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Abstract. We investigate the existence of whiskered tori in some
dissipative systems, called conformally symplectic systems, having
the property that they transform the symplectic form into a mul-
tiple of itself. We consider a family fµ of conformally symplectic
maps which depend on a drift parameter µ.

We fix a Diophantine frequency of the torus and we assume to
have a drift µ0 and an embedding of the torus K0, which satisfy
approximately the invariance equation fµ0

◦K0−K0◦Tω (where Tω
denotes the shift by ω). We also assume to have a splitting of the
tangent space at the range of K0 into three bundles. We assume
that the bundles are approximately invariant under Dfµ0 and that
the derivative satisfies some “rate conditions”.

Under suitable non-degeneracy conditions, we prove that there
exists µ∞, K∞ and splittings, close to the original ones, invariant
under fµ∞ . The proof provides an efficient algorithm to construct
whiskered tori. Full details of the statements and proofs are given
in [CCdlL18].

1. Introduction

Whiskered tori for a dynamical system are invariant tori such that
the motion on the torus is conjugated to a rotation and have hyperbolic
directions, exponentially contracting in the future or in the past under
the linearized evolution ([Arn64, Arn63]). Whiskered tori and their
invariant manifolds are the key ingredients proposed in [Arn64] of the
so-called Arnold’s diffusion in which solutions of a nearly integrable
system may drift far from their initial values.

Whiskered tori have been widely studied mainly for symplectic sys-
tems (see, e.g., [dlLS18], [FdlLS09], [FdlLS15]); in this paper we go over
the results of [CCdlL18] and we consider their existence for conformally
symplectic systems ([Ban02, CCdlL13, DM96, WL98]), which are char-
acterized by the fact that the symplectic structure is transformed into
a multiple of itself. Conformally symplectic systems are a very special
case of dissipative systems and occur in several physical examples, e.g.
the spin-orbit problem in Celestial Mechanics, Gaussian thermostats,
Euler-Lagrange equations of exponentially discounted systems ([Cel10],
[WL98], [DFIZ16a, DFIZ16b]).

The existence of invariant tori in conformally symplectic systems
needs an adjustment of parameters. This leads to consider a family fµ
of conformally symplectic maps depending parametrically on µ. Our
main result (Theorem 4.2) establishes the existence of whiskered tori
with frequency ω for fµ for some µ; the Theorem is based on the formu-
lation of an invariance equation for the parameterization of the torus,
say K = K(θ), for the parameter µ and for the splittings of the space.
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The invariance equation expresses that the parameterization and the
splittings are invariant for the map fµ. The main assumption of Theo-
rem 4.2 is that we are given a sufficiently approximate solution of (2)
with an approximately invariant splitting. We also need to assume that
the frequency ω is Diophantine and that some non-degeneracy condi-
tions are met. We note that the non-degeneracy conditions we need to
assume are algebraic expressions depending only on the approximate
solution and its derivatives. We do not need to assume any global
properties (such as twist) for the whole system. We also note that the
theorem does not make any assumption that the system considered is
close to integrable. Theorems where the main hypothesis is that there
is an approximate solution that have some condition numbers are called
“a-posteriori” theorems in the numerical analysis literature.

The proof of Theorem 4.2 is based in showing that a Newton-like
method started on the approximate solution converges. At each step of
the Newton’s method, the linearized equation is projected on the hyper-
bolic and center subspaces. The equations on the hyperbolic subspaces
are solved using a contraction method (see, e.g., [CCCdlL17]). The in-
variance equation projected on the center subspace is solved using the
so-called automatic reducibility: taking advantage from the geometry
of a conformally symplectic system, one can introduce a change of co-
ordinates in which the linearized equation along the center directions
can be solved by Fourier methods.

A remarkable result is that we show that the center bundles of
whiskered tori are trivial in the sense of bundle theory, i.e. that they
are homeomorphic to product bundles. On the other hand, we allow
that the stable and unstable bundles are trivial and there are exam-
ples of this situation. Note that non-trivial bundles do not seem to be
incorporated in some of the proofs based in normal form theory.

We remark that we do not use transformation theory as in the pio-
neering works [Mos67], [BHTB90], [BHS96], that is we do not perform
subsequent changes of variables that transform the system into a form
which admits an invariant torus.

Whiskered tori were studied with a similar approach in [FdlLS09],
[FdlLS15]; the results in an a-posteriori format were proved in [FdlLS09]
for the case of finite-dimensional Hamiltonian systems, while general-
izations to Hamiltonian lattice systems are presented in [FdlLS15] and
to PDEs in [dlLS18].

The method introduced in [dlLGJV05] (see also [dlL01], [CCdlL13],
and [CH17] for an application to quasi-periodic normally hyperbolic in-
variant tori) has several advantages: it leads to efficient algorithms, it
does not need to work in action-angle variables and it does not assume
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that the system is close to integrable. Hence, the approach is suitable to
study systems close to breakdown and in the limit of small dissipation.
This allows us to study the analyticity domain of K and µ as a function
of a parameter ε, such that the limit of ε tending to zero represents the
symplectic case. Note that the limit of dissipation going to zero is a
singular limit. Full dimensional KAM tori in conformally symplectic
systems have also been considered in [SL12, LS15]. The first paper is
based on transformation theory and the second includes also numeri-
cal implementations comparing the methods based on transformation
theory and those based on studying (2).

Our second main result, Theorem 7.2, shows that, if we introduce
an extra perturbative parameter ε so that fε is a symplectic map with
a solution K0, µ0 of (2), it can be be continued to Kε, µε which are
analytic in a domain obtained by removing from a ball centered at
the origin a sequence of smaller balls, whose centers lie on a curve
and whose radii decrease very fast with their distance from the origin
(see also [CCdlL17], [BC18]). The proof is based on the construction of
Lindstedt series, whose finite order truncation provides an approximate
solution which is used as the approximate solution of the a-posteriori
theorem. We conjecture that such domain is essentially optimal.

The rest of this paper is organized as follows. In Section 2 we pro-
vide some preliminary notions; Section 3 presents some properties of
cocycles and invariant bundles; the main result, Theorem 4.2, is stated
in Section 4; a sketch of the proof of Theorem 4.2 is given in Section 5;
an algorithm allowing to construct the new approximation is given in
Section 6; the analyticity domains of whiskered tori are presented in
Section 7.

2. Preliminary notions

This section is devoted to introducing the notion of conformally sym-
plectic systems, the definition of Diophantine vectors, that of invariant
rotational tori, and the introduction of function spaces.

We denote by M = Tn × B a symplectic manifold of dimension 2n
withB ⊆ Rn an open, simply connected domain with smooth boundary.
We endowM with the standard scalar product and a symplectic form
Ω, which does not have necessarily the standard form. In the small
dissipation limit (see Section 7), we assume that Ω is exact.

Definition 2.1. A diffeomorphism f : M → M is conformally sym-
plectic, if there exists a function λ such that

f ∗Ω = λΩ . (1)
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We will consider λ constant, which is always the case for n ≥ 2
([Ban02]), since whiskered tori exist only for n ≥ 2.

Denoting by 〈·, ·〉 the inner product on R2n, let Jx be the matrix
representing Ω at x:

Ωx(u, v) = 〈u, Jxv〉
with JTx = −Jx.

Frequency vectors of whiskered tori are assumed to be Diophantine.

Definition 2.2. For λ ∈ C, let ν(λ;ω, τ) be defined as

ν(λ;ω, τ) ≡ sup
k∈Zd\{0}

(
|e2πik·ω − λ|−1 |k|−τ

)
.

We say that λ is ω-Diophantine of class τ and constant ν(λ;ω, τ), if

ν(λ;ω, τ) <∞ .

A particular case of the above is when λ = 1, which corresponds
to the classical definition of ω. In our theorems, we will assume that
ω is Diophantine and we will consider λ’s which are Diophantine with
respect to it.

We remark that in Theorem 4.2 we will take only λ ∈ R, while in
Theorem 7.2 we will take λ ∈ C.

To find an invariant torus in a conformally symplectic system, we
need to adjust some parameters ([CCdlL13]); hence, we consider a fam-
ily fµ of conformally symplectic maps depending on a drift parameter
µ.

Definition 2.3. Let fµ : M → M be a family of differentiable dif-
feomorphisms and let K : Td → M be a differentiable embedding.
Denoting by Tω the shift by ω ∈ Rd, we say that K parameterizes an
invariant torus for the parameter µ, if the following invariance equation
is satisfied:

fµ ◦K = K ◦ Tω . (2)

Equation (2), which will be the centerpiece of our study, contains K
and µ as unknowns; its linearization will be analyzed using a quasi-
Newton method that takes advantage of the geometric properties of
conformally symplectic systems. We remark that if (K,µ) is a solution,
then also (K ◦ Tα, µ) is a solution. We also show that local uniqueness
is obtained by choosing a suitable normalization that fixes α.

The analytic function space and a norm is introduced as follows to
make estimates on the quantities involved in the proof.

Definition 2.4. Let ρ > 0 and let Tdρ be the set

Tdρ = {z ∈ Cd/Zd : Re(zj) ∈ T , | Im(zj)| ≤ ρ , j = 1, ..., d} .
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Given a Banach space X, let Aρ(X) be the set of functions from Tdρ to

X, analytic in Int(Tdρ) and extending continuously to the boundary of

Tdρ. We endow Aρ with the following norm, which makes Aρ a Banach
space:

‖f‖Aρ = sup
z∈Tdρ

|f(z)| .

The norm of a vector valued function g = (g1, . . . , gn) is defined as

‖g‖Aρ =
√
‖g1‖2Aρ + . . .+ ‖gn‖2Aρ , while the norm of an n1× n2 matrix

valued functionG is defined as ‖G‖Aρ = supχ∈Rn2+ ,|χ|=1

√∑n1

i=1(
∑n2

j=1 ‖Gij‖Aρ χj)2.

3. Cocycles and invariant bundles

Given an approximate solution of (2), we will be led to reduce the
error and hence to study products of the form

Γj ≡ fµ ◦K ◦ T(j−1)ω × · · · ×Dfµ ◦K , (3)

which are quasi-periodic cocycles of the form

Γj = γθ ◦ T(j−1)ω × · · · × γθ (4)

with γθ = Dfµ ◦K(θ). The cocycle (4) satisfies the property: Γj+m =
Γj ◦Tmω Γm. The study of the invariance equation strongly depends on
the asymptotic growth of the cocycle (3), which leads to the following
definition ([SS74, Cop78]).

Definition 3.1. The cocycle (3) admits an exponential trichotomy if
there exists a decomposition

Rn = Es
θ ⊕ Ec

θ ⊕ Eu
θ , θ ∈ Td , (5)

rates of decay λ− < λ−c ≤ λ+c < λ+, λ− < 1 < λ+ and a constant
C0 > 0, such that

v ∈ Es
θ ⇐⇒ |Γj(θ)v| ≤ C0λ

j
−|v|, j ≥ 0

v ∈ Eu
θ ⇐⇒ |Γj(θ)v| ≤ C0λ

j
+|v|, j ≤ 0

v ∈ Ec
θ ⇐⇒

|Γj(θ)v| ≤ C0(λ
−
c )j|v|, j ≥ 0

|Γj(θ)v| ≤ C0(λ
+
c )j|v|, j ≤ 0 .

(6)

Given a splitting as in (5), we denote by Πs(θ),Πc(θ),Πu(θ) the pro-
jections, depending on the whole splitting, on Es

θ , E
c
θ, E

u
θ . Let us now

consider two nearby splittings, E, Ẽ; then, for each space in Ẽ, we can
find a linear function Aσθ : Eσ

θ → Eσ̂
θ (where Eσ̂

θ is the sum of the spaces
in the splitting not indexed by σ), such that

Ẽσ
θ = {v ∈ Rn, v = x+ Aσθx |x ∈ Eσ

θ } . (7)
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Denoting by P⊥Eθ the orthogonal projections, the distance between E

and Ẽ is defined as

distρ(E, Ẽ) = ‖P⊥Eθ − P
⊥
Ẽθ
‖Aρ .

From (6) it is possible to show ([HPS77]) that the splittings depend
continuously (Hölder) on θ; bootstrapping the regularity, the splittings
are analytic. Therefore, the projections Πσ, σ = s, u, c, are uniformly
bounded ([SS74]). Also, we remark that the bundles characterized by
(6) are invariant: γθE

σ
θ = Eσ

θ+ω ([CCdlL18]).

3.1. Approximately invariant splittings. For a splitting Es
θ⊕Eu

θ ⊕
Ec
θ and a cocycle γθ, let γσ,σ

′

θ be

γσ,σ
′

θ = Πσ
θ+ωγθΠ

σ′

θ ; (8)

hence, the splitting is invariant under the cocycle if and only if

γσ,σ
′

θ ≡ 0 , σ 6= σ′ .

The lack of invariance of the splitting under the cocyle γ is measured
by the quantity

Iρ(γ,E) ≡ max
σ,σ′∈{s,c,u}

σ 6=σ′

sup
Tdρ
‖γσ,σ

′

θ ‖ρ .

Now, we introduce a notion of hyperbolicity for approximately invariant
splittings.

Definition 3.2. Let γ be a cocycle and E an approximately invariant
splitting. Then, γ is approximately hyperbolic w.r.t. E, if the cocycle

γ̃θ =

 γs,sθ 0 0
0 γc,cθ 0
0 0 γu,uθ


satisfies (6) with γσ,σ as in (8).

The following Lemma 3.3 shows that if we have an approximately
invariant splitting for an approximately hyperbolic cocycle, then there
exists a true invariant splitting.

Lemma 3.3. Fix an analytic reference splitting on Tdρ and let U be
a sufficiently small neighborhood of this splitting, so that all the split-
tings can be parameterized as graphs of linear maps Aσθ as in (7) with
‖Aσθ‖ρ < M1.

Let E be an analytic splitting in the neighborhood U .
Let γ be an analytic cocycle over a rotation defined on Tdρ with ‖γ‖ρ <

M2 for M2 ∈ R+.
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Assume that E is approximately invariant under γ:

Iρ(γ,E) ≤ η

and that γ is approximately hyperbolic for the reference splitting as in
Definition 3.2.

Then, there is a locally unique splitting Ẽ close to E, invariant under
γ, which satisfies the trichotomy of Definition 3.1, and such that

distρ(E, Ẽ) ≤ Cη ,

where C, η can be chosen uniformly and depending only on M1, M2.

We refer to [CCdlL18] for the proof of the closing Lemma 3.3, which
is based on the standard method of writing the new spaces as the graphs
of linear maps Aσx : Eσ → Eσ̂

x (were Eσ̂
x denotes the sum of the spaces

in the splitting that are different from Eσ
x ). The fact that these spaces

are invariant can be transformed into fixed point equations that can be
solved by the contraction mapping principle. We refer to [CCdlL18] for
details.

4. Existence of whiskered tori

Whiskered tori are defined as follows.

Definition 4.1. Let fµ :M→M be a family of conformally symplec-
tic maps with conformal factor λ. We say that K : Td →M represents
a whiskered torus when for some ω ∈ Rd:

(1) K is the embedding of a rotational torus: fµ ◦K = K ◦ Tω.
(2) The cocycle Dfµ ◦K over the rotation Tω admits a trichotomy

as in (6) with rates λ−, λ
−
c , λ

+
c , λ+.

(3) The rates satisfy λ−c ≤ λ ≤ λ+c .
(4) The spaces Ec

θ in (5) have dimension 2d.

Theorem 4.2 below states the existence of whiskered tori by solving
the invariance equation (2).

Let K, µ be an approximate solution of (2) with a small error term e:
fµ◦K−K ◦Tω = e. Let ∆, β be some corrections, so that K ′ = K+∆,
µ′ = µ + β satisfy the invariance equation with an error quadratically
smaller. This is obtained, provided ∆, β satisfy

(Dfµ ◦K) ∆−∆ ◦ Tω + (Dµfµ) ◦Kβ = −e .

Theorem 4.2. Let ω ∈ Dd(ν, τ), d ≤ n, be as in (2.2), let fµ :M→
M, µ ∈ Rd, be a family of real analytic, conformally symplectic map-
pings as in (1) with 0 < λ < 1. We make the following assumptions.

(H1) Appproximate solution:
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Let (K0, µ0) with K0 : Td →M, K0 ∈ Aρ, and µ0 ∈ Rd represent an
approximate whiskered torus for fµ0 with frequency ω:

‖fµ0 ◦K0 −K0 ◦ Tω‖Aρ ≤ E , E > 0 .

To ensure that the composition fµ ◦ K can be defined, we assume
that there exists a domain U ⊂ Cn/Zn × Cn such that for all µ with
|µ− µ0| ≤ η, fµ has domain U and

dist(K0(Tdρ),Cn/Zn × Cn \ U) ≥ η. (9)

(H2) Approximate splitting:
For all θ ∈ Tdρ, there exists a splitting of the tangent space of the

phase space, depending analytically on the angle θ ∈ Tdρ; the bundles
are approximately invariant under the cocycle γθ = Dfµ0 ◦ K0(θ), i.e.
Iρ(γ,E) ≤ Eh, Eh > 0.

(H3) Spectral condition for the bundles (exponential trichotomy):
For all θ ∈ Tdρ the spaces in (H2) are approximately hyperbolic for

the cocycle γθ.
(H3′) Since we are dealing with conformally symplectic systems, we

assume:

λ− < λλ+ < λ−c , λ−c ≤ λ ≤ λ+c .

(H4) The dimension of the center subspace is 2d.
(H5) Non–degeneracy:
Let N(θ) = (DK(θ)TDK(θ))−1, P (θ) = DK(θ)N(θ), χ(θ) = DK(θ)T (Jc)

−1◦
K(θ)DK(θ), and let

S(θ) = P (θ+ω)TDfµ◦K(θ)(J c)−1◦K(θ)P (θ)−N(θ+ω)Tχ(θ+ω)N(θ+ω) λ Idd .
(10)

Let M be defined as

M(θ) = [DK(θ) | (J c)−1 ◦K(θ) DK(θ)N(θ)] . (11)

We assume that an explicit d× d matrix S, formed by algebraic op-
erations (and solving cohomology equations) from the derivatives of the
approximate solution, is invertible.

Let α = α(τ) be an explicit number and assume that for some 0 <
δ < ρ, we have E ≤ δ2αE∗, Eh ≤ E∗h, where E, E∗ depend on ν, τ , C0,

λ+, λ−, λ+c , λ−c , ‖Πs/u/c
θ ‖Aρ, ‖DK0‖Aρ, ‖(DKT

0 DK0)
−1‖Aρ

Then, there exists an exact solution (Ke, µe), which satisfies

fµe ◦Ke −Ke ◦ Tω = 0

with

‖Ke −K0‖Aρ−2δ
≤ CEδ−τ , |µe − µ0| ≤ CE .
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Moreover, the invariant torus Ke is hyperbolic, namely there exists an
invariant splitting

TKe(θ)M = Es
θ ⊕ Ec

θ ⊕ Eu
θ ,

satisfying Definition 3.1 and which is close to the original one:

‖Πs/u/c
Ke(θ)

− Π
s/u/c
K0(θ)
‖Aρ−2δ

≤ C(Eδ−τ + Eh) .

Finally, the hyperbolicity constants associated to the invariant splitting
of the invariant torus (denoted by a tilde) are close to those of the
approximately invariant splitting of the approximately invariant torus
(see (H1), (H2)):

|λ± − λ̃±| ≤ C(Eδ−τ + Eh) , |λ±c − λ̃±c | ≤ C(Eδ−τ + Eh) .

Remark 1. Some consequences of the geometry are the following (see
[CCdlL18]).
• The stable/unstable exponential rates given by the set of Lyapunov

multipliers {λi}2di=1 satisfy the pairing rule

λi λi+d = λ .

• Invariant tori satisfy the isotropic property: the symplectic form
restricted to the invariant torus is zero.
• Because of the conformally symplectic structure, the symplectic

form is non-degenerate when restricted to the center bundle Ec
K(θ).

An important result is that the bundle Ec
K(θ) near a rotational invari-

ant torus satisfying our hypotheses (notably that the dimension of the
fibers of the bundle is 2d) is trivial, that is, the bundle is isomorphic to a
product bundle. Precisely, we can show that if K is an approximate so-
lution of (2), we can find a linear operator Bθ : Range(DK(θ))→ Ec

K(θ),
such that Ec

K(θ) is the range under Id +Bθ of the tangent bundle of the
torus.

5. A sketch of the proof of Theorem 4.2

We now proceed to sketch the proof of Theorem 4.2 (see Section 5.2),
which uses the so-called automatic reducibility presented in Section 5.1.
The proof leads to the algorithm described in Section 6. We refer to
[CCdlL18] for full details.

5.1. Automatic reducibility. We assume that there exists an invari-
ant splitting of the tangent space of M at K(θ), TK(θ)M with θ ∈ Td:

TK(θ)M = Es
K(θ) ⊕ Ec

K(θ) ⊕ Eu
K(θ) .
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Taking the derivative of (2) we get

Dfµ ◦K(θ)DK(θ)−DK ◦ Tω(θ) = 0 , (12)

which shows that Range(DK(θ)) ⊂ Ec
K(θ) and hence:

DKT (θ)J c ◦K(θ)DK(θ) = 0 , (13)

where J c is the 2n × 2n matrix of the embeddings of the center space
into the ambient space. Due to (13), the dimension of the range of M
in (11) is 2d and, from (H4), we have:

Range(M(θ)) = Ec
K(θ) . (14)

Hence, there exists a matrix B(θ) such that

Dfµ ◦K(θ)M(θ) = M(θ + ω) B(θ) , (15)

where B(θ) is upper triangular with constant matrices on the diagonal.

From (12), the first columm of B is

(
Idd
0

)
. From (14), setting v(θ) =

(J c)−1 ◦K(θ) DK(θ)N(θ), we have

Dfµ ◦K(θ) v(θ) = DK(θ + ω)S(θ) + v(θ + ω)U(θ) , (16)

where U = U(θ) is obtained multiplying (16) on the right by DKT (θ+
ω)J c ◦K(θ) and using (13):

U(θ) = DKT (θ + ω)J c ◦K(θ + ω)Dfµ ◦K(θ) v(θ) . (17)

From the conformally symplectic and invariance properties of the center
foliation, we obtain:

DfTµ (x)J cf(x)Dfµ(x) = λJ cf(x) ,

from which J cf(x)Dfµ(x)(J cx)
−1 = λDf−Tµ (x).

Hence, we see that the the left hand side of (17) is equal to λ, thus
showing that

U(θ) = λ .

Defining S as in (10), we can write (15) as

Dfµ ◦K(θ)M(θ) = M(θ + ω)

(
Idd S(θ)
0 λ Idd

)
. (18)

5.2. Sketch of the proof. Once the automatic reducibility leading to
(18) is established, we can proceed to sketch the proof of Theorem 4.2.

We start with an approximate solution of the invariance equation
which is approximately hyperbolic and look for a correction to K and
µ, such that the error of the invariance of the new embedding and the
new parameter is, roughly, the square of the original error in a smaller
domain; this is the content of the following Proposition.
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Proposition 1. Let fµ : M → M, µ ∈ Rd, d ≤ n, be a family
of real-analytic, conformally symplectic maps as in Theorem 4.2 with
0 < λ < 1. Let ω ∈ Dd(ν, τ).

Let (K,µ), K : Td →M, K ∈ Aρ, be an approximate solution, such
that

fµ ◦K(θ)−K ◦ Tω(θ) = e(θ) (19)

and let E = ‖e‖Aρ.
Let E

s/c/u
K(θ) be an approximately invariant hyperbolic splitting based on

K, such that Iρ(γ,Es/c/u
K(θ) ) < Eh. Assume that (K,µ) satisfy assump-

tions (H2)-(H3)-(H3′)-(H4)-(H5) of Theorem 4.2 and that E, Eh are
sufficiently small.

Then, there exists an exact invariant splitting Ẽ
s/c/u
K(θ) with associated

cocycle γ̃σ,σθ , such that

distρ(E
s/c/u
K(θ) , Ẽ

s/c/u
K(θ) ) ≤ CEh , ‖γσ,σθ − γ̃

σ,σ
θ ‖Aρ ≤ CEh .

Furthermore, we can find corrections ∆, β, such that K ′ = K + ∆,
µ′ = µ+ β satisfy

fµ′ ◦K ′(θ)−K ′ ◦ Tω(θ) = e′(θ)

with

‖e′‖Aρ−δ ≤ C δ−2τ E2 , ‖∆‖Aρ−δ ≤ C δ−τ E , |β| ≤ CE .

Moreover, the splitting Ẽ
s/c/u
K(θ) is approximately invariant for Dfµ′ ◦K ′.

The proof of Proposition 1 is based on the following ideas. Expanding
in Taylor series the invariance equation for K ′, µ′, we have:

fµ′ ◦K ′(θ)−K ′(θ + ω) = fµ ◦K(θ) +Dfµ ◦K(θ) ∆(θ) +Dµfµ ◦K(θ) β

− K(θ + ω)−∆(θ + ω) +O(‖∆‖2) +O(|β|2) .

Using (19), the new error is quadratically smaller if the corrections ∆,
β satisfy

Dfµ ◦K(θ) ∆(θ) +Dµfµ ◦K(θ) β −∆(θ + ω) = −e(θ) . (20)

The solution of (20) is obtained by projecting it on the hyperbolic and
center spaces, and using the invariant splitting (5). Let Ke be the
exact solution of (19); we assume that the cocycle Dfµ ◦ Ke admits
an invariant splitting as in (5). For the initial step, this follows from
(H2) and the closing Lemma 3.3, while in subsequent steps, we observe
that the exactly invariant splitting for one step will be approximately
invariant for the corrected one, so that we can apply again Lemma 3.3
to restore the invariance.
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Denoting by ∆ξ(θ) ≡ Πξ
K(θ+ω)∆(θ), eξ(θ) ≡ Πξ

K(θ+ω)e(θ) with ξ =

s, c, u, we have

Dfµ ◦K(θ) ∆ξ(θ)+Πξ
K(θ+ω)Dµfµ ◦K(θ)β−∆ξ(θ+ω) = −eξ(θ) , (21)

which contains ∆s, ∆c, ∆u, β as unknowns. The equation for ∆c allows
to determine ∆c and β. In fact, from

∆c = M W c ,

recalling (15), the approximate solution satisfies (18) up to an error
term, say R = R(θ):

Dfµ ◦K(θ) M(θ) = M(θ + ω)B(θ) +R(θ) (22)

with

‖R‖Aρ−δ ≤ Cδ−1 ‖e‖Aρ .
Using (21) and (22), one obtains:(

Idd S(θ)
0 λ Idd

)
W c(θ)−W c ◦ Tω(θ) = −ẽc(θ)− Ãc(θ)β , (23)

where ẽc(θ) ≡ M−1 ◦ Tω(θ)ec(θ), Ãc(θ) ≡ M−1 ◦ Tω(θ) Πc
K(θ+ω)Dµfµ ◦

K(θ). Next, we define Ãc ≡ [Ãc1|Ãc2], W c is the average of W c, (W c)0 ≡
W c − W c and, being (W c

2 )0 an affine function of β, we let (W c
2 )0 =

(W c
a)0 + β(W c

b )0 for some functions W c
a , W c

b . With this setting, (23)
becomes

(W c
1 )0(θ)− (W c

1 )0 ◦ Tω(θ) = −(SW c
2 )0(θ)− (ẽc1)

0(θ)− (Ãc1)
0(θ)β

λ(W c
a)0(θ)− (W c

a)0 ◦ Tω(θ) = −(ẽc2)
0(θ)

λ(W c
b )0(θ)− (W c

b )0 ◦ Tω(θ) = −(Ãc2)
0(θ) , (24)

whose solution for (W c
1 )0, (W c

a)0, (W c
b )0 is found by using standard

results (see, e.g., [CCdlL13]).
Taking the average of (24), recollecting the last two equations in a

single equation for (W c
2 )0, leads to solve the following system(

S S(W c
b )0 + Ãc1

(λ− 1) Idd Ãc2

)(
W c

2

β

)
=

(
−S(W c

a)0 − ẽc1
−ẽc2

)
.

(25)
Using the non-degeneracy condition (H5),allows to find a solution of
(25) and, hence, to determine W c

2 , β.
Next, we solve (21) for the stable subspace. Denoting by θ′ = Tω(θ),

ẽs(θ′) ≡ Πs
K(θ′)e ◦ T−ω(θ′), equation (21) becomes

Dfµ(K◦T−ω(θ′)) ∆s(T−ω(θ′))+Πs
K(θ+ω)Dµfµ(K◦T−ω(θ′))β−∆s(θ′) = −ẽs(θ′) ,
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which can be solved for ∆s in the form

∆s(θ′) = ẽs(θ′) +
∞∑
k=1

(
Dfµ(K ◦ T−ω(θ′))× · · · ×Dfµ(K ◦ T−kω(θ′))

)
ẽs(T−kω(θ′))

+ Πs
K(θ+ω)Dµfµ(K ◦ T−ω(θ′))β

+
∞∑
k=1

(
Dfµ(K ◦ T−ω(θ′))× ...×Dfµ(K ◦ T−kω(θ′)) Πs

K(θ+ω)Dµfµ(K ◦ T−(k+1)ω(θ′)
)
β ,

where the series in the last term converges in Aρ, due to the growth
rates (6).

In a similar way, one can solve the equation for the unstable subspace,
thus obtaining

∆u(θ) = −
∞∑
k=0

(
(Dfµ)−1(K(θ))× ...× (Dfµ)−1(K ◦ Tkω(θ))

)
eu(Tkω(θ))

−
∞∑
k=0

(
(Dfµ)−1(K(θ))× ...× (Dfµ)−1(K ◦ Tkω(θ)) Πu

K(θ+ω)Dµfµ(K ◦ Tkω(θ)
)
β .

Simple estimates lead to state that S is (H5), the norm of the projec-
tions, the change in the rates and the constant C0 in (6) slightly change
after one iterative step; denoting by γ̂σ,σθ the cocycle associated to K ′,
µ′, one has:

‖S ′‖Aρ−δ ≤ ‖S‖Aρ + Cδ−τ‖e‖Aρ
‖Πs/c/u

K′(θ) − Π
s/c/u
K(θ) ‖Aρ ≤ C‖K ′ −K‖Aρ ≤ Cδ−τ‖e‖Aρ

‖γ̂σ,σθ − γ̃
σ,σ
θ ‖Aρ−δ ≤ C(δ−τE + Eh) .

The last issue to prove Theorem 4.2 is to show that the inductive
step can be iterated infinitely many times and that it converges to
the true solution, provided the initial error is sufficiently small. This is
a standard KAM argument, which is proved by introducing a sequence
{Kh, µh} of approximate solutions on shrinking domains and imposing
a smallness condition on the size of the initial error ‖e‖Aρ .

6. The algorithm for the new approximation

The proof of Theorem 4.2 leads to the following algorithm, which
allows to construct the improved approximation, given fµ, ω, K0, µ0.
We fix an integer L0, which denotes the maximum number of terms
which are computed in the infinite series defining ∆s and ∆u. Each
step is denoted as a ← b, meaning that the quantity a is determined
from b. Note that the number of steps is less than 40 and that all the
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steps involve just calling a standard function, so that the coding is sort
of straightforward.

Algorithm 6.1. Let fµ, ω, K0, µ0 be as in the previous sections and
let L0 ∈ Z:
• χ1 ← fµ0 ◦K0

• χ2 ← K0 ◦ Tω
• e ← χ1 − χ2

• es/c/u ← Π
s/c/u
θ+ω e

• γ ← Dfµ0 ◦K0

• γ̃ ← Dµfµ0 ◦K0

• α ← DK0

• N ← [αTα]−1

• J̃ ← (J c)−1 ◦K
• M ← [α|J̃ α N ]

• M̃ ← M−1 ◦ Tω
• ẽc ← M̃ ec

• P ← αN
• χ ← αT J̃ α
• Λ ← λ Idd
• S ← (P ◦ Tω)TγJ̃ P − (N ◦ Tω)T (χ ◦ Tω)T N ◦ Tω Λ

• Ãc ← M̃ Πc
θ+ω γ̃

• (W c
a)o solves λ(W c

a)o − (W c
a)o ◦ Tω = −(ẽc2)

o

• (W c
b )o solves λ(W c

b )o − (W c
b )o ◦ Tω = −(Ãc2)

o

• Find W c
2 , β solving

S W c
2 + (S(W c

b )o + Ãc1)β = −S(W c
a)o − ẽc1

(λ− 1)W c
2 + Ãc2β = −ẽc2

• (W c
2 )o ← (W c

a)o + β(W c
b )o

• W c
2 ← (W c

2 )o +W c
2

• (W c
1 )o solves (W c

1 )o − (W c
1 )o ◦ Tω = −(S W c

2 )o − (ẽc1)
o − (Ãc1)

oβ
• ∆c ← M c W c

• µ1 ← µ0 + β

• Compute Γ̃k = γ−1 × ...× γ−1 ◦ Tkω for k = 0, ..., L0

• Compute euk = eu ◦ Tkω for k = 0, ..., L0

• Compute γ̃k = Πu
θ+ωγ̃ ◦ Tkω for k = 0, ..., L0

• ∆u ← −
∑L0

k=0(Γ̃ke
u
k + Γ̃kγ̃kβ)

• θ′ ← Tω(θ)
• Compute Γk = γ ◦ T−ω(θ′)× ...× γ ◦ T−kω(θ′) for k = 1, ..., L0

• Compute ẽsk = ẽs ◦ T−kω(θ′) for k = 1, ..., L0

• Compute γ̃′ = Πs
θ′ γ̃ ◦ T−ω(θ′) for k = 1, ..., L0
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• Compute γ̂′k = Πs
θ′ γ̃ ◦ T−(k+1)ω(θ′) for k = 1, ..., L0

• ∆s′ ← ẽs(θ′) +
∑L0

k=1 Γkẽ
s
k + γ̃′β +

∑L0

k=1 Γkγ̂
′
kβ

• ∆s ← ∆s′ ◦ T−ω
• K ′1 ← K0 + ∆c + ∆u + ∆s.

7. Domains of analyticity and Lindstedt expansions of
whiskered tori

The study of domains of analyticity of whiskered tori of conformally
symplectic systems in the limit of small dissipation is similar to that
developed in [CCdlL17], but adding the hyperbolicity. The main idea
is to compute an asymptotic expansion (Lindstedt series), which can
be used as starting point for the application of Theorem 4.2.

The Lindstedt series expansions to order N of K, µ, Aσ satisfy the
invariance equation up to an error bounded by CN |ε|N+1. Then, we
apply Theorem 4.2 for ε belonging to a domain with good Diophantine
properties of λ. Hence, we are able to prove that there exists a true
solution K, µ and that

‖K [≤N ] −K‖, |µ[≤N ] − µ| ≤ C̃N |ε|N+1

in the domain, thus showing that the Lindstedt series are asymptotic
expansions of the true solution. The quantities K [≤N ], µ[≤N ] denote
the truncations to order N in ε (see (26) below) of the Lindstedt series
expansions.

Let fµε,ε :M→M be a family of maps, such that

f ∗µε,ε Ω = λ(ε)Ω ,

where the conformal factor λ is taken as

λ(ε) = 1 + αεa +O(|ε|a+1) (26)

for some a > 0 integer and α ∈ C \ {0}.
Recalling Definition 2.2, we introduce the following sets, where the

Diophantine constants allow to start an iterative convergent procedure
(see [CCdlL17]).

Definition 7.1. For A > 0, N ∈ Z+, ω ∈ Rd, let the set G =
G(A;ω, τ,N) be defined as

G(A;ω, τ,N) ≡ {ε ∈ C : ν(λ(ε);ω, τ) |λ(ε)− 1|N+1 ≤ A} .
For r0 ∈ R, let

Gr0(A;ω, τ,N) = G ∩ {ε ∈ C : |ε| ≤ r0} . (27)

We prove that K and µ are analytic in a domain Gr0 as in (27) for
a sufficiently small r0. This domain is obtained by removing from a
ball centered at zero a sequence of smaller balls whose centers lie along
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smooth lines going through the origin (see Figure 1). The removed
balls have radii decreasing faster than any power of the distance of
their center from the origin. Like in [CCdlL17], we conjecture that this
domain is essentially optimal.

Theorem 7.2. Let fµ,ε :M→M with µ ∈ Γ with Γ ⊆ Cd open, d ≤
n, ε ∈ C, be a family of conformally symplectic maps with conformal
factor satisfying (26) with α ∈ R, α 6= 0, a ∈ N. Let ω ∈ Dd(ν, τ).

(A1) Assume that for µ = µ0, ε = 0 the map fµ0,0 admits a whiskered
invariant torus, namely

(A1.1) there exists an embedding K0 : Td →M, K0 ∈ Aρ for some
ρ > 0, such that

fµ0,0 ◦K0 = K0 ◦ Tω ;

(A1.2) there exists a splitting TK(θ)M = Es
K(θ) ⊕ Ec

K(θ) ⊕ Eu
K(θ),

which is invariant under the cocycle γ0θ = Dfµ0,0 ◦K0(θ) and satisfies
Definition 3.1. The ratings of the splitting satisfy the assumptions (H3),
(H3’) and (H4) of Theorem 4.2.

(A.2) The function fµ,ε(x) is analytic in all of its arguments and that
the analyticity domains are large enough, namely:

(A2.1) both K0(θ) and the splittings Es,c,u
K(θ) considered as a function

of θ are in Aρ0 for some ρ0 > 0;
(A2.2) there is a domain U ⊂ Cn/Zn×Cn such that for |ε| ≤ ε∗ and

all µ with |µ − µ0| ≤ µ∗ the function fµ,ε is defined in U and we also
have (9).

(A3) The non-degeneracy condition (H5) of Theorem 4.2 is satisfied
by the invariant torus.
Then:

B.1) We can compute formal power series expansions

K [∞]
ε =

∞∑
j=0

εjKj µ∞ε =
∞∑
j=0

εjµj

satisfying (2) and such that for any 0 < ρ′ ≤ ρ and N ∈ N, we have

||f
µ
[≤N ]
ε ,ε

◦K [≤N ]
ε −K [≤N ]

ε ◦ Tω||ρ′ ≤ CN |ε|N+1 .

B.2) We can compute the formal power series expansions

Aσ,∞ε =
∞∑
j=0

εjAσj , Aσj (θ) : Eσ
0 (θ)→ E σ̂0 (θ) , σ = s, ŝ, u, û

with Aσj ∈ Aρ satisfying the equations for invariant dichotomies in the
sense of power series.
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B.3) For the set Gr0 as in (27) with r0 sufficiently small and for
0 < ρ′ < ρ, there exists Kε : Gr0 → Aρ′, µε : Gr0 → Cd, analytic in
the interior of Gr0 taking values in Aρ′, extending continuously to the
boundary of Gr0 and such that for ε ∈ Gr0 the invariance equation is
satisfied exactly:

fµε,ε ◦Kε −Kε ◦ Tω = 0 .

Furthermore, the exact solution admits the formal series in A) as an
asymptotic expansion, namely for 0 < ρ′ < ρ, N ∈ N, one has:

||K [≤N ]
ε −Kε||ρ′ ≤ CN |ε|N+1 , |µ[≤N ]

ε − µε| ≤ CN |ε|N+1 .

We refer to [CCdlL18] for the proof of Theorem 7.2. Here we limit
to give a graphical description as in Figure 1 of the set G, which is the
complement of the black circles with centers along smooth lines going
through the origin and with radii decreasing very fast as the centers go
to zero.

Figure 1. A representation of the set G given by the
complement of the black circles, whose radii have been
rescaled for graphical reasons. We took d = 1, τ = 1,
a = 5.
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