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1 Introduction

Let us recall that a linear operator L acting from a Banach space E into another Banach
space F satisfies the Fredholm property if its image is closed, the dimension of its kernel
and the codimension of its image are finite. As a consequence, the problem Lu = f is
solvable if and only if φi(f) = 0 for a finite number of functionals φi from the dual space F ∗.
These properties of Fredholm operators are extensively used in many methods of linear and
nonlinear analysis.

Elliptic equations in bounded domains with a sufficiently smooth boundary satisfy the
Fredholm property if the ellipticity condition, proper ellipticity and Lopatinskii conditions
are fulfilled (see e.g. [1], [9], [12]). This is the main result of the theory of linear elliptic
problems. In the case of unbounded domains, these conditions may not be sufficient and the
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Fredholm property may not be satisfied. For example, Laplace operator, Lu = ∆u, in Rd

does not satisfy the Fredholm property when considered in Hölder spaces, L : C2+α(Rd) →
Cα(Rd), or in Sobolev spaces, L : H2(Rd) → L2(Rd).

Linear elliptic problems in unbounded domains satisfy the Fredholm property if and only
if, in addition to the conditions stated above, limiting operators are invertible (see [14]). In
some trivial cases, limiting operators can be explicitly constructed. For example, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

where the coefficients of the operator have limits at infinity,

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x),

the limiting operators are:

L±u = a±u
′′ + b±u

′ + c±u.

Since the coefficients are constant, the essential spectrum of the operator, that is the set of
complex numbers λ for which the operator L − λ does not satisfy the Fredholm property,
can be explicitly found using the Fourier transform:

λ±(ξ) = −a±ξ
2 + b±iξ + c±, ξ ∈ R.

Invertibility of limiting operators is equivalent to the condition that the essential spectrum
does not contain the origin.

In the case of general elliptic problems, the same assertions hold true. The Fredholm
property is satisfied if the essential spectrum does not contain the origin or if the limiting
operators are invertible. However, these conditions may not be explicitly written.

In the case of non-Fredholm operators the usual solvability conditions may not be ap-
plicable and solvability conditions are, in general, not known. There are some classes of
operators for which solvability conditions are obtained. Let us illustrate them with the
following example. Consider the equation

Lu ≡ ∆u+ au = f (1.1)

in Rd, where a is a positive constant. The operator L coincides with its limiting operators.
The homogeneous problem has a nonzero bounded solution. Hence the Fredholm property
is not satisfied. However, since the operator has constant coefficients, we can apply the
Fourier transform and find the solution explicitly. Solvability conditions can be formulated
as follows. If f ∈ L2(Rd) and xf ∈ L1(Rd), then there exists a solution of this equation in
H2(Rd) if and only if

(
f(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
a a.e.
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(see [21]). Here and further down Sd
r denotes the sphere in Rd of radius r centered at

the origin. Hence, though the operator does not satisfy the Fredholm property, solvability
conditions are formulated similarly. However, this similarity is only formal because the range
of the operator is not closed.

In the case of the operator with a potential,

Lu ≡ ∆u+ a(x)u = f,

Fourier transform is not directly applicable. Nevertheless, solvability conditions in R3 can
be obtained by a rather sophisticated application of the theory of self-adjoint operators (see
[18]). As before, solvability conditions are formulated in terms of orthogonality to solutions
of the homogeneous adjoint problem. There are several other examples of linear elliptic
operators without Fredholm property for which solvability conditions can be obtained (see
[14]-[21]). The bi-Laplacian is relevant to the studies of the solvability conditions for a
linearized Cahn-Hilliard problem (see e.g. [15]). The boundedness of the gradient of a
solution for the biharmonic equation was proved in [10]. The behavior near the boundary
of solutions to the Dirichlet problem for the biharmonic operator was investigated in [11].

Solvability relations play a crucial role in the analysis of nonlinear elliptic problems. In
the case of non Fredholm operators, in spite of some progress in understanding of linear
equations, there exist only few examples where nonlinear non-Fredholm operators are ana-
lyzed (see [4]-[6]). In the present article we consider another class of systems of nonlinear
equations, for which the Fredholm property may not be satisfied:

∂uk

∂t
= −∆2uk+a2kuk+

∫

Ω

Gk(x−y)Fk(u1(y, t), u2(y, t), ..., uN(y, t), y)dy, 1 ≤ k ≤ N, (1.2)

generalizing the results obtained in [22] for the system of equations analogous to (1.2)
but containing the standard Laplace operator. Here all ak > 0 and Ω is a domain in
Rd, d = 1, 2, 3, the more physically interesting dimensions. In population dynamics the
integro-differential equations describe models with intra-specific competition and nonlocal
consumption of resources (see e.g. [2], [3], [7]). The linear parts of the corresponding oper-
ators here are similar to problem (1.1) above, they only contain the negative bi-Laplacian.
The nonlinear functions here Fk(u1, u2, ..., uN , y) depend on the vector function

u := (u1, u2, ..., uN) ∈ R
N . (1.3)

We will use the explicit form of solvability relations and will study the existence of stationary
solutions of the nonlinear system.

2 Formulation of the results

The nonlinear part of system (1.2) will satisfy the following regularity conditions.
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Assumption 1. Functions Fk(u, x) : R
N × Ω → R, 1 ≤ k ≤ N are such that

√√√√
N∑

k=1

F 2
k (u, x) ≤ K|u|RN + h(x) for u ∈ R

N , x ∈ Ω (2.1)

with a constant K > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Moreover, they are Lipschitz
continuous functions, such that for any u(1),(2) ∈ RN , x ∈ Ω

√√√√
N∑

k=1

(Fk(u(1), x)− Fk(u(2), x))2 ≤ L|u(1) − u(2)|RN , (2.2)

with a constant L > 0.

Here and below the norm of a vector function given by (1.3) is

|u|RN :=

√√√√
N∑

k=1

u2
k.

Obviously, the stationary solutions of (1.2), if they exist, will satisfy the system of nonlocal
elliptic equation

−∆2uk +

∫

Ω

Gk(x− y)Fk(u1(y), u2(y), ..., uN(y), y)dy+ a2kuk = 0, ak > 0, 1 ≤ k ≤ N.

Let us introduce the auxiliary problem

∆2uk − a2kuk =

∫

Ω

Gk(x− y)Fk(v1(y), v2(y), ..., vN(y), y)dy, ak > 0, 1 ≤ k ≤ N. (2.3)

We denote

(f1(x), f2(x))L2(Ω) :=

∫

Ω

f1(x)f̄2(x)dx, (2.4)

with a slight abuse of notations when these functions are not square integrable, like for
instance those involved in orthogonality relations (2.5) and (2.6) below. Indeed, if f1(x) ∈
L1(Ω) and f2(x) ∈ L∞(Ω), the integral in the right side of (2.4) makes sense. In the first
part of the article we consider the case of Ω = Rd, 1 ≤ d ≤ 3, such that the appropriate
Sobolev space is equipped with the norm

‖u‖2H4(Rd,RN ) :=

N∑

k=1

‖uk‖2H4(Rd) =

N∑

k=1

{‖uk‖2L2(Rd) + ‖∆2uk‖2L2(Rd)},

with u(x) : Rd → RN . The main issue for the problem above is that the operators
∆2 − a2k : H4(Rd) → L2(Rd), ak > 0, 1 ≤ k ≤ N fail to satisfy the Fredholm property,
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which is the obstacle to solve problem (2.3). The similar situations but in linear problems,
both self- adjoint and non self-adjoint involving non Fredholm second or fourth order dif-
ferential operators or even systems of equations with non Fredholm operators have been
studied extensively in recent years (see [13], [14], [15], [16], [17], [18], [19], [20], [21] ). How-
ever, we manage to prove that system (2.3) in this case defines a map Ta : H4(Rd,RN) →
H4(Rd,RN), ak > 0, 1 ≤ k ≤ N , which is a strict contraction under the given technical
conditions. Let us make the following assumption on the integral kernels involved in the
nonlocal parts of (2.3).

Assumption 2. Let 1 ≤ k ≤ N, N ≥ 2, Gk(x) : Rd → R, Gk(x) ∈ L1(Rd), xGk(x) ∈
L1(Rd), 1 ≤ d ≤ 3 and all ak > 0. Let

(
Gk(x),

e±i
√
akx

√
2π

)

L2(R)

= 0, d = 1 (2.5)

and (
Gk(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
ak
, d = 2, 3. (2.6)

Let us use the hat symbol to designate the standard Fourier transform

Ĝk(p) :=
1

(2π)
d
2

∫

Rd

Gk(x)e
−ipxdx, p ∈ R

d, (2.7)

such that

‖Ĝk(p)‖L∞(Rd) ≤
1

(2π)
d
2

‖Gk‖L1(Rd) (2.8)

We define the following auxiliary quantities

Mk := max
{∥∥∥ Ĝk(p)

p4 − a2k

∥∥∥
L∞(Rd)

,

∥∥∥p
4Ĝk(p)

p4 − a2k

∥∥∥
L∞(Rd)

}
, 1 ≤ k ≤ N, (2.9)

where all ak > 0. In our notations p4 stands for |p|4 with p ∈ Rd, d ≤ 3. Note that
expressions (2.9) are finite by means of the first lemma of the Appendix of [23] under our
Assumption 2. This lemma is a trivial generalization of Lemmas A1 and A2 of [19] when
the standard Laplace operator in the integro-differential equation is being replaced by the
bi-Laplacian, under the same orthogonality conditions (2.5) and (2.6). Thus, we define

M = maxMk, 1 ≤ k ≤ N. (2.10)

We have the following proposition.

Theorem 3. Let Ω = Rd, d ≤ 3, Assumptions 1 and 2 hold and
√
2(2π)

d
2ML < 1.
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Then the map Tav = u on H4(Rd,RN) defined by the system of equations (2.3) has a
unique fixed point v(a) : Rd → RN , which is the only stationary solution of problem (1.2) in
H4(Rd,RN).

This fixed point v(a) is nontrivial provided the intersection of supports of the Fourier trans-

forms of functions suppF̂k(0, x)(p) ∩ suppĜk(p) is a set of nonzero Lebesgue measure in Rd

for some 1 ≤ k ≤ N .

In the second part of the work we consider the analogous system on the finite interval
Ω = I := [0, 2π] with periodic boundary conditions for the solution vector function and its
first three derivatives. We assume the following about the integral kernels involved in the
nonlocal parts of system (2.3) in this case.

Assumption 4. Let Ω = I, 1 ≤ k ≤ N, N ≥ 2, Gk(x) : I → R, Gk(x) ∈ L1(I) with
Gk(0) = Gk(2π) and 1 ≤ m ≤ N − 1, m ∈ N.

I) Let ak > 0 and ak 6= n2, n ∈ Z for 1 ≤ k ≤ m.

II) Let ak = n2
k, nk ∈ N and

(
Gk(x),

e±inkx

√
2π

)

L2(I)

= 0, m+ 1 ≤ k ≤ N (2.11)

Let Fk(u, 0) = Fk(u, 2π) for u ∈ RN and k = 1, ..., N .

We introduce the Fourier transform for the functions on the [0, 2π] interval as

Gk,n :=

∫ 2π

0

Gk(x)
e−inx

√
2π

dx, n ∈ Z. (2.12)

Similarly to the whole space case we define

Nk := max

{∥∥∥∥
Gk,n

n4 − a2k

∥∥∥∥
l∞

,

∥∥∥∥
n4Gk,n

n4 − a2k

∥∥∥∥
l∞

}
, 1 ≤ k ≤ m, (2.13)

Nk := max

{∥∥∥∥
Gk,n

n4 − n4
k

∥∥∥∥
l∞

,

∥∥∥∥
n4Gk,n

n4 − n4
k

∥∥∥∥
l∞

}
, m+ 1 ≤ k ≤ N. (2.14)

By means of the second lemma of the Appendix of [23] under Assumption 4 above the
quantities given by (2.13) and (2.14) are finite. This lemma is an easy generalization of
Lemma A3 of [19] when the standard Laplace operator considered on the interval I with
periodic boundary conditions is replaced by the bi-Laplacian, under the same orthogonality
relations (2.11). This allows us to define

N := maxNk, 1 ≤ k ≤ N (2.15)
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with Nk defined in formulas (2.13) and (2.14). For the studies of the existence of solutions
of our problem we use the corresponding function spaces

H4(I) = {u(x) : I → R | u(x), u′′′′(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π),

u′′(0) = u′′(2π), u′′′(0) = u′′′(2π)}.
Then we introduce the following auxiliary constrained subspaces

H4
k(I) := {u ∈ H4(I) |

(
u(x),

e±inkx

√
2π

)
L2(I)

= 0}, nk ∈ N, m+ 1 ≤ k ≤ N, (2.16)

with the goal of having uk(x) ∈ H4
k(I), m+ 1 ≤ k ≤ N . The constrained subspaces defined

above are Hilbert spaces as well (see e.g. Chapter 2.1 of [8]). The resulting space used for
establishing the existence of solutions u(x) : I → RN of system (2.3) will be the direct sum
of the spaces mentioned above, namely

H4
c (I,R

N) := ⊕m
k=1H

4(I)⊕N
k=m+1 H

4
k(I),

such that the corresponding Sobolev norm is given by

‖u‖2H4
c (I,R

N ) =

N∑

k=1

{‖uk‖2L2(I) + ‖u′′′′
k ‖2L2(I)},

with u(x) : I → RN . Let us prove that the system of equations (2.3) in this case defines a map
τa on the above mentioned space which will be a strict contraction under our assumptions.

Theorem 5. Let Ω = I, Assumptions 1 and 4 hold and 2
√
πNL < 1.

Then the map τav = u on H4
c (I,R

N) defined by the system of equations (2.3) has a unique
fixed point v(a) : I → RN , the only stationary solution of problem (1.2) in H4

c (I,R
N).

This fixed point v(a) is nontrivial provided the Fourier coefficients Gk,nFk(0, x)n 6= 0 for some
k = 1, ..., N and some n ∈ Z.

Remark. We use the constrained subspaces H4
k(I), such that the operators

d4

dx4
− n4

k : H
4
k(I) → L2(I)

which possesses the Fredholm property, have empty kernels.

We conclude the article with the studies of our system on the product of sets, where one is
the finite interval with periodic boundary conditions as before and another is the whole space
of dimension not exceeding two. Thus, in our notations Ω = I × Rd = [0, 2π]× Rd, d = 1, 2
and x = (x1, x⊥) with x1 ∈ I and x⊥ ∈ Rd. We make the following assumption about the
integral kernels involved in the nonlocal parts of system (2.3) in such case.
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Assumption 6. Let Ω = I × Rd, d = 1, 2, 1 ≤ k ≤ N, N ≥ 2, Gk(x) : Ω → R, Gk(x) ∈
L1(Ω), Gk(0, x⊥) = Gk(2π, x⊥) for x⊥ ∈ Rd a.e. and 1 ≤ m ≤ N − 1, m ∈ N.

I) Let n2
k < ak < (nk + 1)2, nk ∈ Z+ = N ∪ {0}, x⊥Gk(x) ∈ L1(Ω),

(
Gk(x1, x⊥),

einx1

√
2π

e±i
√

ak−n2x⊥

√
2π

)

L2(Ω)

= 0, |n| ≤ nk, d = 1, (2.17)

(
Gk(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S2√
ak−n2

a.e., |n| ≤ nk, d = 2. (2.18)

for 1 ≤ k ≤ m.

II) Let ak = n2
k, nk ∈ N, x2

⊥Gk(x) ∈ L1(Ω),

(
Gk(x1, x⊥),

einx1

√
2π

e±i
√

n2
k
−n2x⊥

√
2π

)

L2(Ω)

= 0, |n| ≤ nk − 1, d = 1, (2.19)

(
Gk(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S2√
n2
k
−n2

a.e., |n| ≤ nk − 1, d = 2, (2.20)

(
Gk(x1, x⊥),

e±inkx1

√
2π

)

L2(Ω)

= 0,

(
Gk(x1, x⊥),

e±inkx1

√
2π

x⊥, s

)

L2(Ω)

= 0, (2.21)

for 1 ≤ s ≤ d, m + 1 ≤ k ≤ N . Let Fk(u, 0, x⊥) = Fk(u, 2π, x⊥) for x⊥ ∈ Rd a.e., u ∈ RN

and 1 ≤ k ≤ N .

Let Gk(x) be a function on our product of sets, Gk(x) : Ω = I × Rd → R, d =
1, 2, Gk(0, x⊥) = Gk(2π, x⊥) for x⊥ ∈ Rd a.e., such that its Fourier transform on the product
of sets is given by

Ĝk,n(p) :=
1

(2π)
d+1

2

∫

Rd

dx⊥e
−ipx⊥

∫ 2π

0

Gk(x1, x⊥)e
−inx1dx1, p ∈ R

d, n ∈ Z. (2.22)

The norm

‖Ĝk,n(p)‖L∞
n,p

:= sup{p∈Rd, n∈Z}|Ĝk,n(p)| ≤
1

(2π)
d+1

2

‖Gk‖L1(Ω) (2.23)

and Gk(x) =
1

(2π)
d+1

2

∞∑

n=−∞

∫

Rd

Ĝk,n(p)e
ipx⊥einx1dp. It is also helpful to introduce the Fourier

transform only in the first variable, namely

Gk,n(x⊥) :=

∫ 2π

0

Gk(x1, x⊥)
e−inx1

√
2π

dx1, n ∈ Z. (2.24)
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Let us define ξ
(a)
k,n(p) :=

Ĝk,n(p)

(p2 + n2)2 − a2k
with 1 ≤ k ≤ N, n ∈ Z, p ∈ Rd, d = 1, 2, ak > 0

and introduce

Mk := max{‖ξ(a)k,n(p)‖L∞
n,p
, ‖(p2 + n2)2ξ

(a)
k,n(p)‖L∞

n,p
}, 1 ≤ k ≤ N. (2.25)

Expressions (2.25) are finite by means of the third and the last lemmas of the Appendix of
[23] under our Assumption 6. These lemmas are the trivial generalizations of Lemmas A5
and A6 of [19] when the Laplace operator in our domain Ω is replaced by the bi-Laplacian,
under the same orthogonality conditions (2.17), (2.18), (2.19), (2.20), (2.21). This enables
us to define

M = max1≤k≤NMk. (2.26)

The total Laplace operator in this context will be given by ∆ :=
∂2

∂x2
1

+
d∑

s=1

∂2

∂x2
⊥,s

. The

corresponding Sobolev space for our problem is H4(Ω,RN) of vector functions u(x) : Ω →
RN , such that for k = 1, ..., N

uk(x), ∆2uk(x) ∈ L2(Ω), uk(0, x⊥) = uk(2π, x⊥),

∂uk

∂x1

(0, x⊥) =
∂uk

∂x1

(2π, x⊥),
∂2uk

∂x2
1

(0, x⊥) =
∂2uk

∂x2
1

(2π, x⊥),
∂3uk

∂x3
1

(0, x⊥) =
∂3uk

∂x3
1

(2π, x⊥),

with x⊥ ∈ Rd a.e. It is equipped with the norm

‖u‖2H4(Ω,RN ) =

N∑

k=1

{‖uk‖2L2(Ω) + ‖∆2uk‖2L2(Ω)}.

Analogously to the whole space case treated in Theorem 3 above, the operators ∆2 − a2k :
H4(Ω) → L2(Ω), ak > 0 are non Fredholm. Let us establish that system (2.3) in this
context defines a map ta : H4(Ω,RN ) → H4(Ω,RN), a strict contraction under the given
technical conditions.

Theorem 7. Let Ω = I × Rd, d = 1, 2, Assumptions 1 and 6 hold and
√
2(2π)

d+1

2 ML < 1.

Then the map tav = u on H4(Ω,RN ) defined by system (2.3) has a unique fixed point v(a) :
Ω → RN , which the only stationary solution of the system of equations (1.2) in H4(Ω,RN ).

This fixed point v(a) is nontrivial provided that for some 1 ≤ k ≤ N and a certain n ∈ Z the
intersection of supports of the Fourier transforms of functions suppF̂k(0, x)n(p)∩suppĜk,n(p)
is a set of nonzero Lebesgue measure in Rd.

Remark. Note that the maps discussed above act on real valued vector functions by virtue
of the assumptions on Fk(u, x) and Gk(x), 1 ≤ k ≤ N involved in the nonlocal terms of the
system of equations (2.3).
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3 The Problem in the Whole Space

Proof of Theorem 3. Let us first suppose that in the case of Ω = Rd for some v ∈ H4(Rd,RN)
there exist two solutions u(1),(2) ∈ H4(Rd,RN) of system (2.3). Then their difference w(x) :=
u(1)(x)− u(2)(x) ∈ H4(Rd,RN) will satisfy the homogeneous system of equations

∆2wk = a2kwk, 1 ≤ k ≤ N.

Since the bi-Laplacian acting in the whole space does not have any nontrivial square inte-
grable eigenfunctions, w(x) vanishes a.e. in Rd.

Let us choose arbitrarily v(x) ∈ H4(Rd,RN). We apply the standard Fourier transform
(2.7) to both sides of (2.3). This gives us

ûk(p) = (2π)
d
2

Ĝk(p)f̂k(p)

p4 − a2k
, k = 1, ..., N. (3.1)

Here f̂k(p) denotes the Fourier image of Fk(v(x), x). Clearly, we have the upper bounds

|ûk(p)| ≤ (2π)
d
2Mk|f̂k(p)| and |p4ûk(p)| ≤ (2π)

d
2Mk|f̂k(p)|, k = 1, ..., N,

where Mk, k = 1, ..., N are finite by virtue of the first lemma of the Appendix of [23] under
Assumption 2 above. This enables us to derive the estimate from above for the norm

‖u‖2H4(Rd,RN ) =
N∑

k=1

{‖ûk(p)‖2L2(Rd) + ‖p4ûk(p)‖2L2(Rd)} ≤ 2(2π)dM2
N∑

k=1

‖Fk(v(x), x)‖2L2(Rd),

which is finite by means of (2.1) of Assumption 1 for |v(x)|RN ∈ L2(Rd). Hence, for any
v(x) ∈ H4(Rd,RN) there is a unique solution u(x) ∈ H4(Rd,RN) of system (2.3) with its
Fourier transform given by (3.1), such that the map Ta : H4(Rd,RN) → H4(Rd,RN) is well
defined. This allows us to choose arbitrarily v(1),(2)(x) ∈ H4(Rd,RN) such that their images
u(1),(2) = Tav

(1),(2) ∈ H4(Rd,RN). Thus,

∆2u
(1)
k − a2ku

(1)
k =

∫

Rd

Gk(x− y)Fk(v
(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy, 1 ≤ k ≤ N,

∆2u
(2)
k − a2ku

(2)
k =

∫

Rd

Gk(x− y)Fk(v
(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy, 1 ≤ k ≤ N.

We apply standard Fourier transform (2.7) to both sides of these systems of equations. This
gives us

û
(1)
k (p) = (2π)

d
2

Ĝk(p)f̂
(1)
k (p)

p4 − a2k
, û

(2)
k (p) = (2π)

d
2

Ĝk(p)f̂
(2)
k (p)

p4 − a2k
, 1 ≤ k ≤ N.

10



Here f̂
(j)
k (p) stands for the Fourier transform of Fk(v

(j(x), x), j = 1, 2. Evidently, for k =
1, ..., N , we have

|û(1)
k (p)− û

(2)
k (p)| ≤ (2π)

d
2M |f̂ (1)

k (p)− f̂
(2)
k |, |p4û(1)

k (p)−p4û
(2)
k (p)| ≤ (2π)

d
2M |f̂ (1)

k (p)− f̂
(2)
k |.

Hence, for the appropriate norms of our vector functions we derive

‖u(1) − u(2)‖2H4(Rd,RN ) =

N∑

k=1

{‖û(1)
k (p)− û

(2)
k (p)‖2L2(Rd) + ‖p4û(1)

k (p)− p4û
(2)
k (p)‖2L2(Rd)} ≤

≤ 2(2π)dM2

N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(Rd).

Apparently, v
(1),(2)
k (x) ∈ H4(Rd) ⊂ L∞(Rd), d ≤ 3 by means of the Sobolev embedding. By

virtue of condition (2.2), we easily arrive at

‖Tav
(1) − Tav

(2)‖H4(Rd,RN ) ≤
√
2(2π)

d
2ML‖v(1) − v(2)‖H4(Rd,RN ),

with the constant in the right side of this estimate less than one via the assumption of the
theorem. Therefore, by means of the Fixed Point Theorem, there exists a unique function
v(a) ∈ H4(Rd,RN) with the property Tav

(a) = v(a), which is the only stationary solution
of system (1.2) in H4(Rd,RN) . Suppose v(a)(x) vanishes a.e. in Rd. This will imply the
contradiction to our assumption that for some k = 1, ..., N the Fourier images of Gk(x) and
Fk(0, x) do not vanish on some set of nonzero Lebesgue measure in Rd.

4 The Problem on the Finite Interval

Proof of Theorem 5. First we suppose that for some certain v ∈ H4
c (I,R

N) there exist
two solutions u(1),(2) ∈ H4

c (I,R
N) of system (2.3) with Ω = I. Then the vector function

w(x) := u(1)(x) − u(2)(x) ∈ H4
c (I,R

N) will be a solution of the homogeneous system of
equations

w′′′′
k = a2kwk, 1 ≤ k ≤ N.

In case I) of Assumption 4 above we have ak > 0, ak 6= n2, n ∈ Z for 1 ≤ k ≤ m. Therefore,

a2k is not an eigenvalue of the operator
d4

dx4
: H4(I) → L2(I), such that wk(x) = 0 in I for

1 ≤ k ≤ m. By the similar reasoning, using the constrained subspace (2.16), we show that
wk(x) vanishes identically in I when m+ 1 ≤ k ≤ N .

We choose arbitarily v(x) ∈ H4
c (I,R

N) and apply Fourier transform (2.12) to system
(2.3) considered on the interval I. This yields

uk,n =
√
2π

Gk,nfk,n

n4 − a2k
, 1 ≤ k ≤ N, n ∈ Z, (4.1)

11



where fk,n := Fk(v(x), x)n. Clearly, for the transforms of the fourth derivatives we easily
derive

(u′′′′
k )n =

√
2π

n4Gk,nfk,n

n4 − a2k
, 1 ≤ k ≤ N, n ∈ Z.

Hence,

|uk,n| ≤
√
2πNk|fk,n|, |n4uk,n| ≤

√
2πNk|fk,n|, 1 ≤ k ≤ N, n ∈ Z,

with Nk, 1 ≤ k ≤ N finite by means of the second lemma of the Appendix of [23] under
our Assumption 4 above. This enables us to estimate

‖u‖2H4
c (I,R

N ) =

N∑

k=1

[ ∞∑

n=−∞
|uk,n|2 +

∞∑

n=−∞
|n4uk,n|2

]
≤ 4πN 2

N∑

k=1

‖Fk(v(x), x)‖2L2(I) < ∞

due to (2.1) of Assumption 1 for |v(x)|RN ∈ L2(I). Hence, for an arbitrary v(x) ∈ H4
c (I,R

N)
there is a unique u(x) ∈ H4

c (I,R
N), which satisfies system (2.3) with its Fourier image given

by (4.1), such that the map τa : H
4
c (I,R

N) → H4
c (I,R

N) is well defined.
Let us consider the arbitrary v(1),(2) ∈ H4

c (I,R
N). Their images under the map discussed

above u(1),(2) = τav
(1),(2) ∈ H4

c (I,R
N), such that

u
(1)
k

′′′′ − a2ku
(1)
k =

∫ 2π

0

Gk(x− y)Fk(v
(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy, 1 ≤ k ≤ N,

u
(2)
k

′′′′ − a2ku
(2)
k =

∫ 2π

0

Gk(x− y)Fk(v
(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy, 1 ≤ k ≤ N.

Let us apply Fourier transform (2.12) to both sides of these systems to arrive at

u
(1)
k,n =

√
2π

Gk,nf
(1)
k,n

n4 − a2k
, u

(2)
k,n =

√
2π

Gk,nf
(2)
k,n

n4 − a2k
, 1 ≤ k ≤ N, n ∈ Z,

where f
(j)
k,n := Fk(v

(j)(x), x)n, j = 1, 2. Obviously, for 1 ≤ k ≤ N, n ∈ Z we have

|u(1)
k,n − u

(2)
k,n| ≤

√
2πN|f (1)

k,n − f
(2)
k,n|, |n4u

(1)
k,n − n4u

(2)
k,n| ≤

√
2πN|f (1)

k,n − f
(2)
k,n|.

We derive easily the estimates from above

‖u(1) − u(2)‖2H4
c (I,R

N ) =

N∑

k=1

[ ∞∑

n=−∞
|u(1)

k,n − u
(2)
k,n|2 +

∞∑

n=−∞
|n4(u

(1)
k,n − u

(2)
k,n)|2

]
≤

≤ 4πN 2

N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(I).

12



Clearly, v
(1),(2)
k (x) ∈ H4(I) ⊂ L∞(I), 1 ≤ k ≤ N do to the Sobolev embedding. By means

of (2.2), we easily obtain

‖τav(1) − τav
(2)‖H4

c (I,R
N ) ≤ 2

√
πNL‖v(1) − v(2)‖H4

c (I,R
N ).

The constant in the right side of this estimate is less than one by virtue of the one of our
assumptions. Therefore, the Fixed Point Theorem implies the existence and uniqueness of
a vector function v(a) ∈ H4

c (I,R
N) satisfying τav

(a) = v(a), which is the only stationary
solution of system (1.2) in H4

c (I,R
N). Suppose v(a)(x) vanishes in I. Then we arrive at the

contradiction to our assumption that Gk,nFk(0, x)n 6= 0 for some 1 ≤ k ≤ N and a certain
n ∈ Z.

5 The Problem on the Product of Sets

Proof of Theorem 7. First we suppose that there exists v(x) ∈ H4(Ω,RN ) which generates
u(1),(2)(x) ∈ H4(Ω,RN) which satisfies system (2.3). Then their difference w(x) := u(1)(x)−
u(2)(x) ∈ H4(Ω,RN) will be a solution of the homogeneous system of equations

∆2wk = a2kwk, 1 ≤ k ≤ N

in the domain Ω. Let us apply the partial Fourier transform (2.24) to both sides of this
system of equations. This yields

(n2 −∆⊥)
2wk,n(x⊥) = a2kwk,n(x⊥), 1 ≤ k ≤ N, n ∈ Z,

where ∆⊥ denotes the transversal Laplacian acting on x⊥. Apparently,

‖wk‖2L2(Ω) =
∞∑

n=−∞
‖wk,n(x⊥)‖2L2(Rd), 1 ≤ k ≤ N.

Thus, wk,n(x⊥) ∈ L2(Rd), 1 ≤ k ≤ N, n ∈ Z. But each operator (n2−∆⊥)
2, n ∈ Z does not

have any nontrivial square integrable eigenfunctions belonging to L2(Rd). Therefore, w(x)
vanishes in Ω.

Let us choose an arbitrary v(x) ∈ H4(Ω,RN ) and apply Fourier transform (2.22) to both
sides of system (2.3). This gives us

ûk,n(p) = (2π)
d+1

2

Ĝk,n(p)f̂k,n(p)

(p2 + n2)2 − a2k
, 1 ≤ k ≤ N, n ∈ Z, p ∈ R

d, d = 1, 2, (5.1)

with f̂k,n(p) standing for the Fourier image of Fk(v(x), x) under transform (2.22) for 1 ≤ k ≤
N . Obviously, for 1 ≤ k ≤ N, n ∈ Z, p ∈ Rd, we have

|ûk,n(p)| ≤ (2π)
d+1

2 Mk|f̂k,n(p)|, |(p2 + n2)2ûk,n(p)| ≤ (2π)
d+1

2 Mk|f̂k,n(p)|,

13



with all Mk < ∞ by means of the third and the last lemmas of the Appendix of [23] under
Assumption 6 above. Hence,

‖u‖2H4(Ω,RN ) =
N∑

k=1

[ ∞∑

n=−∞

∫

Rd

|ûk,n(p)|2dp+
∞∑

n=−∞

∫

Rd

|(p2 + n2)2ûk,n(p)|2dp
]
≤

≤ 2(2π)d+1M2
N∑

k=1

‖Fk(v(x), x)‖2L2(Ω) < ∞

due to (2.1) of Assumption 1 for |v(x)|RN ∈ L2(Ω). Therefore, for any v(x) ∈ H4(Ω,RN)
there exists a unique u(x) ∈ H4(Ω,RN), which satisfies system (2.3) with its Fourier trans-
form given by (5.1), such that the map ta : H

4(Ω,RN) → H4(Ω,RN ) is well defined.
Let us choose arbitrarily v(1),(2)(x) ∈ H4(Ω,RN), such that their images under our map

are u(1),(2) = tav
(1),(2) ∈ H4(Ω,RN). Hence,

∆2u
(1)
k − a2ku

(1)
k =

∫

Ω

Gk(x− y)Fk(v
(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy, 1 ≤ k ≤ N,

∆2u
(2)
k − a2ku

(2)
k =

∫

Ω

Gk(x− y)Fk(v
(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy, 1 ≤ k ≤ N.

We apply Fourier transform (2.22) to both sides of these systems. Hence,

û
(1)
k,n(p) = (2π)

d+1

2

Ĝk,n(p)f̂
(1)
k,n(p)

(p2 + n2)2 − a2k
, û

(2)
k,n(p) = (2π)

d+1

2

Ĝk,n(p)f̂
(2)
k,n(p)

(p2 + n2)2 − a2k
, (5.2)

where 1 ≤ k ≤ N, n ∈ Z, p ∈ Rd, d = 1, 2 and f̂
(j)
k,n(p) denotes the Fourier image of

Fk(v
(j)(x), x) under transform (2.22) for j = 1, 2. This enables us to derive for 1 ≤ k ≤

N, n ∈ Z, p ∈ Rd

|û(1)
k,n(p)− û

(2)
k,n(p)| ≤ (2π)

d+1

2 M|f̂ (1)
k,n(p)− f̂

(2)
k,n(p)|,

|(p2 + n2)2û
(1)
k,n(p)− (p2 + n2)2û

(2)
k,n(p)| ≤ (2π)

d+1

2 M|f̂ (1)
k,n(p)− f̂

(2)
k,n(p)|.

Therefore, ‖u(1) − u(2)‖2
H4(Ω,RN ) =

=

N∑

k=1

[ ∞∑

n=−∞

∫

Rd

|û(1)
k,n(p)− û

(2)
k,n(p)|2dp+

∞∑

n=−∞

∫

Rd

|(p2 + n2)2(û
(1)
k,n(p)− û

(2)
k,n(p))|2dp

]
≤

≤ 2(2π)d+1M2
N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(Ω).
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Apparently, v
(1),(2)
k (x) ∈ H4(Ω) ⊂ L∞(Ω), 1 ≤ k ≤ N via the Sobolev embedding theorem.

By virtue of (2.2) we easily arrive at the estimate from above

‖tav(1) − tav
(2)‖H4(Ω,RN ) ≤

√
2(2π)

d+1

2 ML‖v(1) − v(2)‖H4(Ω,RN ),

with the constant in the right side of it less than due to the one of our assumptions. Thus,
the Fixed Point Theorem yields the existence and uniqueness of a vector function v(a) ∈
H4(Ω,RN) satisfying tav

(a) = v(a). This is the only stationary solution of system (1.2)
in H4(Ω,RN). Suppose v(a)(x) vanishes in Ω. This will imply the contradiction to our

assumption that there exist 1 ≤ k ≤ N and n ∈ Z for which suppĜk,n(p) ∩ suppF̂k(0, x)n(p)
is a set of nonzero Lebesgue measure in Rd.
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