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Abstract

A family of linear singularly perturbed q−difference differential equations is examined. These equations
stand for a q−analog of singularly perturbed PDEs with irregular and Fuchsian singularities in the
complex domain recently investigated by A. Lastra and the author. A finite set of sectorial holomorphic
solutions is constructed by means of an enhanced version of a classical multisummability procedure due
to W. Balser. These functions share a common asymptotic expansion in the perturbation parameter
which is shown to carry a double scale structure which pairs q−Gevrey and Gevrey bounds.
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1 Introduction

In this work, we focus on singularly perturbed linear partial q−difference differential equations
which couple two categories of operators acting both on the time variable, so-called q−difference
operators of irregular type and Fuchsian differential operators. As a seminal reference concerning
analytic and algebraic aspects of q−difference equations with irregular type we quote the book
[22] and for a far reaching investigation of Fuchsian ordinary and partial differential equations
we mention the textbook [7].

Our equations are presented in the following manner

(1) Q(∂z)u(t, z, ε) = RD(∂z)ε
δDkmD(tδDkσδDq;t t∂t)

mDu(t, z, ε) + P (t, z, ε, tkσq;t, t∂t, ∂z)u(t, z, ε)

+ f(t, z, ε)

for vanishing initial data u(0, z, ε) ≡ 0, where k, δD,mD ≥ 1 are integers, σq;t represents the
dilation map t→ qt acting on time t for some real number q > 1, Q(X), RD(X) stand for poly-
nomials in C[X]. The main block P (t, z, ε, V1, V2, V3) is polynomial in the arguments t, V1, V2, V3,
holomorphic in the perturbation parameter ε on a disc D(0, ε0) ⊂ C centered at 0 and in the
space variable z on a horizontal strip of the form Hβ = {z ∈ C/|Im(z)| < β} for some β > 0.
The forcing term f(t, z, ε) is analytic relatively to (z, ε) ∈ Hβ × D(0, ε0) and defines an entire
function w.r.t t in C with (at most) q−exponential growth (see (29) for precise bounds).



2

This paper is a natural continuation of the study [15] by A. Lastra and the author and will
share the same spine structure. Indeed, in [15], we aimed attention at the next problem

(2) Q(∂z)y(t, z, ε) = RD(∂z)ε
kδD(tk+1∂t)

δD(t∂t)
mDy(t, z, ε)

+H(z, ε, tk+1∂t, t∂t, ∂z)y(t, z, ε) + h(t, z, ε)

for vanishing initial data y(0, z, ε) ≡ 0, where Q(X), RD(X), H(z, ε, V1, V2, V3) stand for poly-
nomials in their arguments X,V1, V2, V3 as above and where h(t, z, ε) is like the forcing term
f(t, z, ε) but with (at most) exponential growth in t. Under convenient conditions put on the
shape of (2), we are able to construct a set of genuine bounded holomorphic solutions expressed
as a Laplace transform of order k along a halfline Lγp = R+ exp(

√
−1γp) and Fourier inverse

integral in space z,

yp(t, z, ε) =
k

(2π)1/2

∫ +∞

−∞

∫
Lγp

Vp(τ,m, ε) exp
(
−(

τ

εt
)k
)
eizm

dτ

τ
dm

where the Borel/Fourier map Vp(τ,m, ε) is itself set forth as a Laplace transform of order k′ =
kδD/mD,

Vp(τ,m, ε) = k′
∫
Lγp

Wp(u,m, ε) exp
(
−(
u

τ
)k
′
) du
u

where Wp(u,m, ε) has (at most) exponential growth along Lγp and exponential decay in phase
m on R. The resulting maps yp(t, z, ε) are therefore expressed as iterated Laplace transforms fol-
lowing a so-called multisummability procedure introduced by W. Balser, see [1]. These functions
define bounded holomorphic functions on domains T ×Hβ×Ep for a well selected bounded sector
T at 0 and where E = {Ep}0≤p≤ς−1 is a set of sectors which covers a full neighborhood of 0 and
is called a good covering (cf. Definition 6). Additionally, the partial maps ε 7→ yp(t, z, ε) share
on Ep a common asymptotic expansion ŷ(t, z, ε) =

∑
n≥0 yn(t, z)εn with bounded holomorphic

coefficients yn(t, z) on T ×Hβ. This asymptotic expansion turns out to be (at most) of Gevrey
order 1/κ with κ = kk′/(k+ k′), meaning that we can single out two constants Cp,Mp > 0 such
that

(3) sup
t∈T ,z∈Hβ

|yp(t, z, ε)−
n−1∑
m=0

ym(t, z)εm| ≤ CpMn
p Γ(1 +

n

κ
)|ε|n

for all n ≥ 1, all ε ∈ Ep.
We plan to obtain a similar statement for the problem under study (1). Namely, we will

construct a set of genuine sectorial solutions to (1) and describe their asymptotic expansions
as ε borders the origin. We first notice that our main problem (1) can be seen as a q−analog
of (2) where the irregular differential operator tk+1∂t is replaced by the discret operator tkσq;t.
This terminology originates from the basic observation that the expression f(qt)− f(t)/(qt− t)
approaches the derivative f ′(t) as q tends to 1. Here, as mentioned in the title, we qualify the
q−analogy as partial since the Fuchsian operator t∂t is not discretized in the process. This
suggests that in the building procedure of the solutions (that will follow the same guideline as in
[15]), the classical Laplace transform of order k shall be supplanted by a q−Laplace transform
of order k as it was the case in the previous work [18] of the author where a similar problem
was handled. However, due to presence of the Fuchsian operator t∂t, we will see that a single
q−Laplace transform is not enough to construct true solutions and that a new mechanism of
iterated q−Laplace and classical Laplace transforms is required. Furthermore, we witness that
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this enhanced multisummability procedure has a forthright effect on their asymptotic expression
w.r.t ε. Namely, the expansions in the perturbation parameter are neither of classical Gevrey
order as displayed in (3) nor of q−Gevrey order 1/k as in [18] (meaning that Γ(1 + n

κ ) has to

be replaced by q
n2

2k in the control term of (3)). The asymptotic expansions we exhibit present a
double scale structure which has a q−Gevrey leading part with order 1/k and a subdominant tail
of Gevrey order 1

kδD
, that we call Gevrey asymptotic expansion of mixed order ( 1

kδD
; (q, 1/k))

(cf. Definition 8). Such a coupled asymptotic structure has already been observed in another
setting by A. Lastra, J. Sanz and the author in [16]. Indeed, we considered linear q−difference
differential Cauchy problems with the shape

(tσq;t)
r2(z∂z)

r1∂Sz X(t, z) = B(z, tσq;t, σq−1;z, ∂z)X(t, z)

for suitably chosen analytic Cauchy data

(∂jzX)(t, 0) = ϕj(t) , 0 ≤ j ≤ S − 1

and properly selected complex number q ∈ C∗ with |q| > 1 where r1 ≥ 0, r2, S ≥ 1 are integers
and B stands for a polynomial. When r1 ≥ 1, the Fuchsian operator (z∂z)

r1 is responsible
of the classical Gevrey part of the asymptotic expansion X̂(t, z) =

∑
n≥0Xn(z)tn of the true

solution X(t, z) which is shown to be of mixed order (r1/r2; (q, 1)) (in the sense of Definition 8)
outside some q−spiral λqZ for some λ ∈ C∗ w.r.t t near 0, uniformly in z in the vicinity of the
origin. Here the solutions are expressed through a single q−Laplace transform and the Γ( r1r2n)
contribution in the asymptotics emerges from a discrete set of singularities that accumulates at
0 in the Borel plane.

It is worthwhile mentioning that the approach which consists in building solutions by means
of iterated q−Laplace and Laplace transforms stems from a new work by H. Yamazawa. In [27],
he examines linear q−difference differential equations of the form

(4) L(t, σq;t, ∂x)u(t, x) = f(t, x)

for given holomorphic forcing term f(t, x) near the origin and where L(t, V1, V2) is a polynomial
in V1, V2 with holomorphic coefficients w.r.t t near 0. Under special conditions on the structure
of (4), he is able to construct a genuine solution u(t, x) obtained as a small perturbation of
iterated truncated q−Laplace and Laplace of order 1 transforms of the iterated Borel and q−Borel
transforms of a formal solution û(t, x) =

∑
k≥1 uk(x)tk of (4). Furthermore, he gets in particular

that u(t, x) has û(t, x) as asymptotic expansion of mixed order (1; (q, 1)) w.r.t t, uniformly in x
near 0.

Notice that in our paper, the solutions are built up as complete iterated q−Laplace and
classical Laplace transforms that are shown to be exact solutions of our problem (1). This is why
the process we follow can actually be understood as an enhanced version of the multisummation
mechanism introduced by W. Balser, see [1].

In a larger framework, this work is a contribution to the promising and fruitful realm of
research in q−difference and q−difference-differential equations in the complex domain. For
recent important advances in this area, we mention in particular the works by H. Tahara and H.
Yamazawa, [23], [25], [26]. Notice that the fields of applications of q−difference equations has
also encounter a rapid growth in the last years. Some forefront studies in this respect are given
for instance by [19], [20], [21] and references therein.

Now, we describe a little more precisely our main results obtained in Theorem 1 and 3.
Namely, under convenient restrictions on the shape of (1) detailed in the statement of Theorem 1,
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we can manufacture a family of bounded holomorphic solutions up(t, z, ε) on domains T ×Hβ×Ep
for a suitable bounded sector T at 0, Hβ a strip of width β > 0 and Ep belonging to a good
covering in C∗, which can be displayed as a q−Laplace transform of order k along a halfline
Lγp = R+ exp(

√
−1γp) and Fourier integral

up(t, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp

W dp(u,m, ε)
1

Θq1/k( uεt)
eizm

du

u
dm

The q−Borel/Fourier map W dp(u,m, ε) is itself shaped as a classical Laplace transform of order
kδD along Lγp ,

W dp(u,m, ε) = kδD

∫
Lγp

wdp(h,m, ε) exp(−(
h

u
)kδD)

dh

h

where wdp(h,m, ε) has (at most) q−exponential growth of some order 0 < k1 < k along Lγp
(see (113)) and exponential decay in phase m ∈ R. In Theorem 3, we explain the reason for
which all the partial functions ε 7→ up(t, z, ε) share a common asymptotic expansion û(t, z, ε) =∑

m≥0 hm(t, z)εm on Ep with bounded holomorphic coefficients hm(t, z) on T ×Hβ, which turns

out to be of mixed order ( 1
kδD

; (q, 1/k)). This last result leans on a new version of the classical
Ramis-Sibuya theorem fitting the above asymptotics which is fully expounded in Theorem 2.
Our paper is arranged as follows.
In Section 2, we recall the definition of the classical Laplace transform and its q−analog. We
also put forward some classical identities for the Fourier transform acting on functions spaces
with exponential decay.
In Section 3, we set forth our main problem (16) and we discuss the formal steps leading to
its resolution. Namely, a first part is devoted to the inquiry of solutions among q−Laplace
transforms of order k and Fourier inverse integrals of Borel maps W with q−exponential growth
on unbounded sectors and exponential decay in phase leading to the first main integro-differential
q−difference equation (34) that W is asked to fulfill. A second undertaking suggests to seek for
W as a classical Laplace transform of suitable order kδD of a second Borel map w with again
appropriate behaviour. The expression w is then contrived to solve a second principal integro
q−difference equation (44).
In Section 4, bounds for linear convolution and q−difference operators acting on Banach spaces
of functions with q−exponential growth are displayed. The second key equation (44) is then
solved within these spaces at the hand of a fixed point argument.
In Section 5, genuine holomorphic solutions W of the first principal auxiliary equation (34) are
built up and sharp estimates for their growth are provided (cf. (93) and (94)).
In Section 6, we achieve our goal in finding a set of true holomorphic solutions (109) to our
initial problem (16).
In the last section, the existence of a common asymptotic expansion of Gevrey type with mixed
order ( 1

kδD
; (q, 1/k)) is established for the solutions set up in Section 6. The decisive technical

tool for its construction is detailed in Theorem 2.

2 Laplace transforms of order k′, q−Laplace transforms of order
k and Fourier inverse maps

Let k′ ≥ 1 be an integer. We remind the reader the definition of the Laplace transform of order
k′ as introduced in [12].
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Definition 1 We set Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ} as some unbounded sector with
bisecting direction d ∈ R and aperture 2δ > 0 and D(0, ρ) as a disc centered at 0 with radius
ρ > 0. Consider a holomorphic function w : Sd,δ∪D(0, ρ)→ C that vanishes at 0 and withstands
the bounds : there exist C > 0 and K > 0 such that

(5) |w(τ)| ≤ C|τ | exp(K|τ |k′)

for all τ ∈ Sd,δ. We define the Laplace transform of w of order k′ in the direction d as the
integral transform

Ldk′(w)(T ) = k′
∫
Lγ

w(u) exp(−(
u

T
)k
′
)
du

u

along a half-line Lγ = R+e
√
−1γ ⊂ Sd,δ ∪ {0}, where γ depends on T and is chosen in such a

way that cos(k′(γ − arg(T ))) ≥ δ1, for some fixed real number δ1 > 0. The function Ldk′(w)(T )
is well defined, holomorphic and bounded on any sector

Sd,θ,R1/k′ = {T ∈ C∗ : |T | < R1/k′ , |d− arg(T )| < θ/2},

where 0 < θ < π
k′ + 2δ and 0 < R < δ1/K.

If one sets w(τ) =
∑

n≥1wnτ
n, the Taylor expansion of w, which converges on the disc

D(0, ρ/2), the Laplace transform Ldk′(w)(T ) has the formal series

X̂(T ) =
∑
n≥1

wnΓ(
n

k′
)Tn

as Gevrey asymptotic expansion of order 1/k′. This means that for all 0 < θ1 < θ, two constants
C,M > 0 can be selected with the bounds

|Ldk′(w)(T )−
n−1∑
p=1

wpΓ(
p

k′
)T p| ≤ CMnΓ(1 +

n

k′
)|T |n

for all n ≥ 2, all T ∈ Sd,θ1,R1/k′ .
In particular, if w(τ) represents an entire function w.r.t τ ∈ C with the bounds (5), its

Laplace transform Ldk′(w)(T ) does not depend on the direction d in R and represents a bounded
holomorphic function on D(0, R1/k′) whose Taylor expansion is represented by the convergent
series X(T ) =

∑
n≥1wnΓ( nk′ )T

n on D(0, R1/k′).

Let k ≥ 1 be an integer and q > 1 be a real number. At the next stage, we display the
definition of the q−Laplace transform of order k which was used in a former work of the author,
[18].

Let us first recall some essential properties of the Jacobi Theta function of order k defined
as the Laurent series

(6) Θq1/k(x) =
∑
n∈Z

q−
n(n−1)

2k xn

for all x ∈ C∗. This analytic function can be factorized as a product known as the Jacobi’s triple
product formula,

Θq1/k(x) =
∏
n≥0

(1− q
−n−1
k )(1 + xq−

n
k )(1 +

q
−n−1
k

x
)

for all x ∈ C∗, from which we deduce that its zeros is the set of real numbers {−qm/k/m ∈ Z}.
We recall the next lower bounds estimates on a domain bypassing the set of zeroes of Θq1/k(x),
from [18] Lemma 3, which are crucial in the sequel.
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Lemma 1 Let ∆ > 0. There exists a constant Cq,k > 0 depending on q, k and independent of
∆ such that

(7) |Θq1/k(x)| ≥ Cq,k∆ exp(
k

2

log2(|x|)
log(q)

)|x|1/2

for all x ∈ C∗ satisfying |1 + xq
m
k | > ∆, for all m ∈ Z.

Definition 2 Let ρ > 0 be a real number and Sd be an unbounded sector centered at 0 with
bisecting direction d ∈ R. Let f : D(0, ρ) ∪ Sd → C be a holomorphic function, continuous on
the adherence D(0, ρ), such that there exist constants K,α > 0 and δ > 1 with

(8) |f(x)| ≤ K|x| exp(
k

2

log2(|x|+ δ)

log(q)
+ α log(|x|+ δ))

for all x ∈ Sd ∪ D(0, ρ). Let γ ∈ R with e
√
−1γ ∈ Sd. We put πq1/k = log(q)

k . We define the
q−Laplace transform of order k of f in direction γ as

Lγq;1/k(f(x))(T ) =
1

πq1/k

∫
Lγ

f(u)

Θq1/k( uT )

du

u

where Lγ = R+e
√
−1γ is a halfline in the direction γ.

The following lemma is a slightly modified version of Lemma 4 from [18].

Lemma 2 Let ∆ > 0 chosen as in Lemma 1 above. The integral transform Lγq;1/k(f(x))(T )

defines a bounded holomorphic function on the domain Rγ,∆ ∩D(0, r1) for any radius 0 < r1 ≤
q−

1
k

(α+1)/2 where

Rγ,∆ = {T ∈ C∗/|1 +
e
√
−1γ

T
r| > ∆, for all r ≥ 0}.

Notice that the value Lγq;1/k(f(x))(T ) does not depend on γ ∈ R such that e
√
−1γ ∈ Sd due to the

Cauchy formula.

The next lemma describes conditions under which the q−Laplace transform defines a convergent
series near the origin.

Lemma 3 Let f : C → C be an entire function with Taylor expansion f(x) =
∑

n≥1 fnx
n ful-

filling the bounds (8) for all x ∈ C. Then, its q−Laplace transform of order k, Ldq;1/k(f)(T ) does

not depend on the direction d ∈ R and represents a bounded holomorphic function on D(0, r1)

with the restriction 0 < r1 ≤ q−
1
k

(α+1)/2 whose Taylor expansion is given by the convergent

series Y (T ) =
∑

n≥1 fnq
n(n−1)

2k Tn.

Proof The proof is a direct consequence of the next formulas

1

πq1/k

∫
Lγ

un−1

Θq1/k(u/T )
du = Tn

1

πq1/k

∫
Lγ′

vn−1

Θq1/k(v)
dv = Tnq

n(n−1)
2k

whenever T ∈ Rγ,δ and γ′ = γ − arg(T ), where the last equality follows (for instance) from the
identity (4.7) from [5], for all n ≥ 1. 2

We restate the definition of some family of Banach spaces mentioned in [12].
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Definition 3 Let β, µ ∈ R. We set E(β,µ) as the vector space of continuous functions h : R→ C
such that

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. The space E(β,µ) endowed with the norm ||.||(β,µ) becomes a Banach space.

Finally, we remind the reader the definition of the inverse Fourier transform acting on the
latter Banach spaces and some of its handy formulas relative to derivation and convolution
product as stated in [12].

Definition 4 Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f is given by

F−1(f)(x) =
1

(2π)1/2

∫ +∞

−∞
f(m) exp(ixm)dm

for all x ∈ R. The function F−1(f) extends to an analytic bounded function on the strips

(9) Hβ′ = {z ∈ C/|Im(z)| < β′}.

for all given 0 < β′ < β.
a) Define the function m 7→ φ(m) = imf(m) which belongs to the space E(β,µ−1). Then, the
next identity

(10) ∂zF−1(f)(z) = F−1(φ)(z)

occurs.
b) Take g ∈ E(β,µ) and set

ψ(m) =
1

(2π)1/2

∫ +∞

−∞
f(m−m1)g(m1)dm1

as the convolution product of f and g. Then, ψ belongs to E(β,µ) and moreover,

(11) F−1(f)(z)F−1(g)(z) = F−1(ψ)(z)

for all z ∈ Hβ.

3 Layout of the principal initial value problem and associated
auxiliary problems

We set k ≥ 1 as an integer. Let mD, δD ≥ 1 be integers. We set

(12) k′ = kδD

We consider a finite set I of N3 that fulfills the next feature,

(13) l0 ≥ 1 + l2k
′

whenever (l0, l1, l2) ∈ I and we set non negative integers ∆l ≥ 0 with

(14) ∆l − l0 ≥ 0
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for all l = (l0, l1, l2) ∈ I.
Let Q(X), RD(X), Rl(X) ∈ C[X], l ∈ I, be polynomials such that

(15) deg(Q) ≥ deg(RD) ≥ deg(Rl) , Q(im) 6= 0 , RD(im) 6= 0

for all m ∈ R, all l ∈ I.
We consider a family of linear singularly perturbed initial value problems

(16) Q(∂z)u(t, z, ε) = RD(∂z)ε
δDkmD(tδDkσδDq;t t∂t)

mDu(t, z, ε)

+
∑

l=(l0,l1,l2)∈I

ε∆lcl(z, ε)Rl(∂z)t
l0σl1q;t(t∂t)

l2u(t, z, ε) + f(t, z, ε)

for vanishing initial data u(0, z, ε) ≡ 0. Here q > 1 stands for a real number and the operator
σq;t is defined as the dilation by q acting on the variable t through σq;tu(t, z, ε) = u(qt, z, ε).

The coefficients cl(z, ε) are built in the following manner. For each l ∈ I, we consider a
function m 7→ Cl(m, ε) that belongs to the Banach space E(β,µ) for some β, µ > 0, depends
holomorphically on the parameter ε on some disc D(0, ε0) with radius ε0 > 0 and for which one
can find a constant Cl > 0 with

(17) sup
ε∈D(0,ε0)

||Cl(m, ε)||(β,µ) ≤ Cl

We construct

cl(z, ε) =
1

(2π)1/2

∫ +∞

−∞
Cl(m, ε)e

izmdm

as the inverse Fourier transform of the map Cl(m, ε) for all l ∈ I. As a result, cl(z, ε) is bounded
holomorphic w.r.t ε on D(0, ε0) and w.r.t z on any strip Hβ′ for 0 < β′ < β in view of Definition
4.

The presentation of the forcing term requires some preliminary groundwork. We consider a
sequence of functions m 7→ ψn(m, ε), for n ≥ 1, that belong to the Banach space E(β,µ) with the
parameters β, µ > 0 given above and which relies analytically and is bounded w.r.t ε on the disc
D(0, ε0). We assume that the next bounds

(18) sup
ε∈D(0,ε0)

||ψn(m, ε)||(β,µ) ≤ K0(
1

T0
)n

hold for all n ≥ 1 and given constants K0, T0 > 0. We define the formal series

ψ(τ,m, ε) =
∑
n≥1

ψn(m, ε)
τn

(q1/k1)n(n−1)/2

for some real number 0 < k1 < k. We introduce the next Banach space

Definition 5 Let k1, β, µ, r, α > 0 and q, δ > 1 be real numbers. Let Ud be an open unbounded
sector with bisecting direction d ∈ R centered at 0 in C. We denote Expq(k1,β,µ,α,r) the vector

space of complex valued continuous functions (u,m) 7→ h(u,m) on the adherence Ud∪D(0, r)×R,
which are holomorphic w.r.t u on Ud ∪D(0, r) and such that the norm

(19) ||h(u,m)||(k1,β,µ,α,r) = sup
u∈Ud∪D(0,r),m∈R

(1 + |m|)µeβ|m| 1

|u|

× exp

(
−k1

2

log2(|u|+ δ)

log(q)
− α log(|u|+ δ)

)
|h(u,m)|
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is finite. One can check that the normed space (Expq(k1,β,µ,α,r), ||.||(k1,β,µ,α,r)) represents a Banach
space.

Remark: The spaces above are faint modifications of the Banach spaces already introduced in
the works of the author and his co-authors T. Dreyfus and A. Lastra, [6], [10], [11].

The next lemma is a proper adjustment of Lemma 5 out of [18] to the new Banach spaces
from Definition 5.

Lemma 4 Let T0 be fixed as in (18). We take a number α > 0 such that

(20) T0 > q
1

2k1 /q
α+1
k1

Let k1, β, µ be chosen as above. Then, the function (u,m) 7→ ψ(u,m, ε) belongs to the Banach
space Expq(k1,β,µ,α,r) for any unbounded sector Ud, any disc D(0, r). Moreover, one can find a

constant C1 > 0 (depending on q, k1, α, T0) with

(21) sup
ε∈D(0,ε0)

||ψ(u,m, ε)||(k1,β,µ,α,r) ≤ K0C1

Proof The bounds (18) imply that

||ψ(u,m, ε)||(k1,β,µ,α,r) ≤
∑
n≥1

||ψn(m, ε)
u

(q1/k1)n(n−1)/2
||(k1,β,µ,α,r)

≤
∑
n≥1

K0(
1

T0
)n

1

(q1/k1)n(n−1)/2
sup

u∈Ud∪D(0,r)

|u|n−1 exp

(
−k1

2

log2(|u|+ δ)

log(q)
− α log(|u|+ δ)

)

According to the elementary fact that the polynomial h(x) = x(n− 1− α)− k1
2

x2

log(q) admits its

maximum value log(q)
2k1

(n − 1 − α)2 at x = log(q)
k1

(n − 1 − α), we deduce by means of the change
of variable x = log(|u|+ δ) that

(22) sup
u∈Ud∪D(0,r)

|u|n−1 exp

(
−k1

2

log2(|u|+ δ)

log(q)
− α log(|u|+ δ)

)
≤ sup

x∈R
exp(x(n− 1− α)− k1x

2

2 log(q)
) ≤ q

(n−1−α)2
2k1

for all n ≥ 1. Therefore, we deduce that

||ψ(u,m, ε)||(k1,β,µ,α,r) ≤ K0q
(1+α)2

2k1

∑
n≥1

(
q

1
2k1

T0q
α+1
k1

)n
which converges provided that (20) holds, whenever ε ∈ D(0, ε0). 2

We define

(23) Ψd(τ,m, ε) = k′
∫
Ld

ψ(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

as the Laplace transform of ψ(u,m, ε) w.r.t u of order k′ in direction d ∈ R. Notice that two
constants K1,K2 > 0 (depending on k1, q, α, δ, k

′) can be found such that

k1

2

log2(|u|+ δ)

log(q)
+ α log(|u|+ δ) ≤ K1|u|k

′
+K2
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for all u ∈ C. As a result, owing to the bounds (21) and the last part of Definition 1, we deduce
that Ψd does not depend on the direction d and can be written as a convergent series

Ψd(τ,m, ε) =
∑
n≥1

ψn(m, ε)
Γ( nk′ )

(q1/k1)n(n−1)/2
τn

w.r.t τ near the origin. Now, we fix some real number k2 such that 0 < k1 < k2 < k. Then, one
can sort a constant C2 (depending on q, k1, k2, k

′) such that

(24)
Γ( nk′ )

(q1/k1)n(n−1)/2
≤ C2

1

(q1/k2)n(n−1)/2

for all n ≥ 1. This inequality is a consequence of the Stirling formula which states that

(25) Γ(x) ∼
√

2πe−xx−1/2xx

as x tends to +∞ and from the existence of a constant K3 > 0 (depending on q, k1, k2, k
′) with

− n
k′

+
n

k′
log(

n

k′
) +

n(n− 1) log(q)

2k2
≤ n(n− 1) log(q)

2k1
+K3

for all n ≥ 1. Consequently, it turns out that Ψd(τ,m, ε) represents an entire function w.r.t τ
such that

|Ψd(τ,m, ε)| ≤ K0C2(1 + |m|)−µe−β|m|
∑
n≥1

(|τ |/T0)n

(q1/k2)n(n−1)/2

for all τ ∈ C. Furthermore, owing to the bounds (22), we know that

|τ |n ≤ q
(n−α)2

2k2 exp

(
k2

2
log2(|τ |+ δ) + α log(|τ |+ δ)

)
for all n ≥ 1, all τ ∈ C. Henceforth, we get the next global bounds

(26) |Ψd(τ,m, ε)| ≤ K0C2q
α2

2k2

∑
n≥1

(
q

1−2α
2k2

T0
)n(1 + |m|)−µe−β|m|

× exp

(
k2

2
log2(|τ |+ δ) + α log(|τ |+ δ)

)
provided that

(27) T0 > q
1−2α
2k2

for all τ ∈ C, m ∈ R and ε ∈ D(0, ε0).
Next, we set

Fd(T, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Ld

Ψd(u,m, ε)
1

Θq1/k(u/T )
eizm

du

u
dm

as the q−Laplace transform of Ψd(u,m, ε) w.r.t u of order k in direction d and Fourier inverse
integral w.r.t m. We put

Fn(z, ε) =
1

(2π)1/2

∫ +∞

−∞
ψn(m, ε)eizmdm
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for all n ≥ 1. We first provide bounds for this sequence of functions. Namely, we can get a
constant Cµ,β,β′ > 0 (relying on µ, β, β′) with

(28) |Fn(z, ε)| ≤ K0

(2π)1/2
(

1

T0
)n
∫ +∞

−∞
(1 + |m|)−µe−β|m|e−Im(z)mdm

≤ K0

(2π)1/2
(

1

T0
)n
∫ +∞

−∞
(1 + |m|)−µe(β′−β)|m|dm ≤

Cµ,β,β′K0

(2π)1/2
(

1

T0
)n

for all n ≥ 1, whenever ε ∈ D(0, ε0) and z belongs to the horizontal strip Hβ′ for some 0 < β′ < β
(see Definition 4). Owing to Lemma 3, we deduce that the function Fd(T, z, ε) converges near
the origin w.r.t T where it carries the next Taylor expansion

Fd(T, z, ε) =
∑
n≥1

Fn(z, ε)Γ(
n

k′
)(q

1
k
− 1
k1 )n(n−1)/2Tn

for all ε ∈ D(0, ε0) and z ∈ Hβ′ . In particular, the function Fd is independent of the direction d
chosen.

We now show that Fd(T, z, ε) represents an entire function w.r.t T and supply explicit upper
bounds. Namely, in accordance with (24), we obtain

|Fd(T, z, ε)| ≤
∑
n≥1

K0Cµ,β,β′C2

(2π)1/2

1

(q
1
k2
− 1
k )n(n−1)/2

(
|T |
T0

)n

Again, the estimates (22) yield

|T |n ≤ q
1

2κ2
(n−α)2

exp

(
κ2

2

log2(|T |+ δ)

log(q)
+ α log(|T |+ δ)

)
for all T ∈ C, all n ≥ 1, where κ2 > 0 is defined by 1

κ2
= 1

k2
− 1

k . By gathering the two last
above inequalities, the next global estimates can be figured out

(29) |Fd(T, z, ε)| ≤
K0Cµ,β,β′C2

(2π)1/2
q
α2

2κ2

∑
n≥1

(
q

1−2α
2κ2

T0
)n exp

(
κ2

2

log2(|T |+ δ)

log(q)
+ α log(|T |+ δ)

)

for all T ∈ C, all z ∈ Hβ′ and ε ∈ D(0, ε0), provided that

(30) T0 > q
1−2α
2κ2

Lastly, we define the forcing term f as a time rescaled version of Fd,

f(t, z, ε) = Fd(εt, z, ε)

that represents a bounded holomorphic function w.r.t z ∈ Hβ′ and ε ∈ D(0, ε0) and an entire
function w.r.t t with q−exponential growth of order κ2.

Throughout this paper, we are looking for time rescaled solutions of (16) of the form

u(t, z, ε) = U(εt, z, ε)
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As a consequence, the expression U(T, z, ε), through the change of variable T = εt, is asked to
solve the next singular problem

(31) Q(∂z)U(T, z, ε) = RD(∂z)(T
δDkσδDq;TT∂T )mDU(T, z, ε)+∑

l=(l0,l1,l2)∈I

ε∆l−l0cl(z, ε)Rl(∂z)T
l0σl1q;T (T∂T )l2U(T, z, ε) + Fd(T, z, ε)

At the onset, we seek for a solution U(T, z, ε) that can be expressed as an integral repre-
sentation via a q−Laplace transform of order k and Fourier inverse integral

Uγ(T, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγ

W (u,m, ε)
1

Θq1/k(u/T )
eizm

du

u
dm

where the inner integration is performed along a halfline Lγ = R+e
√
−1γ in direction γ ∈ R. Over-

all this section, we assume that the partial functions u 7→W (u,m, ε) have at most q−exponential
growth of order k on some unbounded sector Sd centered 0 with bisecting direction d and m 7→
W (u,m, ε) belong to the Banach space E(β,µ) mentioned in Definition 3, whenever ε ∈ D(0, ε0).
Precise bounds will be given later in Section 5. Here we assume that Lγ ⊂ Sd ∪ {0}.

Our aim is now the presentation of a related problem fulfilled by the expression W (u,m, ε).
We first need to state two identities which concern the action of q−difference and Fuchsian
operators on q−Laplace tranforms.

Lemma 5 The actions of the q−difference operators T l0σl1q;T for integers l0, l1 ≥ 0 and the
Fuchsian differential operator T∂T are given by

(32) T l0σl1q;TUγ(T, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγ

ul0

(q1/k)l0(l0−1)/2

× σl1−
l0
k

q;u W (u,m, ε)
1

Θq1/k(u/T )
eizm

du

u
dm

and

(33) T∂TUγ(T, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγ

u∂uW (u,m, ε)
1

Θq1/k(u/T )
eizm

du

u
dm

Proof The first identity is a direct consequence of the commutation formula (40) displayed in
Proposition 6 from [18]. For the second, a derivation under the integral followed by an integration
by parts implies the sequence of equalities

T∂TUγ(T, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγ

− 1

T
W (u,m, ε)

(
1

Θq1/k

)′
(u/T )eizmdudm

=
−1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγ

W (u,m, ε)∂u

(
(

1

Θq1/k
)(u/T )

)
eizmdudm

=
−1

πq1/k(2π)1/2

∫ +∞

−∞
[W (u,m, ε)(

1

Θq1/k
)(u/T )]u=∞

u=0 e
izmdm

+
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγ

∂uW (u,m, ε)(
1

Θq1/k
)(u/T )eizmdudm
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from which the forecast formula follows since the map u 7→ W (u,m, ε) is assumed to possess a
growth of q−exponential order k and vanishes at u = 0. 2

The application of the above identities (32) and (33) in a row with (10) and (11) leads to the
first integro-differential q−difference equation fulfilled by the expression W (u,m, ε) as long as
Uγ(T, z, ε) solves (31),

(34) Q(im)W (τ,m, ε) = RD(im)
1

(q1/k)mDδDk(δDk−1)/2
(τ δDk+1∂τ )mDW (τ,m, ε)

+
∑

l=(l0,l1,l2)∈I

ε∆l−l0 1

(2π)1/2

∫ +∞

−∞
Cl(m−m1, ε)

× τ l0

(q1/k)l0(l0−1)/2
σ
l1− l0k
q;τ

(
(τ∂τ )l2W (τ,m1, ε)

)
Rl(im1)dm1 + Ψd(τ,m, ε)

We turn now to the second stage of the procedure. Solutions of this latter equation
are expected to be found in the class of Laplace transforms of order k′ since by construction
Ψd(τ,m, ε) owns this structure after (23). Namely, we take for granted that

(35) W (τ,m, ε) = k′
∫
Lγ

w(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

where Lγ = R+e
√
−1γ stands for a halfline with direction γ ∈ R which belongs to Ud∪{0} where

Ud represents an unbounded sector centered at 0 with bisecting direction d. Within this step,
we assume that the expression (u,m) 7→ w(u,m, ε) belongs to the Banach space Expq(k1,β,µ,α,r)
introduced in Definition 5, for all ε ∈ D(0, ε0), where the constants k1, β, µ and α are selected
accordingly to the construction of the forcing term f(t, z, ε).

The next lemma has already been stated in our previous work [15].

Lemma 6 For all integers l ≥ 1, positive integers aq,l ≥ 1, 1 ≤ q ≤ l can be found such that

(36) (t∂t)
l =

l∑
q=1

aq,lt
q∂qt

With the help of this last expansion, Equation (34) can be recast in the form

(37) Q(im)W (τ,m, ε) = RD(im)
1

(q1/k)mDδDk(δDk−1)/2
(τ δDk+1∂τ )mDW (τ,m, ε)

+
∑

l=(l0,l1,l2)∈I

ε∆l−l0 1

(2π)1/2

∫ +∞

−∞
Cl(m−m1, ε)Rl(im1)

1

(q1/k)l0(l0−1)/2

× σl1−
l0
k

q;τ

(
l2∑
h=1

ah,l2

(ql1−
l0
k )l0

τ l0+h(∂hτW )(τ,m1, ε)

)
dm1 + Ψd(τ,m, ε)

This last prepared shape allows us to apply the next lemma that repharses the formula (8.7) p.
3630 from [24], in order to express all differential operators appearing in (37) in terms of the
most basic one τk

′+1∂τ ,

Lemma 7 Let k′, δ ≥ 1 be integers. Then, there exit real numbers Aδ,p, 1 ≤ p ≤ δ− 1 such that

(38) τ δ(k
′+1)∂δτ = (τk

′+1∂τ )δ +
∑

1≤p≤δ−1

Aδ,pτ
k′(δ−p)(τk

′+1∂τ )p

By convention, we take for granted that the above sum
∑

1≤p≤δ−1[..] vanishes when δ = 1.
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Indeed, by construction of the finite set I, we can represent the next integers in a specific
way

l0 + h = h(1 + k′) + eh,l0

where eh,l0 = l0−hk′ ≥ 1 for all (l0, l1, l2) ∈ I and 1 ≤ h ≤ l2. As a consequence, we can further
expand the next piece of (37) in its final convenient form

(39) τ l0+h∂hτW (τ,m1, ε) = τ eh,l0 τh(1+k′)∂hτW (τ,m1, ε)

= τ eh,l0

(τk
′+1∂τ )h +

∑
1≤p≤h−1

Ah,pτ
k′(h−p)(τk

′+1∂τ )p

W (τ,m1, ε)

and we can remodel the equation (37) in such a way that it contains only primitive building
blocs

(40) Q(im)W (τ,m, ε) = RD(im)
1

(q1/k)mDk′(k′−1)/2
(τk

′+1∂τ )mDW (τ,m, ε)

+
∑

l=(l0,l1,l2)∈I

ε∆l−l0 1

(2π)1/2

∫ +∞

−∞
Cl(m−m1, ε)Rl(im1)

1

(q1/k)l0(l0−1)/2

× σl1−
l0
k

q;τ

(
l2∑
h=1

ah,l2

(ql1−
l0
k )l0

τ eh,l0 ((τk
′+1∂τ )h

+
∑

1≤p≤h−1

Ah,pτ
k′(h−p)(τk

′+1∂τ )p)W (τ,m1, ε)

 dm1 + Ψd(τ,m, ε)

Similarly to our previous technical lemma 5, we disclose some usefull commutations formulas
dealing with the actions of the basic irregular operator τk

′+1∂τ , multiplication by monomials
τm
′

and of the q−difference operator σq;τ ,

Lemma 8 1) The action of the differential operators τk
′+1∂τ on W (τ,m, ε) is given by

(41) τk
′+1∂τW (τ,m, ε) = k′

∫
Lγ

k′uk
′
w(u,m, ε) exp(−(

u

τ
)k
′
)
du

u

2) Let m′ ≥ 1 be an integer. The action of the multiplication by τm
′

on W (τ,m, ε) is described
through the next formula

(42) τm
′
W (τ,m, ε) = k′

∫
Lγ

(
uk
′

Γ(m
′

k′ )

∫ uk
′

0
(uk

′ − s)
m′
k′ −1w(s1/k′ ,m, ε)

ds

s

)
exp(−(

u

τ
)k
′
)
du

u

3) Let γ ∈ Z be an integer. The action of the operator σγq;τ is represented through the integral
transform

(43) σγq;τW (τ,m, ε) = k′
∫
Lγ

σγq;uw(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

Proof The first two formulas have already been given in our previous works [14], [15]. We focus
on the third equality. By definition,

σγq;τW (τ,m, ε) = k′
∫
Lγ

w(u,m, ε) exp(−(
u

qγτ
)k
′
)
du

u



15

and if one deforms the path of integration Lγ through u = qγv which keeps the path invariant
since qγ ∈ R+, we get the formula (43). 2

Departing from the arranged equation (40) with the help of the above lemma 8, we can
exhibit an ancillary problem satisfied by the expression w(u,m, ε),

(44) Q(im)w(u,m, ε) = RD(im)
(k′)mD

(q1/k)mDk′(k′−1)/2
uk
′mDw(u,m, ε)

+
∑

l=(l0,l1,l2)∈I

ε∆l−l0 1

(2π)1/2

∫ +∞

−∞
Cl(m−m1, ε)Rl(im1)

1

(q1/k)l0(l0−1)/2

σ
l1− l0k
q;u

{
l2∑
h=1

ah,l2

(ql1−
l0
k )l0

(
uk
′

Γ(eh,l0/k
′)

∫ uk
′

0
(uk

′ − s)
eh,l0
k′ −1(k′)hshw(s1/k′ ,m1, ε)

ds

s

+
∑

1≤p≤h−1

Ah,p
uk
′

Γ(
eh,l0+k′(h−p)

k′ )

∫ uk
′

0
(uk

′ − s)
eh,l0

+k′(h−p)
k′ −1(k′)pspw(s1/k′ ,m1, ε)

ds

s

 dm1

+ ψ(u,m, ε)

4 An integral q−difference equation with complex parameter

The objective of this section is the construction of a unique solution of the equation (44) just
established overhead. This solution will be built among the Banach space displayed in Defini-
tion 5. Within the next three propositions, continuity of linear convolutions and q−difference
operators acting on Expq(k1,β,µ,α,r) is discussed.

Proposition 1 Let k′ ≥ 1 be an integer and γ1 > 0, γ2, γ3 be real numbers such that k′(γ2 +
γ3 + 2) is an integer that are submitted to the next constraint

(45) γ2 + 1 > 0 , γ3 +
1

k′
+ 1 > 0 , γ1 ≥ k′(γ2 + γ3 + 2) ≥ 0

Let aγ1(u) be a continuous function on (Ud ∪ D(0, r)), holomorphic w.r.t u on Ud ∪ D(0, r)
submitted to the bounds

(46) |aγ1(u)| ≤ Mγ1

(1 + |u|)γ1

for all u ∈ Ud ∪D(0, r), for some constant Mγ1 > 0. Then, the linear functional

f 7→ Ck′,γ1,γ2,γ3(f)(u,m) = aγ1(u)uk
′
∫ uk

′

0
(uk

′ − s)γ2sγ3f(s
1
k′ ,m)ds

represents a continuous map from the Banach space Expq(k1,β,µ,α,r) into itself. In other words,

some constant M1 > 0 (depending on k′, γ1, γ2, γ3) can be found with

(47) ||Ck′,γ1,γ2,γ3(f)(u,m)||(k1,β,µ,α,r) ≤M1Mγ1 ||f(u,m)||(k1,β,µ,α,r)

for all f ∈ Expq(k1,β,µ,α,r).
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Proof Let f belong to Expq(k1,β,µ,α,r). The map Ck′,γ1,γ2,γ3(f)(u,m) can be rewritten using the

parametrization s = uk
′
p for 0 ≤ p ≤ 1, namely

(48) Ck′,γ1,γ2,γ3(f)(u,m) = aγ1(u)uk
′(γ2+γ3+2)

∫ 1

0
(1− p)γ2pγ3f(up1/k′ ,m)dp

for all u ∈ Ud ∪D(0, r), whenever m ∈ R. By definition, the next upper bounds

|f(u,m)| ≤ ||f(u,m)||(k1,β,µ,α,r)|u| exp

(
k1

2

log2(|u|+ δ)

log(q)
+ α log(|u|+ δ)

)
(1 + |m|)−µe−β|m|

hold for all u ∈ Ud ∪D(0, r), m ∈ R. It follows that

(49) |Ck′,γ1,γ2,γ3(f)(u,m)| ≤ Mγ1 |u|k
′(γ2+γ3+2)

(1 + |u|)γ1

∫ 1

0
(1− p)γ2pγ3+ 1

k′ dp||f(u,m)||(k1,β,µ,α,r)|u|

× exp

(
k1

2

log2(|u|+ δ)

log(q)
+ α log(|u|+ δ)

)
(1 + |m|)−µe−β|m|

for all u ∈ Ud ∪D(0, r), all m ∈ R. Under the conditions (45), the expected bounds (47) follow.
2

Proposition 2 Let a ∈ C be a complex number, γ1 ≥ 0 be an integer and γ2 ≥ 0 be a real
number withstanding the condition

(50) k1γ2 ≥ γ1

Then, we can sort a constant M2 > 0 (depending on γ1, γ2, q, α, δ, r, a) with

(51) ||(u+ a)γ1σ−γ2q;u f(u,m)||(k1,β,µ,α,r) ≤M2||f(u,m)||(k1,β,µ,α,r)

for all f ∈ Expq(k1,β,µ,α,r).

Proof The proof is proximate to the one of Proposition 1 in [18] and similar to the one of
Proposition 1 from [11]. We provide however a complete proof for the sake of a better readability.

Let f(u,m) belong to Expq(k1,β,µ,α,r). By definition, we can perform the next factorization

||(u+ a)γ1σ−γ2q;u f(u,m)||(k1,β,µ,α,r) = sup
u∈Ud∪D(0,r)

(1 + |m|)µeβ|m| 1

|u|

× exp

(
−k1

2

log2(|u|+ δ)

log(q)
− α log(|u|+ δ)

)
|u+ a|γ1

×

{
|f(u/qγ2 ,m)|(1 + |m|)µeβ|m| 1

|u/qγ2 |
exp

(
−k1

2

log2(| uqγ2 |+ δ)

log(q)
− α log(| u

qγ2
|+ δ)

)}

×

{
(1 + |m|)−µe−β|m| |u|

qγ2
exp

(
k1

2

log2(| uqγ2 |+ δ)

log(q)
+ α log(| u

qγ2
|+ δ)

)}

Since the contractive map u 7→ u/qγ2 keeps the domain Ud ∪D(0, r) invariant, we deduce

(52) ||(u+ a)γ1σ−γ2q;u f(u,m)||(k1,β,µ,α,r) ≤ M̃2||f(u,m)||(k1,β,µ,α,r)
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with M̃2 = 1
qγ2 sup

u∈Ud∪D(0,r)
A(u) where

A(u) = |u+ a|γ1 exp

(
−k1

2

log2(|u|+ δ)

log(q)
− α log(|u|+ δ)

)
× exp

(
k1

2

log2(| uqγ2 |+ δ)

log(q)
+ α log(| u

qγ2
|+ δ)

)

We observe that

(53) M̃2 ≤
1

qγ2
max(M̃2.1, M̃2.2)

where M̃2.1 = sup
u∈D(0,r)

A(u) is finite since A(u) is continuous on D(0, r) and M̃2.2 is equal to

supu∈Ud,|u|>rA(u).

In the remaining part of the proof, we show that M̃2.2 is also finite. We first need to rearrange
the pieces of A(u). Namely, we expand

(54) log2(|u|+ δ) = log2 |u|+ 2 log |u| log(1 +
δ

|u|
) + log2(1 +

δ

|u|
),

log2(| u
qγ2
|+δ) = log2 |u|−2γ2 log(q) log |u|+(γ2 log(q))2+2 log | u

qγ2
| log(1+

qγ2

|u|
δ)+log2(1+

qγ2

|u|
δ)

and

(55) log(|u|+ δ) = log |u|+ log(1 +
δ

|u|
), log(| u

qγ2
|+ δ) = log |u| − γ2 log(q) + log(1 +

qγ2

|u|
δ)

Since log(1 + x) ∼ x as x→ 0, we get two constants A1, A2 ∈ R (depending on r, δ, q, γ2) with

(56) A1 ≤ 2 log |u| log(1 +
δ

|u|
) ≤ A2, A1 ≤ 2 log | u

qγ2
| log(1 +

qγ2

|u|
δ) ≤ A2

for all u ∈ Ud, |u| > r. Gathering (54), (55) with (56) gives rise to the bounds

(57) M̃2.2 ≤ ( sup
u∈Ud,|u|>r

|u+ a|γ1
|u|γ2k1

exp

(
k1γ

2
2

2
log(q) +

A2k1

2 log(q)
+

k1

2 log(q)
log2(1 +

qγ2

r
δ)

−A1
k1

2 log(q)
− αγ2 log(q) + α log(1 +

qγ2

r
δ)

)
which is finite owing to (50). 2

Proposition 3 We set polynomials Q(X), R(X) ∈ C[X] such that

(58) deg(R) ≥ deg(Q) , R(im) 6= 0 , µ > deg(Q) + 1

Consider (u,m) 7→ b(u,m) a continuous function on (Ud ∪D(0, r))×R, holomorphic w.r.t u on
Ud ∪D(0, r) with the bounds

(59) sup
u∈Ud∪D(0,r)

m∈R

|b(u,m)| ≤Mb
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for some constant Mb > 0. Then, there exists a constant M3 > 0 (depending on Q,R and µ)
such that

(60) || 1

R(im)

∫ +∞

−∞
f(m−m1)Q(im1)b(u,m)g(u,m1)dm1||(k1,β,µ,α,r)

≤M3Mb||f(m)||(β,µ)||g(u,m)||(k1,β,µ,α,r)

whenever f belongs to E(β,µ) and g belongs to Expq(k1,β,µ,α,r).

Proof The proof shares the same ingredients as the one of Proposition 2 of [15]. Again, we
give a thorough explanation of the result. We take f inside E(β,µ) and select g belonging to
Expq(k1,β,µ,α,r). We first recast the norm of the convolution operator as follows

(61) N2 = || 1

R(im)

∫ +∞

−∞
f(m−m1)Q(im1)b(u,m)g(u,m1)dm1||(k1,β,µ,α,r)

= sup
u∈Ud∪D(0,r),m∈R

(1 + |m|)µ 1

|u|
eβ|m| exp

(
−k1

2

log2(|u|+ δ)

log(q)
− α log(|u|+ δ)

)
× | 1

R(im)

∫ +∞

−∞
{(1 + |m−m1|)µ exp(β|m−m1|)f(m−m1)}b(u,m)

× {(1 + |m1|)µeβ|m1| 1

|u|
exp

(
−k1

2

log2(|u|+ δ)

log(q)
− α log(|u|+ δ)

)
g(u,m1)}A(u,m,m1)dm1|

where

A(u,m,m1) =
Q(im1) exp(−β|m1|) exp(−β|m−m1|)

(1 + |m1|)µ(1 + |m−m1|)µ
|u| exp

(
k1

2

log2(|u|+ δ)

log(q)
+ α log(|u|+ δ)

)
By construction of the polynomials Q and R, one can sort two constants Q,R > 0 with

(62) |Q(im1)| ≤ Q(1 + |m1|)deg(Q) , |R(im)| ≥ R(1 + |m|)deg(R)

for all m,m1 ∈ R. As a consequence of (61), (62) and (59) with the help of the triangular
inequality |m| ≤ |m1|+ |m−m1|, we are led to the bounds

N2 ≤M3Mb||f(m)||(β,µ)||g(u,m)||(k1,β,µ,α,r)

where

M3 =
Q

R
sup
m∈R

(1 + |m|)µ−deg(R)

∫ +∞

−∞

1

(1 + |m−m1|)µ(1 + |m1|)µ−deg(Q)
dm1

is a finite constant under the first and last restriction of (58) according to the estimates of
Lemma 2.2 from [4] or Lemma 4 of [17]. 2

We disclose now additional assumptions on the leading polynomials Q(X) and RD(X). These
requirements will be essential in the transformation of our main problem (44) into a fixed point
equation, as explained later in Proposition 4.

With this respect, the guideline is close to our previous study [15]. Namely, we assume the
existence of an unbounded sectorial annulus

(63) SQ,RD = {z ∈ C∗/|z| > rQ,RD , |arg(z)− dQ,RD | ≤ ηQ,RD}
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with direction dQ,RD ∈ R, aperture ηQ,RD > 0 for some given inner radius rQ,RD > 0 with the
feature

(64) { Q(im)

RD(im)
/m ∈ R} ⊂ SQ,RD

We consider the next polynomial

(65) Pm(u) = Q(im)−RD(im)
(k′)mD

(q1/k)mDk′(k′−1)/2
uk
′mD

In the following, we need lower bounds of the expression Pm(u) with respect to both variables
m and u. In order to achieve this goal, we can factorize the polynomial w.r.t u, namely

(66) Pm(u) = −RD(im)
(k′)mD

(q1/k)mDk′(k′−1)/2

k′mD−1∏
l=0

(u− ql(m))

where its roots ql(m) can be displayed explicitely as

ql(m) =

 |Q(im)|
|RD(im)| (k′)mD

(q1/k)mDk
′(k′−1)/2

 1
k′mD

exp

√−1

k′mD
(arg(

Q(im)

RD(im) (k′)mD

(q1/k)mDk
′(k′−1)/2

) + 2πl)


for all 0 ≤ l ≤ k′mD − 1, for all m ∈ R.

We set an unbounded sector Ud centered at 0, a small disc D(0, r) and we adjust the sector
SQ,RD in a way that the next condition hold : A constant m > 0 can be chosen with

(67) |u− ql(m)| ≥ m(1 + |u|)

for all 0 ≤ l ≤ k′mD − 1, all m ∈ R, provided that u ∈ Ud ∪D(0, r). Indeed, the inclusion (64)
implies in particular that all the roots ql(m), 0 ≤ l ≤ k′mD − 1 remain apart of some neighbor-
hood of the origin, i.e satisfy |ql(m)| ≥ 2r for an appropriate choice of r > 0. Furthermore, when
the aperture ηQ,RD > 0 is taken close enough to 0, all these roots ql(m) stay inside a union U of
unbounded sectors centered at 0 that do not cover a full neighborhood of 0 in C∗. We assign a
sector Ud with

Ud ∩ U = ∅
By construction, the quotients ql(m)/u live outside some small disc centered at 1 in C for all
u ∈ Ud, m ∈ R, 0 ≤ l ≤ k′mD − 1. Then, (67) follows.

We are now ready to supply lower bounds for Pm(u).

Lemma 9 A constant CP > 0 (depending on k, k′,mD, q,m) can be found with

(68) |Pm(u)| ≥ CP |RD(im)|(1 + |u|)k′mD

for all u ∈ Ud ∪D(0, r), all m ∈ R.

Proof Departing from the factorization (66), the lower bounds (67) entail

|Pm(u)| ≥ (k′)mD

(q1/k)mDk′(k′−1)/2
mk′mD |RD(im)|(1 + |u|)k′mD

for all u ∈ Ud ∪D(0, r). 2

The next proposition discusses sufficient conditions under which a solution wd(u,m, ε) of the
main integral q−difference equation (44) can be built up in the space Expq(k1,β,µ,α,r).
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Proposition 4 Let us assume the next extra requirements

(69)
l0
k
− l1 ≥ 0 , µ > deg(Rl)

for all l = (l0, l1, l2) ∈ I. Furthermore, for each l = (l0, l1, l2) ∈ I, we set an integer pl0,l1 such
that

(70) 0 ≤ pl0,l1 ≤ k1(
l0
k
− l1)

and we take for granted that

(71) pl0,l1 + k′mD ≥ l0

holds. Then, for an appropriate choice of the constants Cl > 0 (see (17)) that need to be taken
close enough to 0 for all l ∈ I, a constant $ > 0 can be singled out in a manner that the equation
(44) gets a unique solution (u,m) 7→ wd(u,m, ε) in the space Expq(k1,β,µ,α,r) with the condition

(72) ||wd(u,m, ε)||(k1,β,µ,α,r) ≤ $

whenever ε ∈ D(0, ε0), where Ud,r are chosen as above and k1, β, µ, α are specified in Section 3
on the way to the construction of the forcing term f(t, z, ε).

Proof The proof relies strongly on the next lemma which discusses contractive properties of a
linear map.

Lemma 10 For all ε ∈ D(0, ε0), we define the map Hε as

(73) Hε(w(u,m)) :=
∑

l=(l0,l1,l2)∈I

ε∆l−l0 1

(2π)1/2

∫ +∞

−∞
Cl(m−m1, ε)Rl(im1)

1

(q1/k)l0(l0−1)/2

1

Pm(u)
σ
l1− l0k
q;u

{
l2∑
h=1

ah,l2

(ql1−
l0
k )l0

(
uk
′

Γ(eh,l0/k
′)

∫ uk
′

0
(uk

′ − s)
eh,l0
k′ −1(k′)hshw(s1/k′ ,m1)

ds

s

+
∑

1≤p≤h−1

Ah,p
uk
′

Γ(
eh,l0+k′(h−p)

k′ )

∫ uk
′

0
(uk

′ − s)
eh,l0

+k′(h−p)
k′ −1(k′)pspw(s1/k′ ,m1)

ds

s

 dm1

+
ψ(u,m, ε)

Pm(u)

Under the additional requirements (69), (70) and (71), one can select the constants Cl > 0, for
l ∈ I, and a real number $ > 0 in a way that this map acts on some neighborhood of the origin
of the space Expq(k1,β,µ,α,r) in the following way:

i) The inclusion

(74) Hε(B(0, $)) ⊂ B(0, $)

holds where B(0, $) stands for the closed ball of radius $ centered at 0 in Expq(k1,β,µ,α,r), for all

ε ∈ D(0, ε0).
ii) The map Hε is contractive, namely

(75) ||Hε(w2(u,m))−Hε(w1(u,m))||(k1,β,µ,α,r) ≤
1

2
||w2(u,m)− w1(u,m)||(k1,β,µ,α,r)

whenever w1, w2 ∈ B̄(0, $), for all ε ∈ D(0, ε0).
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Proof We first control the forcing term. Owing to the bounds (21) in Lemma 4, together with
(68), we can exhibit a constant C1 > 0 (relying on q, k1, α, T0) with

(76) ||ψ(u,m, ε)

Pm(u)
||(k1,β,µ,α,r) ≤

K0C1

CP minm∈R |RD(im)|

where K0 > 0 is a constant that is set in (18), whenever ε ∈ D(0, ε0).
We deal with the first property (74). Let us take w(τ,m) in Expq(k1,β,µ,α,r) under the con-

straint ||w(τ,m)||(k1,β,µ,α,r) ≤ $.

We fix some complex number ωd such that ωd /∈ Ud ∪D(0, r) and we redraft the norm of the
next integral expression as follows

(77) I1 = ||
∫ +∞

−∞
Cl(m−m1, ε)Rl(im1)

1

Pm(u)

× σl1−
l0
k

q;u

(
uk
′
∫ uk

′

0
(uk

′ − s)
eh,l0
k′ −1sh−1w(s1/k′ ,m1)ds

)
dm1||(k1,β,µ,α,r)

= || 1

RD(im)

∫ +∞

−∞
Cl(m−m1, ε)Rl(im1)B(u,m)(u− ωd)pl0,l1σ

−(
l0
k
−l1)

q;u

(
uk
′

(u− ωd)l0

×
∫ uk

′

0
(uk

′ − s)
eh,l0
k′ −1sh−1w(s1/k′ ,m1)ds

)
dm1||(k1,β,µ,α,r)

for all l ∈ I, 1 ≤ h ≤ l2 where pl0,l1 ≥ 0 is an integer chosen as in (70) and

B(u,m) =
(q−(

l0
k
−l1)u− ωd)l0RD(im)

(u− ωd)pl0,l1Pm(u)

We observe that a constant MB > 0 (depending on q, l0, l1, pl0,l1 , k, k
′,mD, ωd,m) can be picked

up with

(78) |B(u,m)| ≤MB

for all u ∈ Ud ∪D(0, r), m ∈ R. Indeed, from (68), we get

|B(u,m)| ≤ 1

CP
sup

u∈Ud∪D(0,r)

|q−(
l0
k
−l1)u− ωd|l0

|u− ωd|pl0,l1 (1 + |u|)k′mD

for all u ∈ Ud ∪D(0, r), m ∈ R where the right handside is finite owing to the suitable choices
of ωd and pl0,l1 in (71).

Under the requirements (15) and (69), an application of Proposition 3 yields a constant
M3.1 > 0 (depending on RD, Rl and µ) such that

(79) I1 ≤M3.1MB||Cl(m, ε)||(β,µ)I2

where

I2 = ||(u− ωd)pl0,l1σ
−(

l0
k
−l1)

q;u

(
uk
′

(u− ωd)l0

∫ uk
′

0
(uk

′ − s)
eh,l0
k′ −1sh−1w(s1/k′ ,m)ds

)
||(k1,β,µ,α,r)
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The conditions (69) and (70) allow us to call back Proposition 2 in order to get a constant
M2.1 > 0 (depending on l0, l1, pl0,l1 , k, q, α, δ, r, ωd) with

(80) I2 ≤M2.1I3

where

I3 = || uk
′

(u− ωd)l0

∫ uk
′

0
(uk

′ − s)
eh,l0
k′ −1sh−1w(s1/k′ ,m)ds||(k1,β,µ,α,r)

Lastly, Proposition 1 gives rise to constants Mωd,l0 > 0 (depending on ωd, l0) and M1.1 > 0
(depending on k′, l0, l2) with

(81) I3 ≤M1.1Mωd,l0 ||w(u,m)||(k1,β,µ,α,r)

By compiling (79), (80) and (81), we get

(82) I1 ≤M1.1M2.1M3.1MBMωd,l0 ||Cl(m, ε)||(β,µ)||w(u,m)||(k1,β,µ,α,r)

for all l ∈ I, 1 ≤ h ≤ l2.
We now turn to the second principal pieces of Hε. Following the same lines of arguments as

above, we get that

(83) J1 = ||
∫ +∞

−∞
Cl(m−m1, ε)Rl(im1)

1

Pm(u)

× σl1−
l0
k

q;u

(
uk
′
∫ uk

′

0
(uk

′ − s)
eh,l0

+k′(h−p)
k′ −1sp−1w(s1/k′ ,m1)ds

)
dm1||(k1,β,µ,α,r)

≤M2.1M3.1MB||Cl(m, ε)||(β,µ)J3

where

J3 = || uk
′

(u− ωd)l0

∫ uk
′

0
(uk

′ − s)
eh,l0

+k′(h−p)
k′ −1sp−1w(s1/k′ ,m)ds||(k1,β,µ,α,r)

for all l ∈ I, 2 ≤ h ≤ l2 and 1 ≤ p ≤ h − 1. In order to give bounds for J3, we make use of
Proposition 1 which affords a constant M1.2 > 0 (depending on k′, l0, l2) with

(84) J3 ≤M1.2Mωd,l0 ||w(u,m)||(k1,β,µ,α,r)

By combining (83) and (84), we obtain

(85) J1 ≤M1.2M2.1M3.1MBMωd,l0 ||Cl(m, ε)||(β,µ)||w(u,m)||(k1,β,µ,α,r)

for all l ∈ I, 2 ≤ h ≤ l2 and 1 ≤ p ≤ h− 1.
In the next step, we impose the constants Cl > 0, l ∈ I, to stay close enough to 0 in order

that a constant $ > 0 can be singled out with

(86)
∑

l=(l0,l1,l2)∈I

ε∆l−l0
0

1

(2π)1/2

1

(q1/k)l0(l0−1)/2

l2∑
h=1

|ah,l2 |

(ql1−
l0
k )l0

×

(
(k′)h

Γ(
eh,l0
k′ )

M1.1M2.1M3.1MBMωd,l0Cl$

+
∑

1≤p≤h−1

|Ah,p|
(k′)p

Γ(
eh,l0+k′(h−p)

k′ )
M1.2M2.1M3.1MBMωd,l0Cl$

+
K0C1

CP minm∈R |RD(im)|
≤ $
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The collection of (76), (82) and (85) submitted to the condition (86) yields the inclusion (74).

The next part of the proof is devoted to the explanation of the contractive property (75).
Indeed, consider two functions w1(u,m) and w2(u,m) inside the ball B(0, $) ⊂ Expq(k1,β,µ,α,r).

Then, an application of the two inequalities (82) and (85) overhead leads to

(87) ||
∫ +∞

−∞
Cl(m−m1, ε)Rl(im1)

1

Pm(u)

× σl1−
l0
k

q;u

(
uk
′
∫ uk

′

0
(uk

′ − s)
eh,l0
k′ −1sh−1(w2(s1/k′ ,m1)− w1(s1/k′ ,m1))ds

)
dm1||(k1,β,µ,α,r)

≤M1.1M2.1M3.1MBMωd,l0 ||Cl(m, ε)||(β,µ)||w2(u,m)− w1(u,m)||(k1,β,µ,α,r)

for all l ∈ I, 1 ≤ h ≤ l2 and

(88) ||
∫ +∞

−∞
Cl(m−m1, ε)Rl(im1)

1

Pm(u)

× σl1−
l0
k

q;u

(
uk
′
∫ uk

′

0
(uk

′ − s)
eh,l0

+k′(h−p)
k′ −1sp−1(w2(s1/k′ ,m1)− w1(s1/k′ ,m1))ds

)
dm1||(k1,β,µ,α,r)

≤M1.2M2.1M3.1MBMωd,l0 ||Cl(m, ε)||(β,µ)||w2(u,m)− w1(u,m)||(k1,β,µ,α,r)

for all l ∈ I, 2 ≤ h ≤ l2 and 1 ≤ p ≤ h− 1.
This time, we require the constants Cl > 0, l ∈ I, to withstand the next inequality

(89)
∑

l=(l0,l1,l2)∈I

ε∆l−l0
0

1

(2π)1/2

1

(q1/k)l0(l0−1)/2

l2∑
h=1

|ah,l2 |

(ql1−
l0
k )l0

×

(
(k′)h

Γ(
eh,l0
k′ )

M1.1M2.1M3.1MBMωd,l0Cl

+
∑

1≤p≤h−1

|Ah,p|
(k′)p

Γ(
eh,l0+k′(h−p)

k′ )
M1.2M2.1M3.1MBMωd,l0Cl

 ≤ 1/2

Owing to (87) and (88) under the demand (89), we obtain (75).
In conclusion, we choose the constants Cl > 0, l ∈ I in order that both (86) and (89) hold

conjointly. This yield Lemma 10. 2

We go back to the core of Proposition 4. For $ > 0 chosen as in the lemma above, we consider
the closed ball B(0, $) ⊂ Expd(k1,β,µ,α,r) that stands for a complete metric space for the distance

d(x, y) = ||x − y||(k1,β,µ,α,r). According to the same lemma, we observe that Hε induces a

contractive application from (B(0, $), d) into itself. Then, according to the classical contractive
mapping theorem, the map Hε carries a unique fixed point that we set as wd(u,m, ε), meaning
that

(90) Hε(wd(u,m, ε)) = wd(u,m, ε),

that belongs to the ball B(0, $), for all ε ∈ D(0, ε0). Furthermore, the function wd(u,m, ε)
depends holomorphically on ε in D(0, ε0). Let the term

RD(im)
(k′)mD

(q1/k)mDk′(k′−1)/2
uk
′mDw(u,m, ε)
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be taken from the right to the left handside of (44) and then divide by the polynomial Pm(u)
defined in (65). These operations allows (44) to be exactly recast into the equation (90) above.
Consequently, the unique fixed point wd(u,m, ε) of Hε obtained overhead in B̄(0, $) precisely
solves the equation (44). 2

5 An integro-differential q−difference equation with a complex
parameter

In this section we build up a solution W d(τ,m, ε) to the integro-differential q−difference equation
(34) with the shape of a Laplace transform of order k′ in direction d. Furthermore, we provide
sharp bounds of this solution for large values of its q−Borel and Fourier variables τ , m.

Proposition 5 We depart from the solution wd(u,m, ε) of the integral equation (44) that has
just been constructed in Proposition 4. We define

(91) W d(τ,m, ε) = k′
∫
Lγ

wd(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

as the Laplace transform of wd(u,m, ε) of order k′ in direction d where the integration path

Lγ = R+e
√
−1γ belongs to the sector Ud ∪ {0}. Then, for all ε ∈ D(0, ε0), the map (τ,m, ε) 7→

W d(τ,m, ε) is continuous on a domain Sd ×R×D(0, ε0) and depends holomorphically on (τ, ε)
in Sd×D(0, ε0) where Sd represents an unbounded sector with bisecting direction d and opening
θk′ that fulfills

(92) 0 < θk′ <
π

k′
+ Ap(Ud)

for Ap(Ud) defined as the aperture of the sector Ud. Furthermore, the map (τ,m, ε) 7→W d(τ,m, ε)
withstands the next accurate bounds:
1) One can single out three constants E1 > 0 (depending on k′, k1, δ, q, α), E2 > 1 (depending
on k1, k

′, q) and 0 < E3 < 1 (relying on k′, θk′ ,Ap(U)) such that

(93) |W d(τ,m, ε)| ≤ E1$(1 + |m|)−µe−β|m| exp

(
k1

2

log2(|τ |/E3)

log(q)
+ (α+ E2) log(|τ |/E3)

)
× exp

{(
k1 log(|τ |/E3)

k′ log(q)
+

1

2

)
log

(
k1 log(|τ |/E3)

k′ log(q)
+ 1

)}
for all τ ∈ Sd with |τ | ≥ 21/k′E3δ, m ∈ R and ε ∈ D(0, ε0).
2) One can find a constant E0 > 0 (depending on k′, k1, δ, q, α) with

(94) |W d(τ,m, ε)| ≤ E0$(1 + |m|)−µe−β|m|

whenever τ ∈ Sd with |τ | ≤ 21/k′E3δ, all m ∈ R, all ε ∈ D(0, ε0).
In particular, one can sort two constants E4, E5 > 0 (depending on k′, k1, δ, q, α, θk′ ,Ap(Ud))

with

(95) |W d(τ,m, ε)| ≤ E4$(1 + |m|)−µe−β|m| exp

(
k2

2

log2(|τ |+ δ)

log(q)
+ (α+ E5) log(|τ |+ δ)

)
for all τ ∈ Sd, m ∈ R and ε ∈ D(0, ε0), where k1 < k2 < k was introduced in Section 3 just
above (24).

Finally, W d(τ,m, ε) satisfies the first auxiliary integro-differential q−difference equation (34)
on the domain Sd × R×D(0, ε0).
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Proof The bounds (72) in Proposition 4 can be recast as

(96) |wd(u,m, ε)| ≤ $(1 + |m|)−µe−β|m||u| exp

(
k1

2

log2(|u|+ δ)

log(q)
+ α log(|u|+ δ)

)
which holds for all (u,m, ε) ∈ (Ud ∪ D(0, r)) × R × D(0, ε0). The integral representation (91)
yields

(97) |W d(τ,m, ε)| ≤ k′
∫ +∞

0
$(1 + |m|)−µe−β|m| exp

(
k1

2

log2(r + δ)

log(q)
+ α log(r + δ)

)
× exp(− rk

′

|τ |k′
cos(k′(γ − arg(τ)))dr ≤ k′

∫ +∞

0
$(1 + |m|)−µe−β|m|

× exp

(
k1

2

log2(r + δ)

log(q)
+ α log(r + δ)

)
exp(− rk

′

|τ |k′
δ2)dr

whenever τ ∈ Sd for a well chosen direction γ (that may depend on τ) such that cos(k′(γ −
arg(τ))) ≥ δ2 for some fixed constant 0 < δ2 < 1 that exists under the requirement (92).

In the second part of the proof, we are scaled down to provide bounds for the next associated
function

E(x) =

∫ +∞

0
exp

(
k1

2

log2(r + δ)

log(q)
+ α log(r + δ)

)
exp(−r

k′

x
)dr

when x > 0 is chosen large enough. The next lemma holds

Lemma 11 One can select two constants E1 > 0 (depending on k′, k1, δ, q, α) and E2 > 1
(relying in k1, k

′, q) such that

(98) E(x) ≤ E1 exp

(
k1

2

log2(x1/k′)

log(q)
+ (α+ E2) log(x1/k′)

)

× exp

{(
k1 log(x1/k′)

k′ log(q)
+

1

2

)
log

(
k1 log(x1/k′)

k′ log(q)
+ 1

)}

for all x ≥ 2δk
′
.

Proof We first make the change of variable r̃ = rk
′
/x in the integral above,

E(x) =

∫ +∞

0
exp

(
k1

2

log2((r̃)1/k′x1/k′ + δ)

log(q)
+ α log((r̃)1/k′x1/k′ + δ)

)
e−r̃

(r̃)
1
k′−1

k′
x1/k′dr̃

On the other hand, we need the next expansions

(99) log2((r̃)1/k′x1/k′ + δ)

= log2(x1/k′) + 2 log(x1/k′) log((r̃)1/k′ +
δ

x1/k′
) + log2((r̃)1/k′ +

δ

x1/k′
),

log((r̃)1/k′x1/k′ + δ) = log(x1/k′) + log((r̃)1/k′ +
δ

x1/k′
)

We cut the integral expression in two pieces

(100) E(x) = E1(x) + E2(x)
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where

E1(x) =

∫ (1− δ

x1/k
′ )
k′

0
exp

(
k1

2

log2((r̃)1/k′x1/k′ + δ)

log(q)
+ α log((r̃)1/k′x1/k′ + δ)

)
e−r̃

(r̃)
1
k′−1

k′
x1/k′dr̃

and

E2(x) =

∫ +∞

(1− δ

x1/k
′ )
k′

exp

(
k1

2

log2((r̃)1/k′x1/k′ + δ)

log(q)
+ α log((r̃)1/k′x1/k′ + δ)

)
e−r̃

(r̃)
1
k′−1

k′
x1/k′dr̃

provided that x ≥ 2δk
′
.

We control the first piece E1(x). We observe that log((r̃)1/k′ + δ
x1/k

′ ) ≤ 0 when r̃ ∈ [0, (1 −
δ

x1/k
′ )k
′
]. From (99), we deduce the inequalities

log2((r̃)1/k′x1/k′ + δ) ≤ log2(x1/k′) + log2((r̃)1/k′ +
δ

x1/k′
), log((r̃)1/k′x1/k′ + δ) ≤ log(x1/k′)

for all r̃ ∈ [0, (1− δ
x1/k

′ )k
′
] and x ≥ 2δk

′
. Therefore,

(101) E1(x) ≤ exp

(
k1

2

log2(x1/k′)

log(q)
+ α log(x1/k′)

)
x1/k′E1.2(x)

where

E1.2(x) =
1

k′

∫ (1− δ

x1/k
′ )
k′

0
exp

(
k1

2

log2((r̃)1/k′ + δ
x1/k

′ )

log(q)

)
e−r̃(r̃)

1
k′−1dr̃

By construction, a constant E1.2 > 0 (depending on k′, k1, δ, q) can be found with

(102) E1.2(x) ≤ E1.2

for all x ≥ 2δk
′
.

In a second step, we evaluate the part E2(x). The expansions (99) affords us to write

(103) E2(x) ≤ exp

(
k1

2

log2(x1/k′)

log(q)
+ α log(x1/k′)

)
x1/k′E2.1(x)

where

E2.1(x) =

∫ +∞

(1− δ

x1/k
′ )
k′

(
(r̃)1/k′ +

δ

x1/k′

) k1 log(x1/k
′
)

log(q)

× exp

(
k1

2

log2((r̃)1/k′ + δ
x1/k

′ )

log(q)
+ α log((r̃)1/k′ +

δ

x1/k′
)

)
e−r̃

1

k′
(r̃)

1
k′−1dr̃

Besides, we can check that there exists a constant E2.1 > 0 (depending on k′, k1, δ, q, α) such
that

(104) exp

(
k1

2

log2((r̃)1/k′ + δ
x1/k

′ )

log(q)
+ α log((r̃)1/k′ +

δ

x1/k′
)

)
1

k′
(r̃)

1
k′−1 ≤ E2.1e

r̃/2
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provided that r̃ ≥ (1− δ
x1/k

′ )k
′
, when x ≥ 2δk

′
. We deduce that

(105) E2.1(x) ≤ E2.1

∫ +∞

(1− δ

x1/k
′ )
k′

(
(r̃)1/k′ +

δ

x1/k′

) k1 log(x1/k
′
)

log(q)

e−r̃/2dr̃ ≤ E2.1E2.2(x)

where

E2.2(x) =

∫ +∞

(1− 1

21/k
′ )
k′

(
(r̃)1/k′ +

1

21/k′

) k1 log(x1/k
′
)

log(q)

e−r̃/2dr̃

when x ≥ 2δk
′
. Furthermore, one can sort a constant E2.2 > 1 (depending on k′) such that

(r̃)1/k′ +
1

21/k′
≤ E2.2(r̃)1/k′

for all r̃ ≥ (1− 1
21/k

′ )k
′
. Hence,

(106) E2.2(x) ≤ E
k1 log(x1/k

′
)

log(q)

2.2

∫ +∞

(1− 1

21/k
′ )
k′

(r̃)
k1
k′

log(x1/k
′
)

log(q) e−r̃/2dr̃ ≤ E
k1 log(x1/k

′
)

log(q)

2.2 E2.3(x)

with

E2.3(x) =

∫ +∞

0
(r̃)

k1
k′

log(x1/k
′
)

log(q) e−r̃/2dr̃

when x ≥ 2δk
′
. We perform the linear change of variable h = r̃/2 in this latter integral

E2.3(x) = 2
k1 log(x1/k

′
)

k′ log(q) +1
∫ +∞

0
h
k1 log(x1/k

′
)

k′ log(q) e−hdh = 2
k1 log(x1/k

′
)

k′ log(q) +1
Γ(
k1 log(x1/k′)

k′ log(q)
+ 1)

in order to express it in term of the Gamma function Γ(x). Keeping in mind the Stirling formula
(25), we get a constant E2.3 > 0 (which depends on k1, k

′, q, δ) such that

(107) E2.3(x) ≤ E2.3(
2

e
)
k1 log(x1/k

′
)

k′ log(q) +1
exp

(
(
k1 log(x1/k′)

k′ log(q)
+

1

2
) log(

k1 log(x1/k′)

k′ log(q)
+ 1)

)

≤ E2.3 exp

(
(
k1 log(x1/k′)

k′ log(q)
+

1

2
) log(

k1 log(x1/k′)

k′ log(q)
+ 1)

)

for all x ≥ 2δk
′
.

Finally, the splitting (100) together with the collection of bounds (101), (102), (103), (105),
(106) and (107) give rise to the expected bounds (98). 2

This last lemma combined with the estimates (97) yield the announced upper bounds (93) and
(94). In order to deduce the particular estimates (95) from (93) and (94), we observe that for
any given χ > 0 (even close to 0), we can sort a constant Aχ,k,k′,q,E3,δ > 0 (which relies on
χ, k, k′, q, E3, δ) such that

log

(
k1

k′ log(q)
log(z/E3) + 1

)
≤ χ log(z + δ) +Aχ,k,k′,q,E3,δ

for all z ≥ 21/k′E3δ.
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In the final part of the proof, the function W d(τ,m, ε) is shown to fulfill the second main
equation (34). In this respect, we tread rearwards the construction discussed in Section 3. In-
deed, according to the fact that wd(u,m, ε) solves (44) and appertains to the space Expq(k1,β,µ,α,r)
for a well chosen sector Ud, the three identities of Lemma 8 can be applied in order to check that
W d(τ,m, ε) is a genuine solution of the integro-differential-q−difference equation in prepared
form (40). Ultimately, a successive play of Lemma 7 followed by Lemma 6 transforms Equation
(40) into the expected one (34). 2

6 Construction of a finite set of true sectorial solutions to the
main initial value problem

We return to the first part of the formal constructions undertaken in Section 3 in view of the
gain made in solving the two auxiliary problems (44) and (34) throughout the above sections 4
and 5.

We need to state the definition of a good covering in C∗ and we introduce an fitted version
of a so-called associated sets of sectors to a good covering which is analog to the one proposed
in our previous work, [15].

Definition 6 Let ς ≥ 2 be an integer. We consider a set E of open sectors Ep centered at 0,
with radius ε0 > 0 for all 0 ≤ p ≤ ς − 1 for which the next three properties hold:
i) the intersection Ep∩Ep+1 is not empty for all 0 ≤ p ≤ ς−1 (with the convention that Eς = E0),
ii) the intersection of any three elements of E is empty,
iii) the union ∪ς−1

p=0Ep equals U \ {0} for some neighborhood U of 0 in C.
Then, the set of sectors E is named a good covering of C∗.

Definition 7 We consider
a) a good covering E = {Ep}0≤p≤ς−1 of C∗ whose radius ε0 satisfies 0 < ε0 < 1.
b) a set U of unbounded sectors Udp, 0 ≤ p ≤ ς − 1 centered at 0 with bisecting direction dp ∈ R
and small opening θUdp

> 0,
c) a set S of unbounded sectors Sdp, 0 ≤ p ≤ ς − 1 centered at 0 with bisecting direction dp ∈ R
and aperture 0 < θSdp

< π
k′ + θUdp

for some integer k′ ≥ 1,
d) a fixed bounded sector T centered at 0 with radius rT > 0 and a disc D(0, r),
suitably selected in a way that the next features are conjointly satisfied:
1) the bounds (67) hold provided that u ∈ Udp ∪D(0, r), for all 0 ≤ p ≤ ς − 1,
2) the set S fulfills the next properties:
2.1) the intersection Sdp ∩ Sdp+1 is not empty for all 0 ≤ p ≤ ς − 1 (with the convention that
Sdς = Sd0),
2.2) the union ∪ς−1

p=0Sdp covers C \ {0}.
3) For all 0 ≤ p ≤ ς − 1, for all ε ∈ Ep, all t ∈ T ,

(108) εt ∈ Rdp,∆

where

Rdp,∆ = {T ∈ C∗/|1 +
e
√
−1dp

T
r| > ∆ for all r ≥ 0}

with ∆ > 0 any fixed real number close to 0.
When the above features are verified, we say that the set of data {E , U, S, T , D(0, r)} is

admissible.
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We settle now the first principal result of the work. We construct a set of actual holomorphic
solutions to the main initial value problem (16) defined on sectors Ep, 0 ≤ p ≤ ς − 1, of a good
covering in C∗. Besides, we are able to monitor the difference between consecutive solutions on
the intersections Ep ∩ Ep+1.

Theorem 1 We ask the record of requirements (12), (13), (14), (15), (17), (18), (20), (27),
(30), (64), (69), (70) and (71) to hold. Let us distinguish an admissible set of data

A = {E = {Ep}0≤p≤ς−1, U = {Udp}0≤p≤ς−1, S = {Sdp}0≤p≤ς−1, T , D(0, r)}

as described in the definition above.
Then, for a suitable choice of the constants Cl > 0 (c.f. (17)) close enough to 0 for all l ∈ I,

a collection {up(t, z, ε)}0≤p≤ς−1 of true solutions of (16) can be singled out. More precisely, each
function up(t, z, ε) stands for a bounded holomorphic map on the product (T ∩D(0, σ))×Hβ′×Ep
for any given 0 < β′ < β and appropriate small radius σ > 0. Additionally, up(t, z, ε) is
represented as a q−Laplace transform of order k and Fourier inverse integral

(109) up(t, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp

W dp(u,m, ε)
1

Θq1/k(u/εt)
eizm

du

u
dm

where Lγp = R+e
√
−1γp ⊂ Sdp ∪ {0}. Furthermore, the map (τ,m, ε) → W dp(τ,m, ε) is itself

fashioned as a Laplace transform of order k′

(110) W dp(τ,m, ε) = k′
∫
Lγ′p

wdp(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

whose integration halfline Lγ′p is enclosed in Udp ∪ {0} and where (u,m) 7→ wdp(u,m, ε) belongs

to the Banach space Expq(k1,β,µ,α,r) for the unbounded sector Udp, provided that ε ∈ D(0, ε0).
Finally, some constants Ap, Bp > 0 can be found with

(111) sup
t∈T ∩D(0,σ),z∈Hβ′

|up+1(t, z, ε)− up(t, z, ε)| ≤ Ap(Bp)NΓ(
N + 1

k′
)q

N2

2k |ε|N

for all integers N ≥ 1, all 0 ≤ p ≤ ς − 1, whenever ε ∈ Ep+1 ∩ Ep, where by convention, we set
uς(t, z, ε) = u0(t, z, ε).

Proof We first single out an admissible set of data A. Under the requirements enounced in
Theorem 1, Proposition 5 can be call in in order to find a family of functions

(112) W dp(τ,m, ε) = k′
∫
Lγ′p

wdp(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

expressed as a Laplace transform of order k′ in direction γ′p such that Lγ′p = R+e
√
−1γ′p ⊂ Udp∪{0}

of a Borel map wdp(u,m, ε) which is holomorphic w.r.t u on Udp ∪ D(0, r), w.r.t ε on D(0, ε0)
and continuous relatively to m ∈ R, coming along with a constant $dp > 0 such that

(113) |wdp(u,m, ε)| ≤ $dp(1 + |m|)−µe−β|m||u| exp

(
k1

2

log2(|u|+ δ)

log(q)
+ α log(|u|+ δ)

)
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for all u ∈ Udp ∪D(0, r), m ∈ R, ε ∈ D(0, ε0). Furthermore, the functions W dp(τ,m, ε) solve the
first auxiliary integro-differential q−difference equation (34) on Sdp × R × D(0, ε0) and suffers
the bounds

(114) |W dp(τ,m, ε)| ≤ ρdp1 (1 + |m|)−µe−β|m| exp

(
k2

2

log2(|τ |+ δ)

log(q)
+ (α+ ρ

dp
2 ) log(|τ |+ δ)

)
for some constants ρ

dp
j > 0, for j = 1, 2, provided that τ ∈ Sdp , m ∈ R and ε ∈ D(0, ε0).

We now revisit the first stage of the formal construction from Section 3. Namely, we set the
next q−Laplace transform of order k and Fourier inverse map

(115) Uγp(T, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp

W dp(τ,m, ε)
1

Θq1/k(τ/T )
eizm

dτ

τ
dm

along a halfline Lγp = R+e
√
−1γp ⊂ Sdp ∪ {0}. Paying heed to the upper bounds (114) and to

the lemma 2 together with basic features about Fourier transforms discussed in Definition 4, we
notice that Uγp(T, z, ε) stands for
a) a bounded holomorphic function w.r.t T on a domain Rdp,∆ ∩D(0, r0) for some small radius
r0 > 0 where Rdp,∆ is described in (108),
b) a bounded holomorphic application relatively to the couple (z, ε) on Hβ′ ×D(0, ε0), for any
given 0 < β′ < β.
Additionally, since W dp(τ,m, ε) solves (34), Lemma 5 leads to the claim that Uγp(T, z, ε) must
fulfill the singular equation (31) on (Rdp,∆ ∩D(0, r0))×Hβ′ ×D(0, ε0).

In conclusion, the function defined as

(116) up(t, z, ε) = Uγp(εt, z, ε)

represents a bounded holomorphic function w.r.t t on T ∩D(0, σ) for some σ > 0 close enough to
0, ε ∈ Ep, z ∈ Hβ′ for any given 0 < β′ < β, owing to the assumption 3) of Definition 7. Moreover,
up(t, z, ε) solves the main initial value problem (16) on the domain (T ∩D(0, σ))×Hβ′ ×Ep, for
any 0 ≤ p ≤ ς − 1.

In the second half of the proof, we explain the bounds (111). Here, we follow a similar
roadmap based on paths deformations arguments as in our previous work [15]. Indeed, for
l = p, p+ 1, the partial function

τ 7→ W dp(τ,m, ε)

Θq1/k( τεt)τ

is holomorphic on the sector Sdl . By the Cauchy theorem, we can bend each straight halfline
Lγl , l = p, p+ 1 into the union of three curves with appropriate orientation depicted as follows:
1) a halfline Lγl,r1 = [r1,+∞) exp(

√
−1γl) for a given real number r1 > 0,

2) an arc of circle with radius r1 denoted Cr1,γl,γp,p+1 joining the point r1 exp(
√
−1γp,p+1) which

is taken inside the intersection Sdp ∩ Sdp+1 (that is assumed to be non empty, see Definition 7,
2.1) to the halfline Lγl,r1 ,
3) a segment Lγp,p+1,0,r1 = [0, r1] exp(

√
−1γp,p+1).

As a result, the difference up+1 − up can be decomposed into a sum of five integrals along these
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curves,

(117) up+1(t, z, ε)− up(t, z, ε) =
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp+1 ,r1

W dp+1(τ,m, ε)
1

Θq1/k( τεt)
eizm

dτ

τ
dm

− 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp ,r1

W dp(τ,m, ε)
1

Θq1/k( τεt)
eizm

dτ

τ
dm

+
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Cr1,γp+1,γp,p+1

W dp+1(τ,m, ε)
1

Θq1/k( τεt)
eizm

dτ

τ
dm

− 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Cr1,γp,γp,p+1

W dp(τ,m, ε)
1

Θq1/k( τεt)
eizm

dτ

τ
dm

+
1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp,p+1,0,r1

(
W dp+1(τ,m, ε)−W dp(τ,m, ε)

) 1

Θq1/k( τεt)
eizm

dτ

τ
dm

Bounds for the first piece

I1 =

∣∣∣∣∣ 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp+1 ,r1

W dp+1(τ,m, ε)
1

Θq1/k( τεt)
eizm

dτ

τ
dm

∣∣∣∣∣
are now considered. The arguments followed are proximate to the ones displayed in the proof
of Theorem 1 from [18]. Owing to Lemma 1 and the bounds (114), we obtain

I1 ≤
1

πq1/k(2π)1/2

∫ +∞

−∞

∫ +∞

r1

ρ
dp+1

1 (1 + |m|)−µe−β|m|

× exp

(
k2

2

log2(r + δ)

log(q)
+ (α+ ρ

dp+1

2 ) log(r + δ)

)
1

Cq,k∆
r1/2

|εt|1/2
exp

(
−k

2

log2(r/|εt|)
log(q)

)

× exp(−mIm(z))
dr

r

for all ε ∈ Ep+1 ∩ Ep, t ∈ T ∩D(0, σ), z ∈ Hβ′ . We need the next two expansions,

log2(r + δ) = log2(r) + 2 log(r) log(1 +
δ

r
) + log2(1 +

δ

r
),

log2(
r

|εt|
) = log2(r)− 2 log(r) log(|ε|)− 2 log(r) log(|t|) + log2(|ε|) + 2 log(|ε|) log(|t|) + log2(|t|)

Hence,

(118) I1 ≤
ρ
dp+1

1

πq1/k(2π)1/2Cq,k∆
|εt|1/2 exp

(
−k

2

log2(|ε|)
log(q)

)
×
∫ +∞

−∞
exp(−(β − β′)|m|)dm exp

(
− k

log(q)
log(|ε|) log(|t|)

)
exp

(
− k

2 log(q)
log2(|t|)

)
×
∫ +∞

r1

exp

(
− log2(r)

2 log(q)
(k − k2)

)
1

r3/2
exp

(
k2

log(q)
log(r) log(1 +

δ

r
) +

k2

2 log(q)
log2(1 +

δ

r
)

+(α+ ρ
dp+1

2 ) log(r + δ) +
k

log(q)
log(r) log(|t|) +

k

log(q)
log(r) log(|ε|)

)
dr
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for all ε ∈ Ep+1∩Ep, t ∈ T ∩D(0, σ), z ∈ Hβ′ . We now specify estimates for some pieces of these
last upper bounds. Namely, since log(1 + x) ∼ x as x tends to 0, we get a constant A1.1 > 0
(depending on r1, δ) such that

(119) log(r) log(1 +
δ

r
) ≤ A1.1

for all r ≥ r1. Since 0 < ε0 < 1, we also notice that

(120) exp

(
− k

log(q)
log(|ε|) log(|t|)

)
≤ |ε|−

k
log(q)

log(rT )
,

exp

(
k

log(q)
log(r) log(|ε|)

)
≤ |ε|

k
log(q)

log(r1)

for all t ∈ T ∩D(0, σ), ε ∈ Ep+1 ∩ Ep, r ≥ r1. Furthermore,

(121) exp

(
k

log(q)
log(r) log(|t|)

)
≤ |t|

k
log(q)

log(r1)

whenever r1 ≤ r ≤ 1 and 0 < σ < 1 together with

(122) exp

(
k

log(q)
log(r) log(|t|)

)
≤ r

k
log(q)

log(σ)

provided that r ≥ 1. Finally, there exists a constant Kk,r1,q > 0 (depending on k, r1, q) with

(123) sup
x>0

x
k

log(q)
log(r1)

exp

(
− k

2 log(q)
log2(x)

)
≤ Kk,r1,q

The inequality (118) together with the collection of bounds (119), (120), (121), (122), (123)

yield two constants I1.1 > 0 and I1.2 ∈ R (which rely on k, q,∆, k2, δ, r1, ρ
dp+1

1 , ρ
dp+1

2 , β, β′) such
that

(124) I1 ≤ I1.1|ε|I1.2 exp

(
−k

2

log2(|ε|)
log(q)

)
for all ε ∈ Ep+1 ∩ Ep, t ∈ T ∩ D(0, σ), z ∈ Hβ′ . We want now to express these last bounds in
terms of sequences. The discussion hinges on the next lemma

Lemma 12 The following inequality

(125) |ε|−N |ε|I1.2 exp

(
−k

2

log2(|ε|)
log(q)

)
≤ q

I21.2
2k (q−I1.2/k)Nq

N2

2k

holds for all ε ∈ C∗, all integers N ≥ 1.

Proof By performing the change of variable x = log(|ε|) with the help of the computation
already undertaken in Lemma 4, we obtain

exp

(
(I1.2 −N) log(|ε|)− k

2

log2(|ε|)
log(q)

)
≤ sup

x∈R
exp

(
(I1.2 −N)x− k

2

x2

log(q)

)
≤ q

(I1.2−N)2

2k

= q
I21.2
2k (q−I1.2/k)Nq

N2

2k
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for all given ε ∈ C∗ and integer N ≥ 1. 2

Consequently to (124) and (125), two constants I1.3, I1.4 > 0 (depending on I1.1, I1.2, q, k) can
be picked up with

(126) I1 ≤ I1.3(I1.4)Nq
N2

2k |ε|N

whenever ε ∈ Ep+1 ∩ Ep, t ∈ T ∩D(0, σ), z ∈ Hβ′ , for all integers N ≥ 1.
With a similar discussion, we can exhibit comparable bounds for the next term

I2 =

∣∣∣∣∣ 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp ,r1

W dp(τ,m, ε)
1

Θq1/k( τεt)
eizm

dτ

τ
dm

∣∣∣∣∣
Namely, two constants I2.1 > 0 and I2.2 ∈ R (depending on k, q,∆, k2, δ, r1, ρ

dp
1 , ρ

dp
2 , β, β

′) can be
found with

(127) I2 ≤ I2.1|ε|I2.2 exp

(
−k

2

log2(|ε|)
log(q)

)
for all ε ∈ Ep+1 ∩ Ep, t ∈ T ∩ D(0, σ), z ∈ Hβ′ . Furthermore, we can single out two constants
I2.3, I2.4 > 0 (resting on I2.1, I2.2, q, k) such that

(128) I2 ≤ I2.3(I2.4)Nq
N2

2k |ε|N

provided that ε ∈ Ep+1 ∩ Ep, t ∈ T ∩D(0, σ), z ∈ Hβ′ , for all integers N ≥ 1.
In the next step, we turn to the first integral along an arc of circle

(129) I3 =

∣∣∣∣∣ 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Cr1,γp+1,γp,p+1

W dp+1(τ,m, ε)
1

Θq1/k( τεt)
eizm

dτ

τ
dm

∣∣∣∣∣
Making use of Lemma 1 and (114) gives rise to the inequality

(130) I3 ≤
1

πq1/k(2π)1/2

∫ +∞

−∞

∣∣∣∣∣
∫ γp,p+1

γp+1

ρ
dp+1

1 (1 + |m|)−µe−β|m|

× exp

(
k2

2

log2(r1 + δ)

log(q)
+ (α+ ρ

dp+1

2 ) log(r1 + δ)

)
1

Cq,k∆r
1/2
1 /|εt|1/2

× exp

(
−k

2

log2(r1/|εt|)
log(q)

)
exp(−mIm(z))dθ

∣∣∣∣ dm
for all ε ∈ Ep+1 ∩ Ep, t ∈ T ∩D(0, σ), z ∈ Hβ′ . We require once more the expansion

(131) log2(
r1

|εt|
) = log2(r1)− 2 log(r1) log(|ε|)− 2 log(r1) log(|t|) + log2(|ε|)

+ 2 log(|ε|) log |t|+ log2(|t|)
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We deduce that

(132) I3 ≤
2ρ

dp+1

1

πq1/k(2π)1/2Cq,k∆r
1/2
1 (β − β′)

|γp+1 − γp,p+1|

× exp

(
k2

2

log2(r1 + δ)

log(q)
+ (α+ ρ

dp+1

2 ) log(r1 + δ)

)
exp

(
−k

2

log2(r1)

log(q)

)
|εt|1/2 exp

(
−k

2

log2(|ε|)
log(q)

)
× exp

(
k

log(q)
log(r1) log(|ε|)− k

log(q)
log(|ε|) log(|t|)

)
exp

(
k

log(q)
log(r1) log(|t|)

)
× exp

(
−k

2

log2(|t|)
log(q)

)
Owing to the hypothesis 0 < ε0 < 1, we check that (120) holds and bearing in mind (123)
we arrive at the existence of two constants I3.1 > 0 and I3.2 ∈ R (depending on the constants

k, q,∆, k2, δ, r1, ρ
dp+1

1 , ρ
dp+1

2 , β, β′) with

(133) I3 ≤ I3.1|ε|I3.2 exp

(
−k

2

log2(|ε|)
log(q)

)
for all ε ∈ Ep+1∩Ep, t ∈ T ∩D(0, σ), z ∈ Hβ′ . Calling back Lemma 12 gives rise to two additional
constants I3.3, I3.4 > 0 (subjected to I3.1, I3.2, q, k) with

(134) I3 ≤ I3.3(I3.4)Nq
N2

2k |ε|N

for all ε ∈ Ep+1 ∩ Ep, t ∈ T ∩D(0, σ), z ∈ Hβ′ , for all given integers N ≥ 1.
The second integral along an arc of circle

(135) I4 =

∣∣∣∣∣ 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Cr1,γp,γp,p+1

W dp(τ,m, ε)
1

Θq1/k( τεt)
eizm

dτ

τ
dm

∣∣∣∣∣
can be managed in the same way. Indeed, one can single out two constants I4.1 > 0 and I4.2 ∈ R
(relying on k, q,∆, k2, δ, r1, ρ

dp
1 , ρ

dp
2 , β, β

′) such that

(136) I4 ≤ I4.1|ε|I4.2 exp

(
−k

2

log2(|ε|)
log(q)

)
provided that ε ∈ Ep+1 ∩ Ep, t ∈ T ∩ D(0, σ), z ∈ Hβ′ . Moreover, we can find two constants
I4.3, I4.4 > 0 (that hinge on I4.1, I4.2, q, k) such that

(137) I4 ≤ I4.3(I4.4)Nq
N2

2k |ε|N

whenever ε ∈ Ep+1 ∩ Ep, t ∈ T ∩D(0, σ), z ∈ Hβ′ , for all integers N ≥ 1.
In the remaining part of the proof, we inspect the last integral along the segment

(138) I5 =

∣∣∣∣∣ 1

πq1/k(2π)1/2

∫ +∞

−∞

∫
Lγp,p+1,0,r1

(
W dp+1(τ,m, ε)−W dp(τ,m, ε)

)
× 1

Θq1/k( τεt)
eizm

dτ

τ
dm

∣∣∣∣∣
We require a lead-in lemma which supplies exponential flatness for the difference W dp+1 −W dp .
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Lemma 13 For each 0 ≤ p ≤ ς − 1, we can sort two constants KW
p ,MW

p > 0 such that

(139) |W dp+1(τ,m, ε)−W dp(τ,m, ε)| ≤ KW
p exp(−

MW
p

|τ |k′
)(1 + |m|)−µe−β|m|

for all ε ∈ D(0, ε0), all m ∈ R, all τ ∈ Sdp+1 ∩ Sdp ∩D(0, r1) whenever it is assumed that

(140) 0 < r1 ≤ (
δ1 − δ2

∆2
)1/k′

for some fixed 0 < δ2 < δ1 close enough to 0 and any given positive real number ∆2 > 0, under
the convention that W dς = W d0.

Proof we first observe that all the maps u 7→ wdp(u,m, ε), 0 ≤ p ≤ ς − 1, are analytic con-
tinuations on the sector Udp of a unique holomorphic function that we name u 7→ w(u,m, ε)
on the disc D(0, r) which suffers the same bounds (113). Furthermore, the application u 7→
w(u,m, ε) exp(−(u/τ)k

′
)/u is holomorphic on D(0, r) when τ ∈ Sdp+1 ∩ Sdp and its integral is

therefore vanishing along an oriented path described as the union of
a) a segment linking 0 to (r/2) exp(

√
−1γ′p+1)

b) an arc of circle with radius r/2 joining the points (r/2) exp(
√
−1γ′p+1) and (r/2) exp(

√
−1γ′p)

c) a segment attaching (r/2) exp(
√
−1γ′p) and the origin.

As a result, taking heed of the integral representations (112) of W dp+1 and W dp , we can
convert the difference W dp+1 −W dp into a sum of three integrals

(141) W dp+1(τ,m, ε)−W dp(τ,m, ε) = k′
∫
Lγ′p+1,r/2

wdp+1(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

− k′
∫
Lγ′p,r/2

wdp(u,m, ε) exp(−(
u

τ
)k
′
)
du

u
+ k′

∫
Cr/2,γ′p,γ′p+1

w(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

where the integrations paths are two halflines and an arc of circle staying aside from the origin
that are depicted as follows

Lγ′p+1,r/2
= [r/2,+∞) exp(

√
−1γ′p+1), Lγ′p,r/2 = [r/2,+∞) exp(

√
−1γ′p),

Cr/2,γ′p,γ′p+1
= {r

2
exp(
√
−1θ) : θ ∈ [γ′p, γ

′
p+1]}

We consider the first integral along a halfline in the above splitting

J1 =

∣∣∣∣∣∣k′
∫
Lγ′p+1,r/2

wdp+1(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

∣∣∣∣∣∣
The direction γ′p+1 (which might depend on τ) is properly chosen in order that

cos(k′(γ′p+1 − arg(τ))) ≥ δ1

for all τ ∈ Sdp+1∩Sdp , for some fixed δ1 > 0. Besides, let ∆2 > 0 be any given positive real number
(even close to 0). Then, we can find a constant B1.1 > 0 (depending on k1, k

′, δ, q, α, r,∆2) such
that

(142)
k1

2

log2(s+ δ)

log(q)
+ α log(s+ δ) ≤ ∆2s

k′ +B1.1
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for all s ≥ r/2. According to the estimates (113), we get that

(143) J1 ≤ k′
∫ +∞

r/2
$dp+1(1 + |m|)−µe−β|m|s exp

(
k1

2

log2(s+ δ)

log(q)
+ α log(s+ δ)

)
× exp

(
−

cos(k′(γ′p+1 − arg(τ)))

|τ |k′
sk
′
)
ds

s

≤ k′$dp+1eB1.1(1 + |m|)−µe−β|m|
∫ +∞

r/2
exp

(
− sk

′

|τ |k′
(δ1 − |τ |k

′
∆2)

)
ds

≤ k′$dp+1eB1.1(1 + |m|)−µe−β|m|
∫ +∞

r/2
exp

(
− sk

′

|τ |k′
δ2

)
ds

≤ k′$dp+1eB1.1(1 + |m|)−µe−β|m| |τ |
k′

δ2

1

k′(r/2)k′−1

∫ +∞

r/2

δ2

|τ |k′
k′sk

′−1 exp

(
− sk

′

|τ |k′
δ2

)
ds

= k′$dp+1eB1.1(1 + |m|)−µe−β|m| |τ |
k′

δ2

1

k′(r/2)k′−1
exp

(
−(r/2)k

′

|τ |k′
δ2

)

for all ε ∈ D(0, ε0), all m ∈ R, provided that τ ∈ Sdp+1 ∩ Sdp with

(144) |τ | ≤ (
δ1 − δ2

∆2
)1/k′

for a given 0 < δ2 < δ1.
In a similar manner, we disclose bounds for the next integral over a halfline

J2 =

∣∣∣∣∣k′
∫
Lγ′p,r/2

wdp(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

∣∣∣∣∣
Indeed, the direction γ′p (that relies on τ) is properly chosen in order that

cos(k′(γ′p − arg(τ))) ≥ δ1

for all τ ∈ Sdp+1 ∩ Sdp , for some fixed δ1 > 0. The use of (113) together with a record of bounds
ressembling (143) allows

(145) J2 ≤ k′$dpeB1.1(1 + |m|)−µe−β|m| |τ |
k′

δ2

1

k′(r/2)k′−1
exp

(
−(r/2)k

′

|τ |k′
δ2

)

to hold whenever ε ∈ D(0, ε0), m ∈ R, τ ∈ Sdp+1 ∩ Sdp restricted to (144) for given 0 < δ2 < δ1

and ∆2 > 0.
In the remaining part of the lemma, we evaluate the third integral along an arc of circle

J3 =

∣∣∣∣∣∣k′
∫
Cr/2,γ′p,γ′p+1

w(u,m, ε) exp(−(
u

τ
)k
′
)
du

u

∣∣∣∣∣∣
The circle Cr/2,γ′p,γ′p+1

satisfies the lower bounds

cos(k′(θ − arg(τ))) ≥ δ1
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for some fixed δ1 > 0, for all θ ∈ [γ′p, γ
′
p+1] (if γ′p < γ′p+1) or θ ∈ [γ′p+1, γ

′
p] (if γ′p+1 < γ′p) granting

that τ ∈ Sdp+1 ∩ Sdp . Again, the estimates (113) together with (142) for s = r/2 bring on

(146) J3 ≤ k′|
∫ γ′p+1

γ′p

max($dp , $dp+1)(1 + |m|)−µe−β|m| r
2

exp

(
k1

2

log2( r2 + δ)

log(q)
+ α log(

r

2
+ δ)

)

× exp

(
−cos(k′(θ − arg(τ)))

|τ |k′
(
r

2
)k
′
)
dθ| ≤ k′max($dp , $dp+1)|γ′p+1 − γ′p|eB1.1

× (1 + |m|)−µe−β|m| r
2

× exp

(
−(r/2)k

′

|τ |k′
(δ1 − |τ |k

′
∆2)

)
≤ k′max($dp , $dp+1)|γ′p+1 − γ′p|eB1.1

× (1 + |m|)−µe−β|m| r
2
× exp(−(r/2)k

′

|τ |k′
δ2)

for all ε ∈ D(0, ε0), m ∈ R and τ ∈ Sdp+1 ∩ Sdp submitted to (144) for given 0 < δ2 < δ1 and
∆2 > 0.

By collecting the above inequalities (143), (145) and (146) applied to the splitting (141), we
achieve the announced bounds (139). 2

Onwards, we take for granted that the real number r1 > 0 selected in the above deformation
1),2),3) suffers the restriction (140) and 0 < r1 ≤ 1. The bounds (139) in a row with Lemma 1
yield

(147) I5 ≤
KW
p

πq1/k(2π)1/2Cq,k∆

∫ +∞

−∞
exp(−(β − β′)|m|)dm|εt|1/2Ĩ5(εt)

where

Ĩ5(εt) =

∫ r1

0
exp

(
−
MW
p

rk′

)
exp

(
−k

2

log2( r
|εt|)

log(q)

)
1

r3/2
dr

for all ε ∈ Ep+1 ∩ Ep, all t ∈ T ∩D(0, σ), all z ∈ Hβ′ . Bounds control given below in (153) are
now provided for this parameter depending last integral. The ongoing reasoning leans on the
next elementary lemma.

Lemma 14 1) The next inequality

(148) (
1

r
)N exp

(
−
MW
p

rk′

)
≤ CΓ,k′C

N (N/k′)1/2Γ(N/k′)

holds for all integers N ≥ 1, all positive real numbers r > 0, where C = (1/MW
p )1/k′ and

CΓ,k′ > 0 is a constant depending on k′.
2) For all r > 0, all ε, t ∈ C∗, the estimates

(149) (
r

|εt|
)N exp

(
−k

2

log2( r
|εt|)

log(q)

)
≤ q

N2

2k

arise for all integers N ≥ 1.
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Proof For the first item 1), using the change of variable x = (1/r)k
′

we observe that

(150) sup
r>0

(
1

r
)N exp

(
−(

1

r
)k
′
MW
p

)
= sup

x>0
xN/k

′
exp

(
−xMW

p

)
=

(
N

k′MW
p

)N/k′
exp(−N/k′)

for all integers N ≥ 1. On the other hand, from the Stirling formula (25), we get a constant
CΓ,k′ > 0 (depending on k′) such that

(151) e−xxx ≤ CΓ,k′x
1/2Γ(x)

for all x ≥ 1/k′. Gathering (150) and (151) yields (148).
The second item 2) can be treated in a similar way through the successive changes of variables

y = r/|εt| and x = log(y) by using the computation already done in Lemma 4,

sup
r>0,ε,t∈C∗

(
r

|εt|
)N exp

(
−k

2

log2( r
|εt|)

log(q)

)
= sup

y>0
yN exp

(
−k

2

log2(y)

log(q)

)
= sup

x∈R
exp

(
xN − k

2 log(q)
x2

)
= q

N2

2k

whenever N ≥ 1. 2

A consecutive application of (148) and (149) gives rise to the bounds

(152) Ĩ5(εt) ≤ CΓ,k′C
N+1(

N + 1

k′
)1/2Γ(

N + 1

k′
)

∫ r1

0
rN+1 exp

(
−k

2

log2( r
|εt|)

log(q)

)
1

r3/2
dr

= CΓ,k′C
N+1(

N + 1

k′
)1/2Γ(

N + 1

k′
)|εt|N+1

∫ r1

0
(
r

|εt|
)N+1 exp

(
−k

2

log2( r
|εt|)

log(q)

)
1

r3/2
dr

≤ CΓ,k′C
N+1(

N + 1

k′
)1/2Γ(

N + 1

k′
)|εt|N+1

∫ r1

0
r−1/2dr

1

|εt|
q
N2

2k

≤ 2
√
r1CΓ,k′C

N+1(σ)N (
N + 1

k′
)1/2Γ(

N + 1

k′
)q

N2

2k |ε|N

for all ε ∈ C∗, all t ∈ D(0, σ), all integers N ≥ 1. In other words, we get two constants
CI5,1, CI5,2 > 0 (which rely on r1, σ, k

′,MW
p ) such that

(153) Ĩ5(εt) ≤ CI5,1(CI5,2)NΓ(
N + 1

k′
)q

N2

2k |ε|N

whenever ε ∈ C∗, t ∈ D(0, σ) for all integers N ≥ 1.
Finally, blending (147) and (153) yields two constants I5.1, I5.2 > 0 (which rely on

ε0, σ,K
W
p , q, k, Cq,k,∆, β, β

′, CI5,1, CI5,2) with the estimates

(154) I5 ≤ I5.1(I5.2)NΓ(
N + 1

k′
)q

N2

2k |ε|N

provided that ε ∈ Ep+1 ∩ Ep, t ∈ T ∩D(0, σ), z ∈ Hβ′ , for all integers N ≥ 1.
Lastly, the collection of estimates (126), (128), (134), (137) and (154) applied to the splitting

(117) induces the next bounds

(155) sup
t∈T ∩D(0,σ),z∈Hβ′

|up+1(t, z, ε)− up(t, z, ε)|

≤

(
4∑
d=1

Id.3(Id.4)Nq
N2

2k + I5.1(I5.2)NΓ(
N + 1

k′
)q

N2

2k

)
|ε|N
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for all ε ∈ Ep+1 ∩ Ep, all integers N ≥ 1. Since the sequence (Γ(N+1
k′ ))N≥1 grows faster than any

geometric sequence (IN )N≥1 with ratio I > 0, the last inequality (155) warrants the forecast
bounds (111). 2

In the next proposition, we show that the differences (111) of neighboring solutions of (16)
turn out to be flat functions for which accurate bounds are displayed.

Proposition 6 Let {up(t, z, ε)}0≤p≤ς−1 be the set of actual solutions of (16) built up in Theorem
1. Then, we can find constants ϑ > 0, Ãp, B̃p > 0 (which rely on Ap, Bp, k, k

′, q) such that

(156) sup
t∈T ∩D(0,σ),z∈Hβ′

|up+1(t, z, ε)− up(t, z, ε)| ≤ Ãp exp

(
− log(q)

2k
Ψ2(|ε|)

)
where

Ψ(x) =
k

k′ log(q)

(
log(

B̃p
xk′

)− log(log(
B̃p
xk′

))

)
− 1

provided that ε ∈ Ep+1 ∩ Ep with |ε| < ϑ, for all 0 ≤ p ≤ ς − 1, where by convention uς = u0.

Proof Let Ap, Bp > 0 be real numbers and k, k′ ≥ 1 be integers. We define the function

f(x) = inf
N≥1

ApB
N
p Γ(

N + 1

k′
)q

N2

2k xN

for all x > 0. Keeping in mind the Stirling formula (25), we can find two constants C,D > 0
(depending on k′) with

Γ(
N + 1

k′
) ≤ CDN exp

(
N

k′
log(

N

k′
)

)
for all integers N ≥ 1. Hence,

(157) f(x) ≤ h(x) = inf
N≥1

Ap,1B
N
p,1(

N

k′
)
N
k′ q

N2

2k xN

where Ap,1 = ApC and Bp,1 = BpD. In the next part of the proof, we exhibit explicit bounds
for the function h(x). We follow a similar strategy as in the recent work [27]. We select a real
number ϑ1 > 0 small enough in order that for all given x ∈ (0, ϑ1), there exists a positive real
number Ñ > 1 such that

(158)
Ñ

k′
q
Ñk′
k =

1

Bk′
p,1x

k′

We focus on the integer N = bÑc, where bxc denotes the floor function. By construction, we
have N ≤ Ñ . Therefore,

N

k′
q
Nk′
k ≤ Ñ

k′
q
Ñk′
k =

1

Bk′
p,1x

k′

which implies that

BN
p,1x

N ≤ 1

(Nk′ )
N
k′ q

N2

k

and hence

(159) Ap,1B
N
p,1(

N

k′
)
N
k′ q

N2

2k xN ≤ Ap,1q−
N2

2k
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On the other hand, we can express Ñ in term of the variable x by means of the Lambert function.
Namely, we set W (z) as the principal branch of the Lambert function defined on (−e−1,+∞)
and which solves the functional equation

W (z) exp(W (z)) = z

for all z ∈ (−e−1,+∞). Since the relation (158) can be recast in the form(
Ñk′

k
log(q)

)
exp

(
Ñk′

k
log(q)

)
=

(k′)2 log(q)

kBk′
p,1x

k′

we deduce that

(160) Ñ =
k

k′ log(q)
W

(
(k′)2 log(q)

kBk′
p,1x

k′

)

Furthermore, owing to the paper [8], the next sharp lower bounds

(161) W (z) ≥ log(z)− log(log(z))

hold for all z > e. Finally, since Ñ < N + 1, the above facts (159), (160), (161) give rise to the
bounds

(162) Ap,1B
N
p,1(

N

k′
)
N
k′ q

N2

2k xN ≤ Ap,1 exp

(
− log(q)

2k
Ψ2(x)

)
where

Ψ(x) =
k

k′ log(q)

(
log

(
(k′)2 log(q)

kBk′
p,1x

k′

)
− log

(
log

(
(k′)2 log(q)

kBk′
p,1x

k′

)))
− 1

provided that 0 < x < ϑ = min(ϑ1, ϑ2) where ϑ2 = ( (k′)2 log(q)

kBk
′
p,1e

)1/k′ . Finally, from (157) and

(162) we deduce that

f(x) ≤ Ap,1 exp

(
− log(q)

2k
Ψ2(x)

)
whenever 0 < x < ϑ, which implies the forseen bounds (156) when looking back to the estimates
(111). 2

7 Asymptotic expansions in the perturbation parameter

7.1 Asymptotic expansions with double Gevrey and q−Gevrey scales. A
related version of the Ramis-Sibuya theorem.

We first put forward the notion of asymptotic expansion with double Gevrey and q−Gevrey
scales for formal power series introduced by A. Lastra, J. Sanz and the author in the paper [16].
Here we need a version that involves Banach valued functions which represents a straightforward
adaptation of the original setting.
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Definition 8 Let (F, ||.||F) be a complex Banach space. We set k, k′ ≥ 1 as two integers and
q > 1 as a real number. Let E be a bounded sector in C∗ centered at 0 and f : E → F be a
holomorphic function. Then, f is said to possess the formal series

f̂(ε) =
∑
n≥0

anε
n ∈ F[[ε]]

as Gevrey asymptotic expansion of mixed order (1/k′; (q, 1/k)) on E if for each closed proper
subsector W of E centered at 0, one can choose two constants C,M > 0 with

||f(ε)−
N∑
n=0

anε
n||F ≤ CMN+1Γ(

N + 2

k′
)q

(N+1)2

2k |ε|N+1

for all integers N ≥ 0 and any ε ∈ W.

In the literature, the Ramis-Sibuya theorem is known as a cohomological criterion which
ensures the existence of a common Gevrey asymptotic expansion of a given order for families of
sectorial holomorphic functions (see [2], p.121 or [9], Lemma XI-2-6). Here we propose a variant
of this result which is adapted to the Gevrey asymptotic expansions of mixed order disclosed in
the above definition.

Theorem 2 Consider a complex Banach space (F, ||.||F) and set a good covering {Ep}0≤p≤ς−1 in
C∗ (described in Definition 6). Let {Gp}0≤p≤ς−1 be a set of holomorphic maps Gp from Ep into
F. We define the cocycle ∆p(ε) = Gp+1(ε)−Gp(ε), 0 ≤ p ≤ ς − 1, that stands for a holomorphic
function from Zp = Ep+1 ∩ Ep into F, with the convention Eς = E0 and Gς = G0.
Assume that the ensuing two requirements hold.
1) The functions Gp(ε) are bounded on Ep, for 0 ≤ p ≤ ς − 1.
2) The functions ∆p(ε) suffer the next sequential constraint on Zp : there exist two constants
Ap, Bp > 0 with

(163) ||∆p(ε)||F ≤ Ap(Bp)NΓ(
N + 1

k′
)q

N2

2k |ε|N

provided that ε ∈ Zp, for all integers N ≥ 1, all 0 ≤ p ≤ ς − 1. In other words, ∆p(ε) has the
null formal series 0̂ as Gevrey asymptotic expansion of mixed order (1/k′; (q, 1/k)) on Zp, for
0 ≤ p ≤ ς − 1.

Then, all the functions Gp(ε), 0 ≤ p ≤ ς−1, share a common formal power series Ĝ(ε) ∈ F[[ε]]
as Gevrey asymptotic expansion of mixed order (1/k′; (q, 1/k)) on Ep.

Proof The entire discussion leans on the following central lemma

Lemma 15 For all 0 ≤ p ≤ ς − 1, the cocycle ∆p(ε) splits, which means that bounded holomor-
phic functions Ψp : Ep → F can be singled out with the next feature

(164) ∆p(ε) = Ψp+1(ε)−Ψp(ε)

for all ε ∈ Zp, where by convention Ψς = Ψ0. Furthermore, a sequence {ϕm}m≥0 of elements in
F can be built up such that for each 0 ≤ p ≤ ς − 1 and any closed proper subsector W ⊂ Ep with
apex at 0, one can find K̂p, M̂p > 0 with

(165) ||Ψp(ε)−
M∑
m=0

ϕmε
m||F ≤ K̂p(M̂p)

M+1Γ(
M + 2

k′
)q

(M+1)2

2k |ε|M+1

for all ε ∈ W, all integers M ≥ 0.
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Proof The proof mimics the arguments of Lemma XI-2-6 from [9] with fitting adjustment in the
asymptotic expansions of the functions Ψp constructed by means of the Cauchy-Heine transform.

For all 0 ≤ p ≤ ς − 1, we choose a segment

Cp = {te
√
−1θp , t ∈ [0, r]} ⊂ Ep ∩ Ep+1.

These ς segments divide the open punctured disc D(0, r) \ {0} into ς open sectors Ẽ0, . . . , Ẽς−1

where
Ẽp = {ε ∈ C∗/θp−1 < arg(ε) < θp, |ε| < r} , 0 ≤ p ≤ ς − 1,

where by convention θ−1 = θς−1. Let

Ψp(ε) =
−1

2π
√
−1

ς−1∑
h=0

∫
Ch

∆h(ξ)

ξ − ε
dξ

for all ε ∈ Ẽp, for 0 ≤ p ≤ ς−1, be defined as a sum of Cauchy-Heine transforms of the functions
∆h(ε). By deformation of the paths Cp−1 and Cp without moving their endpoints and letting
the other paths Ch, h 6= p − 1, p untouched (with the convention that C−1 = Cς−1), one can
continue analytically the function Ψp onto Ep. Therefore, Ψp defines a holomorphic function on
Ep, for all 0 ≤ p ≤ ς − 1.

Now, take ε ∈ Ep ∩ Ep+1. In order to compute Ψp+1(ε)−Ψp(ε), we write

(166) Ψp(ε) =
−1

2π
√
−1

∫
Ĉp

∆p(ξ)

ξ − ε
dξ +

−1

2π
√
−1

ς−1∑
h=0,h6=p

∫
Ch

∆h(ξ)

ξ − ε
dξ,

Ψp+1(ε) =
−1

2π
√
−1

∫
Čp

∆l(ξ)

ξ − ε
dξ +

−1

2π
√
−1

ς−1∑
h=0,h 6=p

∫
Ch

∆h(ξ)

ξ − ε
dξ

where the paths Ĉp and Čp are obtained by deforming the same path Cp without moving its
endpoints in such a way that:
(a) Ĉp ⊂ Ep ∩ Ep+1 and Čp ⊂ Ep ∩ Ep+1,
(b) Γp,p+1 := −Čp+ Ĉp is a simple closed curve with positive orientation whose interior contains
ε.

Therefore, due to the residue formula, we can write

(167) Ψp+1(ε)−Ψp(ε) =
1

2π
√
−1

∫
Γp,p+1

∆p(ξ)

ξ − ε
dξ = ∆p(ε)

for all ε ∈ Ep ∩ Ep+1, for all 0 ≤ p ≤ ς − 1 (with the convention that Ψς = Ψ0).
In a second step, we derive asymptotic properties of Ψp. We fix an 0 ≤ p ≤ ς − 1 and a

proper closed sector W contained in Ep. Let C̃p (resp. C̃p−1) be a path obtained by deforming
Cp (resp. Cp−1) without moving the endpoints in order that W is contained in the interior of
the simple closed curve C̃p−1 + γp − C̃p (which is itself contained in Ep), where γp is a circular

arc joining the two points re
√
−1θp−1 and re

√
−1θp . We get the representation

(168) Ψp(ε) =
−1

2π
√
−1

∫
C̃p

∆p(ξ)

ξ − ε
dξ +

−1

2π
√
−1

∫
C̃p−1

∆p−1(ξ)

ξ − ε
dξ

+
−1

2π
√
−1

ν−1∑
h=0,h6=p,p−1

∫
Ch

∆h(ξ)

ξ − ε
dξ
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for all ε ∈ W. One assumes that the path C̃p is given as the union of a segment Lp =

{te
√
−1wp/t ∈ [0, r1]} where r1 < r and wp > θp and a curve Γp = {µp(τ)/τ ∈ [0, 1]} such

that µp(0) = r1e
√
−1wp , µp(1) = re

√
−1θp and r1 ≤ |µp(τ)| < r for all τ ∈ [0, 1). We also assume

that there exists a positive number σ < 1 with |ε| ≤ σr1 for all ε ∈ W. By construction of

the path Γp, we get that the function ε 7→ 1
2π
√
−1

∫
Γp

∆p(ξ)
ξ−ε dξ defines an analytic function on the

open disc D(0, r1).

It remains to give estimates for the integral 1
2π
√
−1

∫
Lp

∆p(ξ)
ξ−ε dξ. Let M ≥ 0 be an integer.

From the usual geometric series expansion, one can write

(169)
1

2π
√
−1

∫
Lp

∆p(ξ)

ξ − ε
dξ =

M∑
m=0

αp,mε
m + εM+1Ep,M+1(ε)

where

(170) αp,m =
1

2π
√
−1

∫
Lp

∆l(ξ)

ξm+1
dξ , Ep,M+1(ε) =

1

2π
√
−1

∫
Lp

∆p(ξ)

ξM+1(ξ − ε)
dξ

for all ε ∈ W.
Keeping in mind (163) for the special value N = m + 1 and (170), we get some constants

Ap, Bp > 0 such that

(171) ||αp,m||F ≤
1

2π

∫ r1

0
Ap(Bp)

m+1Γ(
m+ 2

k′
)q

(m+1)2

2k
τm+1

τm+1
dτ

≤ r1Ap
2π

(Bp)
m+1Γ(

m+ 2

k′
)q

(m+1)2

2k

for all 0 ≤ m ≤ M . In particular, we deduce the existence of two constants Âp, B̂p > 0
(depending on Ap, Bp, r1, q, k, k

′) with

(172) ||αp,m||F ≤ Âp(B̂p)mΓ(
m+ 1

k′
)q

m2

2k

for all 0 ≤ m ≤ M . Indeed, recall from [2], Appendix B, that for any given real number a > 0,
Γ(x)xa ∼ Γ(x+ a) as x tends to +∞. Hence, a constant Kk′ > 0 (depending on k′) can be sort
with

(173) Γ(
m+ 2

k′
) ≤ Kk′(

m+ 1

k′
)1/k′Γ(

m+ 1

k′
)

for all m ≥ 0. Consequently, (172) follows from (171) and (173).
Moreover, one can choose a positive number η > 0 (depending on W) such that |ξ − ε| ≥

|ξ| sin(η) for all ξ ∈ Lp and all ε ∈ W. Bringing to mind (163) for the peculiar value N = M + 2
and (170) give rise to two constants Ap, Bp > 0 such that

||Ep,M+1(ε)||F ≤
1

2π sin(η)

∫ r1

0
Ap(Bp)

M+2Γ(
M + 3

k′
)q

(M+2)2

2k
τM+2

τM+2
dτ

≤ r1Ap
2π sin(η)

(Bp)
M+2Γ(

M + 3

k′
)q

(M+2)2

2k

For that reason, we can find constants Ǎp, B̌p > 0 (relying on Ap, Bp, r1, q, k, k
′, η) such that

(174) ||Ep,M+1(ε)||F ≤ Ǎp(B̌p)M+1Γ(
M + 2

k′
)q

(M+1)2

2k
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for all ε ∈ W. Namely, from (173) we notice that

Γ(
M + 3

k′
) ≤ Kk′(

M + 2

k′
)1/k′Γ(

M + 2

k′
)

Using comparable arguments, one can give estimates of the form (169) (170) (172) (174) for the
other integrals

−1

2π
√
−1

∫
C̃p−1

∆2
p−1(ξ)

ξ − ε
dξ ,

−1

2π
√
−1

∫
Ch

∆2
h(ξ)

ξ − ε
dξ

for all h 6= p, p− 1.
As a consequence, for any 0 ≤ p ≤ ς − 1, there exist coefficients ϕp,m ∈ F, m ≥ 0 and two

constants K̂p, M̂p > 0 such that

(175) ||Ψp(ε)−
M∑
m=0

ϕp,mε
m||F ≤ K̂p(M̂p)

M+1Γ(
M + 2

k′
)q

(M+1)2

2k |ε|M+1

for all integers M ≥ 0, all ε ∈ W.
Besides, the identity (167) and the sequential assumption (163) imply in particular that the

difference Ψp+1(ε)−Ψp(ε) has the null formal series 0̂ as asymptotic expansion (in the Poincaré
sense) on Zp. Owing the to the unicity of the asymptotic expansions on sectors, we deduce
that all the formal series

∑
m≥0 ϕp,mε

m, 0 ≤ p ≤ ς − 1, are equal to some formal series denoted

Ĝ(ε) =
∑

m≥0 ϕmε
m ∈ E[[ε]]. The Lemma 15 follows. 2

We introduce the bounded holomorphic functions

ap(ε) = Gp(ε)−Ψp(ε)

for all 0 ≤ p ≤ ς − 1, all ε ∈ Ep. By definition, for any p ∈ {0, ..., ς − 1}, we observe that

ap+1(ε)− ap(ε) = Gp+1(ε)−Gp(ε)−∆p(ε) = 0

for all ε ∈ Zp. Therefore, each ap(ε) stands for the restriction on Ep of a global holomorphic
function called a(ε) on D(0, r) \ {0}. Since a(ε) remains bounded on D(0, r) \ {0}, the origin
turns out to be a removable singularity for a(ε) which, as a result, defines a convergent power
series on D(0, r).

Finally, one can recast
Gp(ε) = a(ε) + Ψp(ε)

for all ε ∈ Ep, all 0 ≤ p ≤ ς − 1. Furthermore, a(ε) represents a convergent power series and
Ψp(ε) has the formal series Ĝ(ε) =

∑
m≥0 ϕmε

m as Gevrey asymptotic expansion of mixed order
(1/k′; (q, 1/k)) on Ep, for all 0 ≤ p ≤ ς − 1. The conclusion of Theorem 2 follows. 2

7.2 Parametric Gevrey asymptotic expansions of mixed order for the actual
solutions of the main initial value problem

Within this subsection, we explain the second principal result of our work. Namely,

Theorem 3 We set F as the Banach space of complex valued bounded holomorphic functions
on the product (T ∩D(0, σ))×Hβ′ equipped with the supremum norm where the sector T , radius
σ and width β′ are settled in Theorem 1.
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Then, for all 0 ≤ p ≤ ς − 1, the bounded holomorphic functions ε 7→ up(t, z, ε) from Ep into
F constructed in Theorem 1 share a common formal power series

û(t, z, ε) =
∑
m≥0

hm(t, z)εm ∈ F[[ε]]

as Gevrey asymptotic expansion of mixed order (1/k′; (q, 1/k)). Videlicet, for all 0 ≤ p ≤ ς − 1,
two constants Cp,Mp > 0 can be found with

(176) sup
t∈T ∩D(0,σ),z∈Hβ′

|up(t, z, ε)−
n∑

m=0

hm(t, z)εm| ≤ CpMn+1
p Γ(

n+ 2

k′
)q

(n+1)2

2k |ε|n+1

for all integers n ≥ 1, provided that ε ∈ Ep.

Proof We focus on the set of functions up(t, z, ε), 0 ≤ p ≤ ς − 1 constructed in Theorem 1. For
all 0 ≤ p ≤ ς − 1, we set

Gp(ε) := (t, z) 7→ up(t, z, ε)

Each Gp defines a bounded holomorphic map from Ep into the Banach space F described in
the statement of Theorem 3. Furthermore, the bounds (111) imply that the cocycle ∆p(ε) =
Gp+1(ε) − Gp(ε) fulfills the sequential bounds (163) on Zp = Ep+1 ∩ Ep for any 0 ≤ p ≤ ς − 1.
Then, the theorem 2 can be applied in order to get a formal power series Ĝ(ε) ∈ F[[ε]] which
stands for the Gevrey asymptotic expansion of mixed order (1/k′; (q, 1/k)) of each Gp(ε) on Ep,
for all 0 ≤ p ≤ ς − 1. 2
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