics, we now come back to our pedagogical
example, that is, the strong-coupling BCS-Hubbard model.

2.4 Self-Consistency Equations
Instead of considering the Heisenberg picture, let us consider the Schrödinger picture of quantum
mechanics. In this case, recall that, at fixed L ∈ N0, a finite-volume state ρ(L) is a positive and
normalized functional acting on the algebra B(FΛL

) of linear operators on the fermion Fock space
FΛL

. By finite dimensionality of FΛL
,

ρ(L) (A)
.
= TraceFΛL

(
d(L)A

)
, A ∈ B(FΛL

) ,

for a uniquely defined positive operator d(L) ∈ B(FΛL
) satisfying TraceFΛL

(d(L)) = 1 and named
the density matrix of ρ(L). Compare with (7) and (10). See also Section 4.2.1. At L ∈ N0, the time
evolution of any finite-volume state is

ρ
(L)
t

.
= ρ(L) ◦ τ (L)t , t ∈ R , (16)

which corresponds to a time-dependent density matrix equal to d
(L)
t = τ

(L)
−t (d

(L)). Compare with (71).
The thermodynamic limit of (16) for periodic states can be explicitly computed, as explained in

Section 4.3.2. It refers to a non-linear state-dependent dynamics related to self-consistency: By (5)
with Λ = Λ0 = {0}, recall that

F{0}
.
=
∧
C{0}×{↑,↓} ≡ C4 (17)

is the fermion Fock space associated with the lattice site (0, . . . , 0) ∈ Zd and so, B
(
F{0}

)
can be

identified with the set Mat(4,C) of complex 4×4 matrices, in some orthonormal basis6. For any con-
tinuous family ω .

= (ωt)t∈R of states acting on B
(
F{0}

)
, we define the finite-volume non-autonomous

dynamics (τ (L,ω)t,s )
s,t∈R by the Dyson-Phillips series

τ
(L,ω)
t,s ≡ “ exp

(∫ t

s

δωu
L du

)
” .
= 1B(FΛL

) +
∑
k∈N

∫ t

s

dt1 · · ·
∫ tk−1

s

dtkδ
ωtk
L ◦ · · · ◦ δωt1

L

acting on B(FΛL
) for any s, t ∈ R, with 1B(FΛL

) being the identity mapping of B(FΛL
) and where δρL

is the generator of the group {τ (L,c)t }t∈R, defined by (14) for c = ρ(a0,↑a0,↓), i.e.,

δρL (A)
.
= i[HL(ρ(a0,↑a0,↓)), A] , A ∈ B(FΛL

) .

Compare with (12)-(11). Note that, for every continuous family ω .
= (ωt)t∈R of on-site (even) states

acting on B
(
F{0}

)
, s, t ∈ R, L0 ∈ N0 and all integers L ≥ L0,

τ
(L,ω)
t,s (A) = τ

(L0,ω)
t,s (A) , A ∈ B(FΛL0

) . (18)

6For instance, (1, 0, 0, 0) is the vacuum; (0, 1, 0, 0) and (0, 0, 1, 0) correspond to one fermion with spin ↑ and ↓,
respectively; (0, 0, 0, 1) refers to two fermions with opposite spins.
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It follows that the family {τ (L,ω)t,s }s,t∈R strongly converges in the thermodynamic limit L → ∞ to a
strongly continuous two-parameter family {τωt,s}s,t∈R of ∗-automorphisms of the CAR algebra U of
the lattice. With these observations, we are in a position to give the self-consistency equations: By
(69) and (94), for any fixed initial (even) state ρ0 on B

(
F{0}

)
at t = 0, there is a unique family

(ϖ(t; ρ0))t∈R of on-site states acting on B
(
F{0}

)
such that

ϖ(t; ρ0) = ρ0 ◦ τ
ϖ(·;ρ0)
t,0 , t ∈ R . (19)

Remark that τϖ(·;ρ0)
t,0

(
B
(
F{0}

))
⊆ B

(
F{0}

)
, because this infinite-volume dynamics is constructed

from local Hamiltonians (8), which are sums of on-site terms. See, e.g., (18). Observe that (19) is an
equation on a finite-dimensional space, see (17).

2.5 Infinite-Volume Dynamics of Product States
For simplicity, as initial state (at t = 0), take a finite-volume product state

ρ(L)
.
= ⊗ΛL

ρ0 (20)

associated with an even7 state ρ0 on B
(
F{0}

)
: Recall that even means that the expectation value of

any odd monomials in {a∗0,s, a0,s}s∈{↑,↓} with respect to the on-site state ρ0 is zero, while the product
state ρ(L) is (well-) defined by

ρ(L)(αx1(A1) · · ·αxn(An)) = ρ0(A1) · · · ρ0(An) (21)

for all A1, . . . , An ∈ B
(
F{0}

)
and all x1, . . . , xn ∈ ΛL such that xi ̸= xj for i ̸= j, where αxj

(Aj) ∈
B
(
F{xj}

)
is the xj-translated copy ofAj for all j ∈ {1, . . . , n}, see (38) for more details. An example

of finite-volume product states is given by the approximating Gibbs states (10). Then, in this case, as
explained in Section 4.4, for any t ∈ R, L0 ∈ N0 and A ∈ B(FΛL0

), one has that

lim
L→∞

ρ
(L)
t (A) = lim

L→∞
ρ ◦ τ (L)t (A) = ρ ◦ τϖ(·;ρ0)

t,0 (A) , (22)

with ρ(L)t ,ϖ(·; ρ0) being respectively defined by (16) and (19) and where ρ .
= ⊗Zdρ0 is the (infinite-

volume) product state associated with the even state ρ0 on B
(
F{0}

)
, see either (20)-(21) with ΛL = Zd

or (89). Note that the restriction to B(FΛL
) of ρ is equal to ρ(L).

For any t ∈ R, the limit state
ρ
(∞)
t

.
= ρ ◦ τϖ(·;ρ0)

t,0

is again a product state and hence, it is completely determined by its restriction to the single lattice
site (0, . . . , 0) ∈ Zd, that is, by the on-site state

ρ
(∞)
t,{0}

.
= ρ ◦ τϖ(·;ρ0)

t,0 |B(F{0}) = ρ0 ◦ τ
ϖ(·;ρ0)
t,0 |B(F{0}) = ϖ(t; ρ0)

for all t ∈ R.
If one sees quantum states as elements of a state space in classical mechanics, it is natural to

consider complex or real-valued function of states. By using the self-consistency equation (19), we
thus define a classical space of observables as being the (commutative C∗-)algebra C(E+

{0};C) of
continuous functions on the space E+

{0} of all even states acting on B(F{0}). As explained in Section
4.4.4, the self-consistency equation leads to a group (Vt)t∈R of automorphisms of C(E+

{0};C) defined
by

[Vtf ] (ρ)
.
= f (ϖ(t; ρ)) , ρ ∈ E+

{0}, f ∈ C(E+
{0};C), t ∈ R .

7Observe that even states are the physically relevant ones.
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This dynamics can be written in terms of Poisson brackets, i.e., as some Liouville’s equation of
classical mechanics: A polynomial in C(E+

{0};C) is a function f of the form

f (ρ)
.
= g (ρ (A1) , . . . , ρ (An)) , ρ ∈ E+

{0} ,

for some polynomial g of n ∈ N variables and elements A1, . . . , An ∈ B(F{0}). Such a polynomial
has (convex) derivative Df (ρ) equal to (75) for ρ ∈ E+

{0}. The classical hamiltonian h ∈ C(E+
{0};C)

related to the strong-coupling BCS-Hubbard model is a polynomial defined by

h (ρ)
.
= −µρ (n↑ + n↓)− hρ (n↑ − n↓) + 2λρ (n↑n↓)− γ |ρ (a↑a↓)|2 ,

the 0 indices of operators acting on F{0} having been omitted for notational simplicity. It leads to a
state-dependent Hamiltonian equal to

Dh (ρ) = −µ (n↑ + n↓)− h (n↑ − n↓) + 2λ (n↑n↓)− γ
(
a∗↑a

∗
↓ρ (a↓a↑) + ρ

(
a∗↑a

∗
↓
)
a↓a↑

)
+
(
µρ (n↑ + n↓) + hρ (n↑ − n↓)− 2λρ (n↑n↓) + 2γ |ρ (a↓a↑)|2

)
1 . (23)

Like (8), it is an Hamiltonian generating the restriction to B(F{0}) of the quantum dynamics {τ (L,c)t }t∈R
defined by (13) with c = ρ (a↓a↑): For every s, t ∈ R and all L ∈ N0,

τ
(L,ρ(a↓a↑))
t,s (A) = τ

(1,ρ(a↓a↑))
t,s (A) = eitDh(ρ)Ae−itDh(ρ) , A ∈ B(F{0}) ,

similar to (18). Then, using (97) we obtain Liouville’s equation:

∂tVt (f) = Vt ({h, f}) = {h, Vt(f)} , t ∈ R , (24)

where, by (76) and (98),

{h, f} (ρ) .= ρ (i [Dh (ρ) ,Df (ρ)]) , ρ ∈ E+
{0} . (25)

Liouville’s equation is written here on a finite-dimensional state space and can easily be studied
analytically. Its solution at fixed initial state gives access to all dynamical properties of product states
driven by the strong-coupling BCS-Hubbard model in the thermodynamic limit. Below, we give the
explicit computations of the time evolution of the most important physical quantities related to this
model, in this situation:

Lemma 1 (Dynamical properties)
Fix any on-site state ρ ∈ E+

{0}.
(i) Electron density: Let d(ρ) .= ρ (n↑ + n↓). Then, for any t ∈ R, Vt (d) = d.
(ii) Magnetization density: Let m(ρ)

.
= ρ (n↑ − n↓). Then, for any t ∈ R, Vt (m) = m.

(iii) Coulomb correlation density: Let w(ρ) .= ρ (n↑n↓). Then, for any t ∈ R, Vt (w) = w.
(iv) Cooper pair condensate density: Let κ(ρ) .= |ρ (a↓a↑)|2. Then, for any t ∈ R, Vt (κ) = κ.
(v) Cooper field densities: Let φ(ρ) .

= Re (ρ (a↓a↑)) and ψ(ρ) .
= Imρ (a↓a↑). Then, for any t ∈ R,

the functions φt
.
= Vt (φ) and ψt

.
= Vt (ψ) on E+

{0} satisfy{
φt (ρ) =

√
κ cos (tν (ρ) + θρ) ,

ψt (ρ) =
√
κ sin (tν (ρ) + θρ) ,

with ν (ρ) .= 2 (µ− λ) + γ (1− d(ρ)) and κ ∈ [0, 1], θρ ∈ [−π, π) such that ρ (a↓a↑) =
√
κeiθρ .
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Proof. We start with elementary computations using the CAR (36): Recall that [A,B]
.
= AB − BA

is the commutator and, for any s ∈ {↑, ↓}, ns
.
= a∗sas is the spin-s-particle number operator on the

lattice site 0 (with “{0}” being omitted in the notation for simplicity). By (36), for any s, t ∈ {↑, ↓},

[n↑, a↓] = [n↓, a↑] = [ns, nt] = 0 , [ns, as] = −as ,
[
a∗↑a

∗
↓, a↑

]
= −a∗↓ ,

[
a∗↑a

∗
↓, a↓

]
= a∗↑ . (26)

It follows that, for any s ∈ {↑, ↓},

[ns, a↓a↑] = −a↓a↑ ,
[
ns, a

∗
↑a

∗
↓
]
= a∗↑a

∗
↓ ,

[
a∗↑a

∗
↓, a↓a↑

]
= n↑ + n↓ − 1 . (27)

From the CAR (36) note also that

n↑a
∗
↑a

∗
↓ = a∗↑a

∗
↓ , n↑a↓a↑ = a∗↑a

∗
↓n↓ = n↑a↓a↑ = 0 , a↓a↑n↓ = a↓a↑ . (28)

Now, we are in a position to prove Assertions (i)-(v): Let fs(ρ)
.
= ρ (ns) for all ρ ∈ E+

{0} and
s ∈ {↑, ↓}. Then, by using (23), (26)-(27) and (75) for ρ ∈ E+

{0}, we compute that

[Dh (ρ) ,Dfs (ρ)] = [Dh (ρ) , ns] = γ
(
ρ (a↓a↑) a

∗
↑a

∗
↓ − ρ

(
a∗↑a

∗
↓
)
a↓a↑

)
.

By (24)-(25), we then deduce from the last equality that, for any t ∈ R and s ∈ {↑, ↓}, Vt (fs) = fs,
which implies Assertions (i)-(ii). To get Assertion (iii), note from (23), (26)-(28) and (75) that, for
any ρ ∈ E+

{0},

[Dh (ρ) ,Dw (ρ)] = [Dh (ρ) , n↑n↓] = γ
(
a∗↑a

∗
↓ρ (a↓a↑)− ρ

(
a∗↑a

∗
↓
)
a↓a↑

)
.

We then arrive at Assertion (iii) by combining this last computation with (24)-(25). To obtain Asser-
tions (iv)-(v), it suffices to study the time evolution of the function z defined, for any ρ ∈ E+

{0}, by
z(ρ)

.
= ρ(a↓a↑). Then, we use again (23), (26)-(28) and (75) to obtain that

[Dh (ρ) ,Dz (ρ)] = [Dh (ρ) , a↓a↑] = 2 (µ− λ) a↓a↑ − γρ (a↓a↑) (n↑ + n↓ − 1)

and, by (24)-(25) and Assertion (i), the function zt
.
= Vt (z), t ∈ R, evaluated at ρ ∈ E+

{0} satisfies the
elementary ODE

∀t ∈ R : ∂tzt (ρ) = i (2 (µ− λ) + γ (1− d(ρ))) zt (ρ) , z0 (ρ) = ρ (a↓a↑) ,

from which Assertions (iv)-(v) obviously follow. Note that the time evolution Vt (κ) of the non-affine
polynomial κ(ρ) .= |ρ (a↓a↑)|2, ρ ∈ E+

{0}, could also have been obtained by using, from (75), that

Dκ (ρ) = a∗↑a
∗
↓ρ (a↓a↑) + ρ

(
a∗↑a

∗
↓
)
a↓a↑ − 2 |ρ (a↓a↑)|2 1 .

In the special case λ = 0, i.e., without the Hubbard interaction, Lemma 1 reproduces the results
of [21, Section A] on the strong-coupling BCS model, written in that paper as a permutation-invariant
quantum-spin model.

From Lemma 1 observe that we recover the equation of a symmetric rotor in classical mechanics:
Fix ρ ∈ E+

{0}. For any t ∈ R, let Ω1(t)
.
= φt (ρ), Ω2(t)

.
= ψt (ρ) and Ω3 (t)

.
= Vt (ν) (ρ). Then, by

Lemma 1, or by using directly Liouville’s equation (24)-(25) as it is done in the proof of Lemma 1,
one easily checks that the 3D vector (Ω1(t),Ω2(t),Ω3(t)) satisfies, for any time t ∈ R, the following
system of ODEs: 

Ω̇1 (t) = −Ω3 (t) Ω2 (t) ,

Ω̇2 (t) = Ω3 (t) Ω1 (t) ,

Ω̇3 (t) = 0 ,
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which describes the time evolution of the angular momentum of a symmetric rotor in classical me-
chanics.

Lemma 1 leads to the exact dynamics of a physical system prepared in a product state at initial
time, driven by the strong-coupling BCS-Hubbard Hamiltonian. This set of states is still restrictif
and our results [1–3], summarized in Section 4, go beyond this simple case, by allowing us to con-
sider general periodic states as initial states, in contrast with all previous results on lattice Fermi, or
quantum-spin, systems with long-range, or mean-field, interactions.

2.6 From Product to Periodic States as Initial States
The strong-coupling BCS-Hubbard model is permutation-invariant, which means that it is invariant
under the transformation pπ : ax,s 7→ aπ(x),s with x ∈ Zd and s ∈ {↑, ↓}, for all bijective mappings
π : Zd → Zd which leave all but finitely many elements invariant. See Section 4.4.1. First, take
a permutation-invariant state, which means that ρ ◦ pπ = ρ, again for all bijective mappings π :
Zd → Zd which leave all but finitely many elements invariant. As is explained in Section 4.4.2,
any permutation-invariant state can be written (or approximated to be more precise) as a convex
combination of product states. For instance, let ρ1, . . . , ρn be n ∈ N product states and u1, . . . , un ∈
[0, 1] such that u1 + · · ·+ un = 1, and

ρ =
n∑

j=1

ujρj , (29)

which is a permutation-invariant state. At fixed L ∈ N0, we take the restriction ρ(L) of ρ to B(FΛL
),

which is thus a finite-volume permutation-invariant state, like the Gibbs state (7) associated with the
strong-coupling BCS-Hubbard model. Then, in this case, for any t ∈ R, L0 ∈ N0 and A ∈ B(FΛL0

),
we infer from (22) that

lim
L→∞

ρ
(L)
t (A) = lim

L→∞
ρ ◦ τ (L)t (A) =

n∑
j=1

ujρj ◦ τ
ϖ(·;ρj)
t,0 (A) , (30)

where, by a slight abuse of notation, ϖ(·; ρ) = ϖ(·; ρ|B(F{0})). For general permutation-invariant
states, one has to replace the finite sum (29) by an integral with respect to a probability measure on
the set of product states to generalize (30). See again (96) for more details. As a consequence, by
combining Lemma 1 with such a decomposition of permutation-invariant states into product states,
we obtain all dynamical properties of the strong-coupling BCS-Hubbard model, in any permutation-
invariant initial state: For instance, taking the state (29) and combining (30) with Lemma 1, the
time-evolution φt

.
= Vt (φ) and ψt

.
= Vt (ψ) of Cooper fields are given, for any t ∈ R, by{

φt (ρ) =
∑n

j=1 uj
√
κj cos(tν

(
ρj
)
+ θρj) ,

ψt (ρ) =
∑n

j=1 uj
√
κj sin(tν

(
ρj
)
+ θρj) ,

where
ν
(
ρj
) .
= 2 (µ− λ) + γ

(
1− ρj (n↑ + n↓)

)
and ρj (a↓a↑) =

√
κje

iθρj

for any j ∈ {1, . . . , n}. Then, the Cooper pair condensate density defined by κ(ρ) .= |ρ (a↓a↑)|2 is not
anymore necessarly constant and can have a complicated, highly non-trivial, behavior, in particular
when ρ is not a finite sum like (29), but only the barycenter of a probability measure on the set of
product states.

The permutation-invariant case already applies to the (weak∗) limit ω(∞) of the Gibbs state ω(L)

(7) which is proven to exist as a permutation-invariant state ω(∞) because, by [41, Theorem 6.5], away
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from the superconducting critical point,

ω(∞) (·) = 1

2π

∫ 2π

0

ω(∞,reiθ) (·) dθ (31)

with {d = reiθ, θ ∈ [0, 2π]} being all solutions to the variational problem (9) and where the product
state ω(∞,d) is the thermodynamic limit L → ∞ of the Gibbs state ω(L,d) (·) defined by (10). In this
case, by [41, Theorem 6.4 and previous discussions],

ω(∞,reiθ) (a↓a↑) = reiθ = d , θ ∈ [0, 2π] , (32)

and if one has a superconducting phase, i.e., r > 0, then, by [41, Eq. (3.3) and Theorem 6.4 (i)], one
always has the equality

ω(∞,reiθ) (n↓ + n↑) = 1 + 2γ−1 (µ− λ) , θ ∈ [0, 2π] . (33)

Any equilibrium state is a state in the closed convex hull of {ω(∞,reiθ), θ ∈ [0, 2π]}. Equations (32)-
(33) imply that, for any equilibrium state ω, like ω(∞), the frequency ν(ω), defined in Lemma 1 (v),
vanishes, i.e., ν(ω) = 0. Hence, in this case, by Lemma 1, all densities are constant in time for
any equilibrium state. The same property is also true at the superconducting critical point, by [41,
Theorem 6.5 (ii)]. This is of course coherent with the well-known stationnarity of equilibrium states.

The results presented above could still have been deduced from Bóna’s ones, as it is done in [21,
Section A] for the strong-coupling BCS model. Of course, in this case, one has to represent the
lattice Fermi systems as a permutation-invariant quantum-spin system and a permutation-invariant
state would again be required as initial state.

Using [1,2] one can easily extend this study of the strong-coupling BCS-Hubbard model to a much
larger set of initial states: Indeed, if the initial finite-volume state ρ(L) is the restiction to B(FΛL

) of
an extreme (or ergodic) translation-invariant state on the CAR algebra of the lattice, which means in
particular that it is invariant, for any x ∈ Zd, under the transformation ax,s 7→ ax+y,s, y ∈ Zd and
s ∈ {↑, ↓}, then Equation (96) also tells us that, for any t ∈ R, L0 ∈ N0 and A ∈ B(FΛL0

),

lim
L→∞

ρ
(L)
t (A) = ρ ◦ τϖ(·;ρ)

t,0 (A)

where, again by a slight abuse of notation, ϖ(·; ρ) = ϖ(·; ρ|B(F{0})). What’s more, since

τ
ϖ(·;ρ)
t,0

(
B
(
F{0}

))
⊆ B

(
F{0}

)
,

because of its construction from local Hamiltonians (8) which are only a sum of on-site terms, the
electron, magnetization, Coulomb correlation, Cooper pair condensate and the Cooper field densities
can in this case directly be deduced for extreme, translation-invariant, initial states from Lemma 1,
and, similar to (29)-(30), these quantities for general translation-invariant states can be derived by
using their decompositions (66) in terms of extreme translation-invariant states.

All these outcomes can be extended to the case of general periodic initial states, via straightfor-
ward modications: for any (ℓ1, . . . , ℓd) ∈ Nd and initial (ℓ1, . . . , ℓd)-periodic state ρ (see Section 4.2.3
for more details) replace in all the above discussions on translation-invariant initial states terms like
ρ (a↓a↑) = ρ (a0,↓a0,↑) by

1

ℓ1 · · · ℓd

∑
x=(x1,...,xd), xi∈{0,...,ℓi−1}

ρ (ax,↓ax,↑) . (34)

Cf. (67)-(68). This goes beyond all previous studies on lattice Fermi, or quantum-spin, systems with
long-range, or mean-field, interactions.
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3 Long-Range Interactions in Physics
Long-range, or mean-field, effective models are essential in condensed matter physics to study, from
microscopic considerations, macroscopic phenomena like superconductivity. They come from differ-
ent approximations or Ansätze like the choice γk,q

.
= γ > 0 for the (effective) BCS interaction in

(3). The general form of the (effective) BCS Hamiltonian in (3) comes from the celebrated Fröhlich
electron-phonon interactions. What’s more, they are possibly not merely effective models.

Long-range, or mean-field, models capture surprisingly well many phenomena in condensed mat-
ter physics. For instance, recall that the BCS interaction (1) allows us to qualitatively display most
of basic properties of conventional superconductors [59, Chapter VII, Section 4]. Ergo, one could
wonder whether such interactions may have a more fundamental physical relevance. Such a question
is usually not addressed, because these interactions seem to break the spacial locality of Einstein’s
relativity. For instance, the BCS interaction (6) can be seen as a kinetic term for fermion pairs that
can hop from y ∈ ΛL to any other lattice site x ∈ ΛL, for each L ∈ N0.

This non-locality property is reminiscent of the inherent non-locality of quantum mechanics, high-
lighted by Einstein, Podolsky and Rosen with the celebrated EPR paradox. Philosophically, this gen-
eral issue challenges causality, in its local sense, as well as the notion of a material object8. In [70],
Einstein said the following:

“If one asks what, irrespective of quantum mechanics, is characteristic of the world of ideas of
physics, one is first of all struck by the following: the concepts of physics relate to a real outside
world... it is further characteristic of these physical objects that they are thought of as a range in
a space-time continuum. An essential aspect of this arrangement of things in physics is that they
lay claim, at a certain time, to an existence independent of one another, provided these objects “are
situated in different parts of space”.

The following idea characterizes the relative independence of objects far apart in space (A and
B): external influence on A has no direct influence on B...

There seems to me no doubt that those physicists who regard the descriptive methods of quantum
mechanics as definitive in principle would react to this line of thought in the following way: they
would drop the requirement... for the independent existence of the physical reality present in different
parts of space; they would be justified in pointing out that the quantum theory nowhere makes explicit
use of this requirement.

I admit this, but would point out: when I consider the physical phenomena known to me, and
especially those who are being so successfully encompassed by quantum mechanics, I still cannot
find any fact anywhere which would make it appear likely that (that) requirement will have to be
abandoned.

I am therefore inclined to believe that the description of quantum mechanics... has to be regarded
as an incomplete and indirect description of reality, to be replaced at some later date by a more
complete and direct one.”

The debate on non-locality in Physics, experimentally shown, refers to the existence of quantum
entanglement, essential in quantum information theory. For a discussion on locality and realism in
quantum mechanics, see, e.g., [71] by Alain Aspect, who is one of the main initiators of experimental
studies on quantum entanglement, in the beginning of the 1980s.

The non-locality of long-range, or mean-field, interactions like the BCS interaction9 (1) can be
seen as an instance of the (controversial) intrinsic non-locality of quantum physics. Long-range inter-
actions are thus usually not considered by the physics community as being fundamental interactions,

8According to the spatio-temporal identity of classical mechanics, the same physical object cannot be at the same time
on two distinct points of the phase space. This refers to Leibniz’s Principle of Identity of Indiscernibles [69, p. 1]. The
spatio-temporal identity of classical mechanics is questionable in quantum mechanics. See, e.g., [69].

9The strength of the BCS interaction (1) between two points of the space does not decay at large distances.
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in order to avoid polemics. We partially agree with this position and see long-range interactions as
possibly resulting from (more fundamental) interactions with (bosonic) mediators, like phonons in
conventional superconductivity.

Nonetheless, a long-range interaction like (1), being quantum mechanical, does not refer to an
actuality, but only to a potentiality. Physical properties of any (energy-conserving) physical system
do not just depend on its Hamiltonian but also on its state which accounts for the “environmental”
part of the system: This situation is analogous to the epigenetics10 showing that the DNA sequence
is only a set of constraints and potentialities, the physical realizations of which depend on the history
and environment of the corresponding organism. For instance, in a lattice-fermion system described
by the so-called (reduced) BCS Hamiltonian with γk,q = γ, pairs of particles may (almost) never hop
in arbitrarily large distances if the state11 ρ of the corresponding system is such that

lim
L→∞

1

|ΛL|
∑

x,y∈ΛL

ρ
(
a∗x,↑a

∗
x,↓ay,↓ay,↑

)
= 0 .

This is the case for equilibrium states of this model at sufficiently high temperatures. It is thus too
reductive to a priori eliminate such kind of interaction from “fundamental” Hamiltonians of physical
systems.

On the top of that, as is well-known, the thermodynamic limit of mean-field dynamics is repres-
entation-dependent. This is basically Haag’s original argument proposed in 1962 [6] in order to
give a precise mathematical sense to the BCS model. In fact, the description of the full dynamics
requires an extended quantum framework [3], which refers to an intricate combination of classical
and quantum dynamics, as observed by Bóna already thirty years ago [26]. In [3], the emergence
of a classical dynamics defined from Poisson brackets on state spaces is shown, without necessarily
the disappearance of the quantum world, offering a general mathematical framework to understand
physical phenomena with macroscopic quantum coherence. In the context of lattice-fermion systems,
it is explained in detail in [1]. Such an entanglement of classical and quantum worlds is noteworthy,
opening new theoretical perspectives, and is a direct consequence of the highly non-local character of
long-range, or mean-field, interactions.

4 Mathematical Foundations

4.1 Algebraic Structures
4.1.1 CAR Algebra of Lattices

Let Zd be the d-dimensional cubic lattice and Pf ⊆ 2Z
d the set of all non-empty finite subsets of Zd.

In order to define the thermodynamic limit, for simplicity, we use cubic boxes

ΛL
.
= {Z ∩ [−L,L]}d , L ∈ N0 . (35)

Let S be a fixed (once and for all) finite set of spins. For any Λ ∈ Pf ∪ {Z}, UΛ is the separable
unitalC∗-algebra12 generated by the elements {ax,s}x∈Λ,s∈S satisfying the canonical anti-commutation
relations (CAR): for any x, y ∈ Zd and s, t ∈ S,

ax,say,t + ay,tax,s = 0 , ax,sa
∗
y,t + a∗y,tax,s = δs,tδx,y1 . (36)

10Quoting [72]: “Epigenetics is typically defined as the study of heritable changes in gene expression that are not due
to changes in DNA sequence. Diverse biological properties can be affected by epigenetic mechanisms: for example, the
morphology of flowers and eye colour in fruitflies.”

11I.e., a positive and normalized continuous functional on the CAR algebra.
12UΛ ≡ B(C2Λ×S

) is equivalent to the algebra of 2|Λ×S| × 2|Λ×S| complex matrices, when Λ ∈ Pf .
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Here, δk,l is the Kronecker delta, that is, the function of two variables defined by δk,l
.
= 1 if k = l and

δk,l = 0 otherwise. Note that we use the notation U ≡ UZd and define

U0
.
=
∪

Λ∈Pf

UΛ , (37)

which is a dense normed ∗-algebra of U . Elements of U0 are called local elements. The (real) Banach
subspace of all self-adjoint elements of U is denoted by UR  U .

Translations are represented by a group homomorphism x 7→ αx from Zd to the group of ∗-
automorphisms of U , which is uniquely defined by the condition

αx(ay,s) = ay+x,s , y ∈ Zd, s ∈ S . (38)

The mapping x 7→ αx is used below to define symmetry groups of states as well as translation-
invariant interactions of lattice-fermion systems.

The results presented in the current paper also hold true in the context of quantum-spin systems,
but we focus on lattice Fermi systems which are, from a technical point of view, slightly more difficult
because of the non-commutativity of their elements on different lattice sites. Indeed, the additional
difficulty in Fermi systems is that, for any finite subsets Λ(1),Λ(2) ∈ Pf with Λ(1) ∩ Λ(2) = ∅, the
commutator

[B1, B2]
.
= B1B2 −B2B1 = 0 , B1 ∈ UΛ(1) , B2 ∈ UΛ(2) ,

may not be zero, in general. For instance, the CAR (36) trivially yield [ax,s, ay,t] = 2ax,say,t ̸= 0 for
any x, y ∈ L and s, t ∈ S, (x, s) ̸= (y, t). Because of the CAR (36), such a commutation property is
satisfied for all even local elements defined as follows: The condition

σ(ax,s) = −ax,s, x ∈ Λ, s ∈ S , (39)

defines a unique ∗-automorphism σ of the C∗-algebra U . The subspace

U+ .
= {A ∈ U : A = σ(A)} (40)

is the C∗-subalgebra of so-called even elements of U . Then, for any subsets Λ(1),Λ(2) ∈ Pf with
Λ(1) ∩ Λ(2) = ∅,

[B1, B2] = 0 , B1 ∈ UΛ(1) ∩ U+, B2 ∈ UΛ(2) .

This last condition is the expression of the local causality in quantum field theory. Using well-
known constructions13, the C∗-algebra U , generated by anticommuting elements, can be recovered
from U+. As a consequence, the C∗-algebra U+ should thus be seen as more fundamental than U
in Physics. In fact, U corresponds in this context to the so-called local field algebra. See, e.g., [73,
Sections 4.8 and 6].

The fact that the local causality in quantum field theory can be invoked to see U+ as being more
fundamental than U in Physics does not prevent us from considering long-range interactions as possi-
bly fundamental interactions, as explained in Section 3. The choice of U+ only compel us to consider
(local) observables satisfying the local causality as measurable physical quantities, the full energy
of lattice Fermi systems with short-range or long-range interactions being generally inaccessible in
infinite volume. In fact, the long-range part yields possibly non-vanishing background fields, in the
spirit of the Higgs mechanism of quantum field theory, in a given representation of the observable
algebra, which is fixed by the initial state.

13More precisely, the so-called sector theory of quantum field theory.
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4.1.2 Short-Range Interactions

A (complex) interaction is a mapping Φ : Pf → U+ such that ΦΛ ∈ UΛ for all Λ ∈ Pf . The set of
all interactions can be naturally endowed with the structure of a complex vector space and using the
norm

∥Φ∥W
.
= sup

x,y∈Zd

∑
Λ∈Pf , Λ⊇{x,y}

(1 + |x− y|)(d+ϵ) ∥ΦΛ∥U , (41)

for some fixed ϵ > 0, we then define a separable Banach space W of short-range interactions. Here
|·| is the Euclidean metric. Note that the particular positive-valued decay function

F (x, y) = (1 + |x− y|)−(d+ϵ) , x, y ∈ Zd, ϵ > 0 ,

in (41) is used for simplicity and other choices can be made, as discussed in [1, Section 3.1]. We use
in the sequel three important properties on short-range interactions:

(i) Self-adjointness: There is a natural involution Φ 7→ Φ∗ .
= (Φ∗

Λ)Λ∈Pf
defined on the Banach space

W of short-range interactions. Self-adjoint interactions are, by definition, interactions Φ satisfying
Φ = Φ∗. The (real) Banach subspace of all self-adjoint short-range interactions is denoted by WR  
W , similar to UR  U .

(ii) Translation invariance: By definition, the interaction Φ is translation-invariant if

ΦΛ+x = αx (ΦΛ) , x ∈ Zd, Λ ∈ Pf ,

where
Λ + x

.
=
{
y + x ∈ Zd : y ∈ Λ

}
.

Here, {αx}x∈Zd is the family of (translation) ∗-automorphisms of U defined by (38). We then denote
by W1  W the (separable) Banach subspace of translation-invariant, short-range interactions on Zd.

(iii) Finite range: For any R ∈ [0,∞), we define the closed subspace

WR .
=

{
Φ ∈ W1 : ΦΛ = 0 for Λ ∈ Pf such that max

x,y∈Λ
{|x− y|} > R

}
(42)

of finite-range, translation-invariant interactions. When R = 0, we obtain the space WΠ
.
= W0 of

permutation-invariant interactions described in Section 4.4.

Short-range interactions define sequences of local energy elements: For any Φ ∈ W and L ∈ N0,

UΦ
L
.
=
∑
Λ⊆ΛL

ΦΛ ∈ UΛL
∩ U+ , (43)

where we recall that ΛL
.
= {Z ∩ (−L,L)}d is the cubic box used to define the thermodynamic limit

(see (35)). The energy elements UΦ
L , L ∈ N0, refer to an extensive quantity since their norm are

proportional to the volume of the region they correspond to: For any L ∈ N0 and Φ ∈ W ,∥∥UΦ
L

∥∥
U ≤ C |ΛL| ∥Φ∥W , (44)

where
C

.
=
∑
x∈Zd

1

(1 + |x|)d+ϵ
<∞ . (45)

17



Moreover, for any self-adjoint interaction Φ ∈ WR and L ∈ N0, UΦ
L ∈ UR, i.e., UΦ

L = (UΦ
L )

∗ is a
local Hamiltonian.

Each local Hamiltonian associated with Φ ∈ WR leads to a local dynamics on the full C∗-algebra
U via the group {τ (L,Φ)

t }t∈R of ∗-automorphisms of U defined by

τ
(L,Φ)
t (A) = eitU

Φ
LAe−itUΦ

L , A ∈ U . (46)

It is the continuous group which is the solution to the evolution equation

∀t ∈ R : ∂tτ
(L,Φ)
t = τ

(L,Φ)
t ◦ δΦL , τ

(L,Φ)
0 = 1U ,

with 1U being the identity mapping of U and δΦL defined on U , for any L ∈ N0 and Φ ∈ WR, by

δΦL(A)
.
= i
[
UΦ
L , A

] .
= i
(
UΦ
LA− AUΦ

L

)
, A ∈ U .

This corresponds to a quantum dynamics, in the Heisenberg picture. Note that, for every L ∈ N0 and
Φ ∈ WR, δΦL is a so-called symmetric derivation which belongs to the Banach space B(U) of bounded
operators acting on the C∗-algebra U , see, e.g., [1, Section 3.3].

More generally, for possibly time-dependent interactions, the non-autonomous local dynamics
is defined, for any continuous function Ψ ∈ C(R;WR) and L ∈ N0, as the unique (fundamen-
tal) solution (τ

(L,Ψ)
t,s )

s,t∈R in the Banach space B(U) to the (finite-volume) non-autonomous evolution
equation14

∀s, t ∈ R : ∂tτ
(L,Ψ)
t,s = τ

(L,Ψ)
t,s ◦ δΨ(t)

L , τ (L,Ψ)
s,s = 1U . (47)

The solution to (47) can be explicitly written as a Dyson–Phillips series: For any s, t ∈ R,

τ
(L,Ψ)
t,s = 1U +

∑
k∈N

∫ t

s

dt1 · · ·
∫ tk−1

s

dtkδ
Ψ(tk)
L ◦ · · · ◦ δΨ(t1)

L . (48)

By [74, Corollary 5.2], in the thermodynamic limit L → ∞, for any Ψ ∈ C(R;WR), the group
(τ

(L,Ψ)
t,s )s,t∈R, L ∈ N0, strongly converges, at any fixed s, t, to a strongly continuous two-parameter

family (τΨt,s)s,t∈R of ∗-automorphisms of U :

lim
L→∞

τ
(L,Ψ)
t,s (A)

.
= τΨt,s (A) , A ∈ U , s, t ∈ R . (49)

In other words, (time-dependent) self-adjoint interactions lead to an infinite-volume (possibly non-
autonomous) dynamics on the CAR algebra of the lattice.

4.1.3 Long-Range Models

We start with some preliminary definitions: Let S be the unit sphere of W1. For any n ∈ N and finite
signed Borel measure a on the Cartesian product Sn (endowed with its product topology), we define
the finite signed Borel measure a∗ to be the pushforward of a through the self-homeomorphism(

Ψ(1), . . . ,Ψ(n)
)
7→ ((Ψ(n))∗, . . . , (Ψ(1))∗) ∈ Sn (50)

of Sn. A finite signed Borel measure a on Sn is, by definition, self-adjoint whenever a∗ = a. For any
n ∈ N, the real Banach space of self-adjoint, finite, signed Borel measures on Sn endowed with the
norm

∥a∥S(Sn)
.
= |a|(Sn) , n ∈ N ,

14Let H be some Hilbert space and (Ht)t∈R some continuous family of bounded Hamiltonians acting on H. The
corresponding Schrödinger equation with ~ = 1 reads i∂tφt = Htφt and so, φt = Ut,sφs with Ut,s being the solution to
∂tUt,s = HtUt,s. Then, in the Heisenberg picture, the time-evolution of any (bounded) observable B acting on H at initial
time t = s ∈ R is Bt = τ t,s (Bs)

.
= U∗

t,sBsUt,s for s, t ∈ R, which yields ∂tτ t,s = τ t,s ◦ δt with δt (A)
.
= i[Ht, A].
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is denoted by S(Sn). The set of all sequences a ≡ (an)n∈N of finite signed Borel measures an ∈ S(Sn)
gives origin to a (real) Banach space S by using the norm

∥a∥S
.
=
∑
n∈N

n2Cn−1 ∥an∥S(Sn) , a ≡ (an)n∈N ∈ S , (51)

with the constant C > 0 defined by (45).
The separable Banach space of long-range models is defined by

M .
=
{
m ∈ WR × S : ∥m∥M <∞

}
(52)

with the norm of M being defined from (41) and (51) by

∥m∥M
.
= ∥Φ∥W + ∥a∥S , m

.
= (Φ, a) ∈ M . (53)

The spaces WR and S are seen as subspaces of M. In particular, Φ ≡ (Φ, 0) ∈ M for Φ ∈ WR.
Using the subspace WR of finite-range interactions defined by (42) for R ∈ [0,∞), we introduce the
subspace

S∞ .
=

∪
R∈[0,∞)

{
(an)n∈N ∈ S : ∀n ∈ N, |an|(Sn) = |an|((S ∩WR)n)

}
. (54)

Long-range dynamics are studied for models in the subspaces

M∞ .
= WR × S∞ and M∞

1
.
=
(
WR ∩W1

)
× S∞. (55)

Clearly, WR ⊆ M∞ ⊆ M and
(
WR ∩W1

)
⊆ M∞

1 ⊆ M∞.
Similar to self-adjoint short-range interactions, each long-range model leads to a sequence of local

Hamiltonians: For any L ∈ N0 and m ∈ M,

Um
L
.
= UΦ

L +
∑
n∈N

1

|ΛL|n−1

∫
Sn
UΨ(1)

L · · ·UΨ(n)

L an
(
dΨ(1), . . . , dΨ(n)

)
(56)

with UΦ
L and UΨ(k)

L been defined by (43). Note that Um
L = (Um

L )
∗ and straightforward estimates yield

the upper bound
∥Um

L ∥U ≤ C |ΛL| ∥m∥M , L ∈ N0 . (57)

Compare with (44).
Similar to (46), each model m ∈ M leads to finite-volume dynamics defined, for any L ∈ N0, by

τ
(L,m)
t (A) = eitU

m
LAe−itUm

L , A ∈ U . (58)

In contrast with short range interactions (see (49)), for any fixedA ∈ U and t ∈ R, the thermodynamic
limit L → ∞ of τ (L,m)

t (A) does not necessarly exist in the C∗-algebra U . However, by [2, Theorem
4.3], for any m ∈ M∞

1 , it converges in the σ-weak topology within some represention of U . This
is reminiscent of the fact that the energy-density observable UΦ

L / |ΛL| does not converges in U , as
L → ∞, but its expectation value with respect to any periodic state does. See Section 4.3 for more
details.

4.2 State Spaces
4.2.1 Finite-Volume State Space

Let U∗
Λ be the dual space of the local C∗-algebra UΛ for any (non-empty) finite subset Λ ⊆ Zd, i.e.,

for Λ ∈ Pf . We denote by

EΛ
.
= {ρΛ ∈ U∗

Λ : ρΛ ≥ 0, ρΛ(1) = 1} , Λ ∈ Pf , (59)
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the space of all states on UΛ. By finite dimensionality of UΛ for Λ ∈ Pf , the space EΛ is a norm-
compact convex subset of the dual space U∗

Λ and, for any ρΛ ∈ EΛ, there is a unique, positive,
trace-one operator dΛ ∈ B(FΛL

) satisfying

ρΛ (A)
.
= Trace (dΛA) , A ∈ UΛ , (60)

named the density matrix of ρΛ. In fact, EΛ is affinely equivalent to the set of all states acting on
the algebra of 2|Λ|×|S| × 2|Λ|×|S| matrices. In comparison, the structure of the set of states for infinite
systems is more subtle, as demonstrated in [3, 75].

Note that the physically relevant finite-volume states ρΛ, Λ ∈ Pf , are even, i.e., ρΛ ◦ σ|UΛ
= ρΛ

with σ|UΛ
being the restiction to UΛ of the unique ∗-automorphism σ of U satisfying (39). It means

that ρΛ vanishes on all odd monomials in {ax,s, a∗x,s}x∈Λ,s∈S. We define by

E+
Λ
.
= {ρΛ ∈ EΛ : ρΛ ◦ σ|UΛ

= ρΛ} ⊆ EΛ , Λ ∈ Pf , (61)

the space of all finite-volume even states.

4.2.2 Infinite-Volume State Spaces

For the infinite system, let U∗ ≡ U∗
Zd be the dual space of U ≡ UZd . In contrast with UΛ for Λ ∈ Pf ,

U has infinite dimension and the natural topology on U∗ is the weak∗ topology15 (and not the norm
topology). The topology used here on U∗ is always the weak∗ topology and, in this case, U∗ is a
locally convex space, by [76, Theorem 3.10].

Similar to (59), the state space on U is defined by

E ≡ EZd
.
= {ρ ∈ U∗ : ρ ≥ 0, ρ(1) = 1} . (62)

It is a metrizable, convex and compact subset of U∗, by [76, Theorems 3.15 and 3.16]. It is also the
state space of the classical dynamics we define in [3]. By the Krein-Milman theorem [76, Theorem
3.23], E is the closure of the convex hull of the (non-empty) set of its extreme points, which are
meanwhile dense in E, by [1, Eq. (13)].

As explained below Equation (40), recall that the C∗-algebra U+ should be considered as more
fundamental than U in Physics, because of the local causality in quantum field theory. As a conse-
quence, states on the C∗-algebra U+ should be seen as being the physically relevant ones. The set
of states on U+ is canonically identified with the metrizable, convex and compact set of even states
defined by

E+ ≡ E+
Zd

.
= {ρ ∈ U∗ : ρ ≥ 0, ρ(1) = 1, ρ ◦ σ = ρ} , (63)

σ being the unique ∗-automorphism of U satisfying (39). This space has the same geometrical struc-
ture than the full state space E, i.e., E+ and E are equivalent by an affine homeomorphism. In
particular, E+ is the closure of the convex hull of the (non-empty) set of its extreme points, which are
dense in E+. See [1, Proposition 2.1] and its proof.

Note that the spaces E and E+, having a dense set of extreme points – or equivalently having
dense extreme boundary – has a much more peculiar geometrical structure than the finite-volume
state space EΛ for Λ ∈ Pf . At first glance, this structure may look very strange for a non-expert
on convex analysis, but it should not be that surprising: For instance, the unit ball of any infinite-
dimensional Hilbert space has a dense extreme boundary in the weak topology. In fact, the existence
of convex compact sets with dense extreme boundary is not an accident in infinite-dimensional spaces.
This has been first proven [77] in 1959 for convex norm-compact sets within a separable Banach

15The weak∗ topology of U∗ is the coarsest topology on U∗ that makes the mapping ρ 7→ ρ (A) continuous for every
A ∈ U . See [76, Sections 3.8, 3.10, 3.14] for more details.
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space. Recently, in [3, Section 2.3] and more generally in [75], the property of having dense extreme
boundary is proven to be generic for weak∗-compact convex sets within the dual space of an infinite-
dimensional topological space. As a matter of fact, all state spaces of infinite-volume systems one is
going to encounter in the current paper have dense extreme boundary, except the set of permutation-
invariant states described in Section 4.4, because it can be encoded within a finite-dimensional space.

4.2.3 Periodic State Spaces

Consider the sub-groups (Zd
ℓ⃗
,+) ⊆ (Zd,+), ℓ⃗ ∈ Nd, where

Zd
ℓ⃗

.
= ℓ1Z× · · · × ℓdZ .

At fixed ℓ⃗ ∈ Nd, a state ρ ∈ E satisfying ρ ◦ αx = ρ for all x ∈ Zd
ℓ⃗

is called Zd
ℓ⃗
-invariant on U

or ℓ⃗-periodic, αx being the unique ∗-automorphism of U satisfying (38). Translation-invariant states
refer to (1, . . . , 1)-periodic states. For any ℓ⃗ ∈ Nd, let

Eℓ⃗

.
=
{
ρ ∈ E : ρ ◦ αx = ρ for all x ∈ Zd

ℓ⃗

}
(64)

be the space of ℓ⃗-periodic states. By [43, Lemma 1.8], periodic states are always even and, by [1,
Proposition 2.3], the set of all periodic states

Ep
.
=
∪
ℓ⃗∈Nd

Eℓ⃗ ⊆ E+ (65)

is dense in the space E+ of even states.
For each ℓ⃗ ∈ Nd, Eℓ⃗ is metrizable, convex and compact and, by the Krein-Milman theorem [76,

Theorem 3.23], it is the closure of the convex hull of the (non-empty) set Eℓ⃗ of its extreme points. In
fact, by [43, Theorem 1.9] (which uses the Choquet theorem [78, p. 14]), for any ρ ∈ Eℓ⃗, there is a
unique probability measure µρ on Eℓ⃗ with support in Eℓ⃗ such that16

ρ =

∫
E
ℓ⃗

ρ̂ dµρ (ρ̂) . (66)

The set Eℓ⃗ can be characterized by an ergodicity property of states, see [43, Theorem 1.16]. Moreover,
Eℓ⃗ is dense in Eℓ⃗, by [43, Corollary 4.6]. In other words, like the setsE andE+, Eℓ⃗ has dense extreme
boundary for any ℓ⃗ ∈ Nd.

4.3 Long-Range Dynamics
4.3.1 Self-Consistency Equations

Generically, long-range dynamics in infinite volume are intricate combinations of a classical and
quantum dynamics. Similar to [3, Theorem 4.1], both dynamics are consequences of the existence of
a solution to a self-consistency equation. In order to present such equations we need some preliminary
definitions: For ℓ⃗ ∈ Nd, m = (Φ, a) ∈ M and ρ ∈ E, we define the approximating (self-adjoint,
short-range) interaction Φ(m,ρ) ∈ WR by

Φ(m,ρ) .= Φ+
∑
n∈N

∫
Sn

an
(
dΨ(1), . . . , dΨ(n)

) n∑
m=1

Ψ(m)
∏

j∈{1,...,n},j ̸=m

ρ(eΨ(j),ℓ⃗) , (67)

16The integral in (66) only means that ρ ∈ Eℓ⃗ is the (unique) barycenter of the normalized positive Borel regular
measure µρ on Eℓ⃗. See, e.g., [43, Definition 10.15, Theorem 10.16, and also Lemma 10.17].
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where
eΦ,ℓ⃗

.
=

1

ℓ1 · · · ℓd

∑
x=(x1,...,xd), xi∈{0,...,ℓi−1}

∑
Λ∈Pf , Λ∋x

ΦΛ

|Λ|
. (68)

Recall meanwhile that M∞ .
= WR × S∞, see (54)-(55). Then, by [1, Theorem 6.5], for any m ∈

M∞, there is a unique continuous17 mapping ϖm from R to the space of automorphisms18 (or self-
homeomorphisms) of E such that

ϖm (t; ρ) = ρ ◦ τΨ(m,ρ)

t,0 , t ∈ R, ρ ∈ E , (69)

with Ψ(m,ρ) ∈ C(R;WR), ρ ∈ E, defined by

Ψ(m,ρ)(t)
.
= Φ(m,ϖm(t;ρ)) , t ∈ R , (70)

and where the strongly continuous two-parameter family (τΨ
(m,ρ)

t,s )s,t∈R is the strong limit, at any fixed

s, t ∈ R, of the local dynamics (τ
(L,Ψ(m,ρ))
t,s )s,t∈R defined by (47) for Ψ = Ψ(m,ρ), see (49) and [74,

Corollary 5.2]. Equation (69) is named here the self-consistency equation.

4.3.2 Quantum Part of Long-Range Dynamics

Recall that any model m ∈ M leads to finite-volume dynamics (τ (L,m)
t )t∈R, L ∈ N0, defined by (58).

Therefore, at L ∈ N0, the time-evolution (ρ
(L)
t )t∈R of any finite-volume state ρ(L) ∈ EΛL

is given by

ρ
(L)
t

.
= ρ(L) ◦ τ (L,m)

t . (71)

The corresponding time-dependent density matrix is d(L)
t = τ

(L,m)
−t (d(L)). Equation (71) refers to the

Schrödinger picture of quantum mechanics.
As already mentioned, for any fixed A ∈ U and t ∈ R, the thermodynamic limit L → ∞ of

τ
(L,m)
t (A) does not necessarly exist in U , but the limit L → ∞ of ρ(L)t can still make sense: Fix once

and for all a translation-invariant model m ∈ M∞
1 , see (55). Take ℓ⃗ ∈ Nd and recall that Eℓ⃗ is the

space of ℓ⃗-periodic states defined by (64), with set of extreme points denoted by Eℓ⃗. Recall also (66),
i.e., that, for any ρ ∈ Eℓ⃗, there is a unique probability measure µρ on Eℓ⃗ with support in Eℓ⃗ such that

ρ =

∫
E
ℓ⃗

ρ̂ dµρ (ρ̂) .

Since the set Eℓ⃗ is characterized by an ergodicity property (see [43, Theorem 1.16]), one can prove
that, for any A ∈ U ,

lim
L→∞

ρ ◦ τ (L,m)
t (A) =

∫
E
ℓ⃗

ϖm (t; ρ̂) (A) dµρ (ρ̂) =

∫
E
ℓ⃗

ρ̂ ◦ τΨ(m,ρ̂)

t,0 (A) dµρ (ρ̂) (72)

with ϖm being the solution to the self-consistency equation (69). See [2, Proposition 4.2, Theorem
4.3]. Using in particular, for any L ∈ N0, the restriction ρ(L) .

= ρ|UΛL
of a state ρ ∈ Eℓ⃗ to UΛL

then

(72) can also be seen as the thermodynamic limit L → ∞ of the expectation value ρ(L)t (A) of any
local element A ∈ U0, the time-dependent state ρ(L)t been defined by (71).

17We endow the set C (E;E) of continuous functions from E to itself with the topology of uniform convergence.
See [1, Eq. (100)] for more details.

18I.e., elements of C (E;E) with continuous inverse.
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Equation (72) means in fact that the thermodynamic limit L→ ∞ of τ (L,m)
t (A) exists in the GNS

representation19 (Hρ, πρ,Ωρ) of U associated with the initial state ρ. In other words, one obtains a
dynamics (Tm

t )t∈R defined by

Tm
t ◦ πρ (A) = lim

L→∞
πρ ◦ τ (L,m)

t (A) , A ∈ U ,

on the subalgebra πρ(U) of the algebra B (Hρ) of bounded operators on the Hilbert space Hρ. The
above limit has to be understood in the σ-weak topology within B(Hρ) (and in many cases one could
even prove strong convergence). This refers to the quantum part of the long-range dynamics (in
some representation), which is generally non-autonomous, although the primordial local dynamics is
autonomous.

4.3.3 Classical Part of Long-Range Dynamics

For any ℓ⃗ ∈ Nd, the infinite-volume long-range dynamics of ℓ⃗-periodic states, as given by (72),
involves the knowledge of a continuous flow20 on Eℓ⃗. Seeing Eℓ⃗ or Eℓ⃗ = Eℓ⃗ as a (classical) phase
space, it becomes natural to study the classical Hamiltonian dynamics associated with this flow, as is
usual in classical mechanics. Note that, for a (possibly non-translation-invariant) model m ∈ M∞,
ϖm

(
t; Eℓ⃗

)
conserves the space E+ of even states defined by (63), but not necessarly Eℓ⃗. If m ∈ M∞

1

then the flow conserves the sets Eℓ⃗ and Eℓ⃗ for any ℓ⃗ ∈ Nd, see below (80). Here, we adopt a broader
perspective by taking the full state space E, defined by (62), because the classical dynamics described
below can be easily pushed forward, through the restriction map, from C(E;C) to C(E+;C) for
general m ∈ M∞, and also to C(Eℓ⃗;C) for any ℓ⃗ ∈ Nd, when m ∈ M∞

1 is translation-invariant.
Note thatC(E;C),C(E+;C) andC(Eℓ⃗;C), endowed with the point-wise operations and complex

conjugation as well as the supremum norm, are unital commutative C∗-algebras. For any model m ∈
M∞, the mapping ϖm, the solution to the self-consistency equation (69), yields a family (V m

t )t∈R of
∗-automorphisms on C(E;C) defined by

V m
t (f)

.
= f ◦ϖm (t) , f ∈ C (E;C) , t ∈ R . (73)

It is a Feller group: (V m
t )t∈R is a strongly continuous group of ∗-automorphisms of C(E;C), which

is thus positivity preserving with operator norm equal to one, by [1, Proposition 6.7]. When it is
restricted to the dense subspace Ep ⊆ E+ (65) of all periodic states, the ones we are interested in (cf.
(72)), the group (V m

t )t∈R for any translation-invariant model m ∈ M∞
1 is generated by a Poissonian

symmetric derivation:

(i) Local polynomials: Elements of the C∗-algebra U naturally define continuous and affine functions
Â ∈ C(E;C) by

Â (ρ)
.
= ρ (A) , ρ ∈ E, A ∈ U .

This is the well-known Gelfand transform. Recall that U0 is the normed ∗-algebra of local elements
of U defined by (37). We denote by

P .
= C[{Â : A ∈ U0}] ⊆ C(E;C) (74)

the subspace of (local) polynomials in the elements of {Â : A ∈ U0}, with complex coefficients.

19Recall that Hρ is an Hilbert space, πρ : U → B (Hρ) is a representation of U and Ωρ ∈ Hρ is a cyclic vector for
πρ (U).

20That is, the continuous mapping ϖm from R to the space of automorphisms (or self-homeomorphisms) of E defined
by (69).

23



(ii) Poisson structure: For any n ∈ N, A1, . . . , An ∈ U and g ∈ C1 (Rn,C) we define the function
Γg ∈ C(E;C) by

Γg (ρ)
.
= g (ρ (A1) , . . . , ρ (An)) , ρ ∈ E .

Functions of this type are known in the literature as cylindrical functions. For such a function and any
ρ ∈ E, define

DΓg (ρ)
.
=

n∑
j=1

(Aj − ρ (Aj) 1) ∂xj
g (ρ (A1) , . . . , ρ (An)) , ρ ∈ E . (75)

This definition comes from a convex weak∗-continuous Gâteaux derivative, as explained in [1, Section
5.2]. Then, for any n,m ∈ N, A1, . . . , An, B1, . . . , Bm ∈ U , g ∈ C1 (Rn,C) and h ∈ C1 (Rm,C),
we define the continuous function {Γh,Γg} ∈ C(E;C) by

{Γh,Γg} (ρ)
.
= ρ (i [DΓh (ρ) ,DΓg (ρ)]) , ρ ∈ E . (76)

This defines a Poisson bracket on the space P of all (local) polynomial functions acting on E. By
contruction, for any ℓ⃗ ∈ Nd,

{Γh|E+ ,Γg|E+} .
= {Γh,Γg} |E+ , {Γh|E

ℓ⃗
,Γg|E

ℓ⃗
} .
= {Γh,Γg} |E

ℓ⃗
, {Γh|E

ℓ⃗
,Γg|E

ℓ⃗
} .
= {Γh,Γg} |E

ℓ⃗

(77)
also define a Poisson bracket on polynomials of C(E+;C), C(Eℓ⃗;C) and C(Eℓ⃗;C), respectively. This
definition can be extended to the space

Y ≡ C1 (E;C) ⊆ C (E;C)
of continuously differentiable functions. See [1, Section 5.2] and [3, Section 3] for a more detailed
construction of such Poisson structures in quantum mechanics.

(iii) Liouville’s equation: Local classical energy functions [1, Definition 6.8] associated with m ∈ M
are defined, for any L ∈ N0, by

hm
L
.
= ÛΦ

L +
∑
n∈N

1

|ΛL|n−1

∫
Sn
ÛΨ(1)

L · · · ÛΨ(n)

L an
(
dΨ(1), . . . , dΨ(n)

)
∈ C1 (E;C) . (78)

Compare with the local Hamiltonian Um
L defined by (56). Then, by [1, Corollary 6.11], for each

translation-invariant model m ∈ M∞
1 , any time t ∈ R and all local polynomials f ∈ P, one has

V m
t (f) ∈ C1(E;C) and

∂tV
m
t (f) = V m

t

(
lim
L→∞

{hm
L, f}

)
= lim

L→∞
{hm

L, V
m
t (f)} , (79)

where all limits have to be understood point-wise on the dense subspace Ep ⊆ E+ of all periodic
states. We thus obtain the usual (autonomous) dynamics of classical mechanics written in terms of
Poisson brackets. See, e.g., [79, Proposition 10.2.3]. This corresponds to Liouville’s equation.

By [1, Eq. (110)], observe additionally that, for any m ∈ M∞
1 and ℓ⃗ ∈ Nd, the flow conserves the

sets E+, Eℓ⃗ and Eℓ⃗, i.e.,∪
t∈R

ϖm
(
t;E+

)
⊆ E+,

∪
t∈R

ϖm
(
t;Eℓ⃗

)
⊆ Eℓ⃗,

∪
t∈R

ϖm
(
t; Eℓ⃗

)
⊆ Eℓ⃗ . (80)

Therefore, V m
t,s can be seen as a mapping from C(E+;C), C(Eℓ⃗;C) or C(Eℓ⃗;C) to itself:

V m
t (f |E+)

.
= (V m

t f)|E+ , V m
t (f |E

ℓ⃗
)
.
= (V m

t f)|Eℓ⃗
, V m

t (f |E
ℓ⃗
)
.
= (V m

t f)|Eℓ⃗ (81)

for any t ∈ R and f ∈ C(E;C). By using the Poisson brackets (77), Liouville’s equation (79) can be
written on C(E+;C), C(Eℓ⃗;C) or C(Eℓ⃗;C) for any m ∈ M∞

1 and ℓ⃗ ∈ Nd.

Remark 2
The mathematically rigorous derivation of Liouville’s equation (79) is non-trivial and results from
Lieb-Robinson bounds for multi-commutators [74], first derived in 2017.
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4.3.4 Entanglement of Quantum and Classical Dynamics

In the thermodynamic limit, the “primordial” algebra is the separable unital C∗-algebra U , generated
by fermionic annihilation and creation operators satisfying the canonical anti-commutation relations,
as explained in Section 4.1.1. Fix once and for all m ∈ M∞

1 . Let K = E, E+ or Eℓ⃗ = Eℓ⃗ for any
ℓ⃗ ∈ Nd, which is, in each case, a metrizable, convex (weak∗-) compact subset of the dual space U∗.

(i) Classical dynamics: The classical (i.e., commutative) unital C∗-algebra is the algebra C (K;C)
of continuous and complex-valued functions on K. The mapping ϖm, the solution to the self-
consistency equation (69), yields a strongly continuous group (V m

t )t∈R of ∗-automorphisms ofC (K;C),
satisfying Liouville’s equation as previously explained.

(ii) Quantum dynamics: Similar to quantum-classical hybrid theories of theoretical physics, described
for instance in [80–85], consider now a secondary quantum algebra C(K;C) ⊗ U , which is nothing
else (up to isomorphism) than the C∗-algebra C(K,U) of all (weak∗) continuous U-valued functions
on states. By [1, Proposition 6.2] and (80), the mapping ϖm from R to the space of automorphisms
(or self-homeomorphisms) of K leads to a (state-dependent) quantum dynamics Tm .

= (Tm
t )t∈R on

C (K,U) ≡ C (K;C)⊗ U ,

via the strongly continuous, state-dependent two-parameter family (τΨ
(m,ρ)

t,s )s,t∈R with Ψ(m,ρ) defined
by (70):

[Tm
t (f)] (ρ)

.
= τΨ

(m,ρ)

t,0 (f (ρ)) , ρ ∈ K, f ∈ C(K,U), t ∈ R .

(iii) Entangledment of quantum and classical dynamics: By following arguments of [3, End of Sec-
tion 5.2], any (state-dependent) quantum dynamics onC(K,U) preserving each element ofC(K;C1) ⊆
C(K,U) yields a classical dynamics, which, in the case of Tm, is exactly (V m

t )t∈R. More interestingly,
as we remark in [3, Section 4.2], each classical Hamiltonian, i.e., a continuously differentiable func-
tion of C(K;R), leads to a state-dependent quantum dynamics. If the classical Hamiltonian equals
(78) then the limit quantum dynamics, when L→ ∞, is precisely Tm. In other words, on can recover
the classical dynamics from the quantum one, and vice versa. The classical and quantum systems are
completely interdependent, i.e., entangled. This view point is very different from the common under-
standing21 of the relation between quantum and classical mechanics, which is seen as a limiting case
of quantum mechanics, even if there exist physical features (such as the spin of quantum particles)
which do not have a clear classical counterpart.

The physical relevance of this mathematical structure comes from the fact that it encodes the
infinite-volume dynamics of general long-range models with periodic initial state. In fact, the classical
part of the long-range dynamics explicitly appears in the time evolution of extreme periodic states in
(72) while the quantum part can be found in the last integral over extreme states of (72). The fact
that the initial state must be a periodic state does not represent a serious constraint since any initial
even state ρ can be approximated by a periodic state constructed22 from its restriction ρ|UΛl

to UΛl
for

sufficiently large l ∈ N0. See, e.g., [1, Proof of Proposition 2.3]. Since l ∈ N0 is arbitrarly large,
hence there is no real physical restriction in assuming that the initial state is a periodic one, noting
that the physical states are always even23.

21At least in many textbooks on quantum mechanics. See for instance [86, Section 12.4.2, end of the 4th paragraph of
page 178].

22This is possible because of [87, Theorem 11.2].
23If the initial state is not even, we cannot a priori construct a periodic state from its restriction ρ|UΛ

for any Λ ∈ Pf .
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4.4 Permutation-Invariant Lattice Fermi Systems
4.4.1 Permutation-Invariant Long-Range Models

Recall that WΠ
.
= W0 is the space of permutation-invariant (or on-site) interactions, defined by

Equation (42) for R = 0. Define

MΠ
.
=
(
WR ∩WΠ

)
× S0 . (82)

We name it the space of permutation-invariant long-range models, because associated local Hamilto-
nians are all invariant under permutations: Let Π be the set of all bijective mappings from Zd to itself
which leave all but finitely many elements invariant. It is a group with respect to the composition of
mappings. The condition

pπ : ax,s 7→ aπ(x),s, x ∈ Zd, s ∈ S , (83)

defines a group homomorphism π 7→ pπ from Π to the group of ∗-automorphisms of the C∗-algebra
U . Then, for any m ∈ MΠ and L ∈ N0, the local Hamiltonian Um

L defined by (56) is permutation-
invariant, that is,

pπ (U
m
L ) = Um

L , π ∈ Π, π (ΛL) = ΛL . (84)

An example of permutation-invariant model is given by the strong-coupling BCS-Hubbard model:
Fix S = {↑, ↓}. Let ΦHubb,ΨBCS ∈ WΠ ∩WR be defined by

ΦHubb
{x}

.
= −µ (nx,↑ + nx,↓)− h (nx,↑ − nx,↓) + 2λnx,↑nx,↓

ΨBCS
{x}

.
= ax,↓ax,↑

for x ∈ Zd and ΦHubb
Λ

.
= 0

.
= ΨBCS

Λ otherwise. Let aBCS ∈ S0 be defined, for all Borel subset B ⊆ S,
by

aBCS (B) = −γ1
[
ΨBCS ∈ B

]
. (85)

for some γ ≥ 0, with 1 [·] being the indicator function24. Then,

m0
.
= (ΦHubb, aBCS) ∈ MΠ

is the strong-coupling BCS-Hubbard model since, in this case, the local Hamiltonian Um0
L is equal to

the strong-coupling BCS-Hubbard Hamiltonian HL defined by (4).

4.4.2 Permutation-Invariant State Space

The set of all permutation-invariant states is defined by

EΠ
.
= {ρ ∈ E : ρ = ρ ◦ pπ for all π ∈ Π} , (86)

pπ being the unique ∗-automorphism of U satisfying (83). Obviously,

EΠ ⊆
∩
ℓ⃗∈Nd

Eℓ⃗ ⊆ E+ .

Furthermore, EΠ is metrizable, convex and compact and, by [43, Theorem 5.3], for any ρ ∈ EΠ, there
is a unique probability measure µρ on EΠ with support in the (non-empty) set EΠ of its extreme points
such that

ρ =

∫
EΠ
ρ̂ dµρ (ρ̂) . (87)

241 [p] = 1 if the proposition p holds true and 1 [p] = 0 otherwise.
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The set EΠ can be characterized by a version of the Størmer theorem for permutation-invariant states
on the C∗-algebra U . This theorem is a non-commutative version of the celebrated de Finetti theorem
of (classical) probability theory. It is proven in the case of quantum-spin systems in [88] and for
the fermion algebra U in [41, Lemmata 6.6-6.8]. It asserts that extreme permutation-invariant states
ρ ∈ EΠ are product states defined as follows: First recall that the space E+

Λ of finite-volume even
states is defined by (61) for any Λ ∈ Pf . Then, via [87, Theorem 11.2], for any ρ0 ∈ E+

{0}, there is a
unique even state

ρ
.
= ⊗Zdρ0 ∈ E+ (88)

satisfying
ρ(αx1(A1) · · ·αxn(An)) = ρ0(A1) · · · ρ0(An) (89)

for all A1 . . . An ∈ U{0} and all x1, . . . xn ∈ Zd such that xi ̸= xj for i ̸= j. Recall that αx, x ∈ Zd,
defined by (38), are the ∗-automorphisms of U that represent translations. The set of all states of the
form (88), called product states, is denoted by E⊗. It is nothing else but the set EΠ of extreme points
of EΠ, i.e.,

E⊗ = EΠ . (90)

This identity refers to the Størmer theorem, see, e.g., [43, Theorem 5.2].
Since product states are particular extremal states25 of Eℓ⃗ for any ℓ⃗ ∈ Nd, it follows from (90) that

EΠ = E⊗ ⊆
∩
ℓ⃗∈Nd

Eℓ⃗ (91)

and the set EΠ ⊆ Eℓ⃗ is thus a closed metrizable face26 of Eℓ⃗. For a more thorough exposition on this
subject, see [43, Section 5.1]. By (90), the extreme boundary EΠ of EΠ is also closed and, in contrast
with E, E+ and Eℓ⃗ for any ℓ⃗ ∈ Nd, EΠ is not a dense subset of EΠ. This is not surprising since states
of EΠ = E⊗ are in one-to-one correspondence with even states on the finite-dimensional C∗-algebra
U{0}.

4.4.3 Quantum Part of Permutation-Invariant Long-Range Dynamics

Fix once and for all m ∈ MΠ. If ρ ∈ E1
.
= E(1,··· ,1), i.e., it is translation-invariant, then the

approximating interaction (67) satisfies

Φ(m,ρ) = Φ
(m,ρ|U{0} ) ∈ WΠ ∩WR (92)

and the infinite-volume dynamics constructed from this interaction, as defined by (49), preserves the
local C∗-algebra UΛ for any Λ ∈ Pf . By (47)-(49) and (69)-(70), it also follows that∪

t∈R

ϖm (t;EΠ) ⊆ EΠ ⊆ E1 ,
∪
t∈R

ϖm (t;E⊗) ⊆ E⊗ ⊆ EΠ (93)

(compare with (80)) and, for any Λ ∈ Pf , t ∈ R and translation-invariant state ρ ∈ E1 ⊇ EΠ,

ϖm (t; ρ) |UΛ
= ϖm (t; ρ|UΛ

) |UΛ
∈ E+

Λ (94)

with E+
Λ being the space of finite-volume even states defined by (61) for any Λ ∈ Pf .

25By [43, Theorem 5.2], all product states are strongly mixing, which means [43, Eq. (1.10)]. They are, in particular,
strongly clustering and thus ergodic with respect to any sub-groups (Zd

ℓ⃗
,+) ⊆ (Zd,+), where ℓ⃗ ∈ Nd. By [43, Theorem

1.16], all product states belong to Eℓ⃗ for any ℓ⃗ ∈ Nd.
26A face F of a convex set K is defined to be a subset of K with the property that, if ρ = λ1ρ1 + · · ·+ λnρn ∈ F with

ρ1, . . . , ρn ∈ K, λ1, . . . , λn ∈ (0, 1) and λ1 + · · ·+ λn = 1, then ρ1, . . . , ρn ∈ F .
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If the initial state ρ ∈ EΠ is permutation-invariant, then, by (72), (87) and (91), there is a unique
probability measure µρ on EΠ with support in EΠ = E⊗ such that, for any A ∈ U ,

lim
L→∞

ρ ◦ τ (L,m)
t (A) =

∫
E⊗

ϖm (t; ρ̂) (A) dµρ (ρ̂) =

∫
E⊗

ρ̂ ◦ τΨ(m,ρ̂)

t,0 (A) dµρ (ρ̂) (95)

with ϖm being the solution to the self-consistency equation (69). In particular, by (93), the time-
evolution of a permutation-invariant state is uniquely determined by its restriction to the finite-dimen-
sional subalgebra U{0} (dimension 22|S|).

If the initial state ρ ∈ E1 ⊇ EΠ is translation-invariant, then Equation (72) restricted to the
finite-dimensional C∗-algebra UΛ with Λ ∈ Pf reads27

lim
L→∞

ρ|UΛ
◦ τ (L,m)

t (A) =

∫
E+

Λ

ϖm (t; ρ̂) (A) dµρ (ρ̂) , A ∈ UΛ . (96)

For each fixed Λ ∈ Pf , this gives now a family of equations on the finite-dimensional algebra UΛ (di-
mension 22|Λ|×|S|). These equations completly determine the time-evolution of a translation-invariant
initial states.

For any ℓ⃗-periodic state ρ ∈ Eℓ⃗ (ℓ⃗ ∈ Nd), the approximating interaction (67) also belongs to
WΠ ∩ WR. The only difference with respect to translation-invariant states is that the on-site state
ρ|U{0} in (92) has to be replaced with the finite-volume state ρ|UZ

ℓ⃗
, where, for ℓ⃗ = (ℓ1, . . . , ℓd) ∈ Nd,

Zℓ⃗

.
=
{
(x1, . . . , xd) ∈ Zd : xi ∈ {0, . . . , ℓi − 1}

}
∈ Pf .

Compare, as an example, with (34). Hence, if the initial state is periodic then Equation (72) leads
again to a family of equations on the finite-dimensional algebra UΛ (dimension 22|Λ|×|S|) for each
Λ ∈ Pf such that28 Λ ⊇ Zℓ⃗. These equations again determine the time-evolution of a periodic initial
state.

4.4.4 Classical Part of Permutation-Invariant Long-Range Dynamics

Fix again once and for all m ∈ MΠ. By (93), the strongly continuous group (V m
t )t∈R of ∗-auto-

morphisms defined by (73) can be restricted to the unital C∗-algebra C(E⊗;C) of continuous func-
tions on the compact space E⊗ of product states. See also [3, Section 5.4 with B = U{0}]. Without
any risk of confusion, we denote the restriction of (V m

t )t∈R to E⊗ again by (V m
t )t∈R.

Using (88)-(90) we identify E⊗ with the space E+
{0} of on-site even states and see now (V m

t )t∈R
as acting on the algebra C(E+

{0};C). Similar to (74), the set of polynomials in this space of functions
is denoted by

P{0}
.
= C[{Â|E+

{0}
: A ∈ U{0}}] ⊆ C(E+

{0};C) .

Local classical energy functions [1, Definition 6.8] on U{0} are defined by hm
0 |E+

{0}
, where, by (43) and

(78),

hm
0 = Φ̂{0} +

∑
n∈N

∫
Sn

Ψ̂
(1)
{0} · · · Ψ̂

(n)
{0} an

(
dΨ(1), . . . , dΨ(n)

)
.

Then, for any time t ∈ R and polynomials f ∈ P{0}, Liouville’s equation (79) restricted to the algebra
C(E+

{0};C) equals
∂tV

m
t (f) = V m

t ({hm
0 , f}) = {hm

0 , V
m
t (f)} , (97)

27Note that µρ in (72) is a probability measure on E1 ⊆ E+, but since the restriction mapping ρ 7→ ρ|UΛ is continuous
for any Λ ∈ Pf , µρ can be pushed forward to a probability measure on E+

Λ .
28The restriction Λ ⊇ Zℓ⃗ can also be easily understood by seeing ℓ⃗-periodic states as a translation-invariant state on the

CAR C∗-algebra with new spin set Zℓ⃗ × S.
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where, for any n,m ∈ N, A1, . . . , An, B1, . . . , Bm ∈ U , g ∈ C1 (Rn,C) and h ∈ C1 (Rm,C),

{Γh|U{0} ,Γg|U{0}}
.
= {Γh,Γg}|U{0} ∈ C(E+

{0},C) (98)

defines again a Poisson bracket, which can be extended to the space C1(E+
{0};C) of continuously

differentiable functions. Similar to (95), Liouville’s equation (97) is now written on the finite-
dimensional algebra U{0} (dimension 22|S|) and completly determines a continuous flow on the com-
pact space E⊗ of product states.
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[50] N. Benedikter, V. Jakšić, M. Porta, C. Saffirio, B. Schlein, Mean-field evolution of fermionic
mixed states. Commun. Pure Appl. Math. 69(12) (2016) 2250-2303.

[51] S. Petrat, P. Pickl, A new method and a new scaling for deriving fermionic mean-field dynamics.
Math. Phys. Anal. Geom. 19(3) (2016) 1-51.

[52] V. Bach, S. Breteaux, S. Petrat, P. Pickl, T. Tzaneteas, Kinetic energy estimates for the accuracy
of the time-dependent Hartree-Fock approximation with Coulomb interaction. J. Math. Pures
Appl. 105(1) (2016) 1-30.

[53] M. Porta, S. Rademacher, C. Saffirio, B. Schlein, Mean Field Evolution of Fermions with
Coulomb Interaction. J. Stat. Phys. 166(6) (2017) 1345-1364.
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quantum measurements. Phys. Rev. A 87 (2013) 054101-1–4

[84] H.-T. Elze, Quantum-classical hybrid dynamics – a summary. J. Phys.: Conf. Ser. 442 (2013)
012007 (7 pages).

33



[85] V. Gil and L.L. Salcedo, Canonical bracket in quantum-classical hybrid systems. Phys. Rev. A
95 (2017) 012137-1–19

[86] P. Bongaarts, Quantum Theory, A Mathematical Approach, Springer International Publishing,
2015.

[87] H. Araki and H. Moriya, Equilibrium Statistical Mechanics of Fermion Lattice Systems. Rev.
Math. Phys. 15 (2003) 93-198.

[88] E. Størmer, Symmetric states of infinite tensor product C∗-algebras. J. Functional Analysis 3
(1969) 48-68.

34


