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E-mail: valeri@fisica.uaz.edu.mx

Abstract. I present explicit examples of generalizations in relativistic quantum mechanics.
First of all, I discuss the generalized spin-1/2 equations for neutrinos. They have been obtained
by means of the Gersten-Sakurai method for derivations of arbitrary-spin relativistic equations.
Possible physical consequences are discussed. Next, it is easy to check that both Dirac algebraic
equation Det(p̂ − m) = 0 and Det(p̂ + m) = 0 for u− and v− 4-spinors have solutions with

p0 = ±Ep = ±
√

p2 + m2. The same is true for higher-spin equations. Meanwhile, every
book considers the equality p0 = Ep for both u− and v− spinors of the (1/2, 0) ⊕ (0, 1/2))
representation only, thus applying the Dirac-Feynman-Stueckelberg procedure for elimination
of the negative-energy solutions. The recent work by Ziino (and, independently, the articles of
several others) show that the Fock space can be doubled. We re-consider this possibility on
the quantum field level for S = 1/2 particles. The third example is: we postulate the non-
commutativity of 4-momenta, and we derive the mass splitting in the Dirac equation. Some
applications are discussed.

1. Generalized Neutrino Equations.
A. Gersten [1] proposed a method for derivations of massless equations of arbitrary-spin particles.
In fact, his method is related to the van der Waerden-Sakurai [2] procedure for the derivation of
the massive Dirac equation. I commented on the derivation of the Maxwell equations (the S = 1
first-quantized equations) in [3]. Then I showed that one can obtain generalized S = 1 equations,
which connect the antisymmetric tensor field with additional scalar fields. The problem of
physical significance of additional scalar fields should be solved by experiment (see, however,
the note on QED [4]). In the present talk I apply the similar procedure to the spin-1/2 fields. As
a result one obtains equations which generalize the well-known Weyl equations. However, these
equations have been known for a long time [5]. Raspini [6, 7] analyzed them again in detail. I
add some comments on physical significance of the generalized spin-1/2 equations.

Let me use the equation (4) of the first Gersten paper [1] for the two-component spinor field
function:

(E2 − c2~p 2)I(2)ψ =
[
EI(2) − c~p · ~σ

] [
EI(2) + c~p · ~σ

]
ψ = 0 . (1)

Actually, this equation is the massless limit of the equation which was presented in the Sakurai
book [2]. In the latter case one should substitute m2c4 into the right-hand side of Eq. (1):[

EI(2) − c~p · ~σ
] [
EI(2) + c~p · ~σ

]
ψ = m2

2c
4ψ . (2)



However, instead of equation (3.25) of [2] one can define the two-component ‘right’ field function

φR =
1
m1c

(ih̄
∂

∂x0
− ih̄σ ·∇)ψ, φL = ψ (3)

with the different mass parameter m1. In such a way we come to the system of the first-order
differential equations

(ih̄
∂

∂x0
+ ih̄σ ·∇)φR =

m2
2c

m1
φL , (4)

(ih̄
∂

∂x0
− ih̄σ ·∇)φL = m1cφR . (5)

It can be re-written in the 4-component form:(
ih̄(∂/∂x0) ih̄σ ·∇
−ih̄σ ·∇ −ih̄(∂/∂x0)

) (
ψA

ψB

)
= (6)

=
c

2

(
(m2

2/m1 +m1) (−m2
2/m1 +m1)

(−m2
2/m1 +m1) (m2

2/m1 +m1)

) (
ψA

ψB

)
for the function Ψ = column(ψA ψB) = column(φR +φL φR−φL). The equation (6) can be
written in the covariant form:[

iγµ∂µ −
m2

2c

m1h̄

(1− γ5)
2

− m1c

h̄

(1 + γ5)
2

]
Ψ = 0 . (7)

The standard representation of γµ matrices has been used here.
If m1 = m2 we can recover the standard Dirac equation. As noted in [5b] this procedure can

be viewed as the simple change of the representation of γµ matrices. However, this is valid only
if the mass to not be equal to zero. Otherwise, the entries in the transformation matrix become
singular. The unitary matrix does not exist.

Furthermore, one can either repeat a similar procedure (the modified Sakurai procedure)
starting from the massless equation (4) of [1a] or put m2 = 0 in eq. (7). The massless equation
is [

iγµ∂µ −
m1c

h̄

(1 + γ5)
2

]
Ψ = 0 . (8)

It is necesary to stress that the term ‘massless’ is used in the sense that pµp
µ = 0. The solutions

of the equation (8) are

u(1)
σ (p) =

(
[E + σ · p]φσ

[E +m1 − σ · p]χσ

)
, v(1)

σ (p = γ5u(1)
σ (p) . (9)

in the spinorial representation of γ-matrices. Then, we may have different physical consequences
following from (8) comparing with those which follow from the Weyl equation.1 The
mathematical reason for such a possibility of different massless limits is that the corresponding
change of representation of γµ matrices involves the mass parameters m1 and m2 themselves.

It is interesting to note that we can also repeat this procedure for the definition (or for even
more general definitions):

φL =
1
m3c

(ih̄
∂

∂x0
+ ih̄σ ·∇)ψ, φR = ψ , (10)

1 Remember that the Weyl equation is obtained as m → 0 limit of the usual Dirac equation.



with the additional arbitrary mass parameter m3. This is due to the fact that the parity
properties of the two-component spinor are undefined in the two-component equation. The
resulting equation is [

iγµ∂µ −
m2

4c

m3h̄

(1 + γ5)
2

− m3c

h̄

(1− γ5)
2

]
Ψ̃ = 0 , (11)

which gives us yet another equation in the massless limit (the physical mass m4 → 0):[
iγµ∂µ −

m3c

h̄

(1− γ5)
2

]
Ψ̃ = 0 , (12)

differing in the sign at the γ5 term. Solutions of the equation (12) are

u(2)
σ (p) =

(
[E +m3 + σ · p]φ̃σ

[E − σ · p]χ̃σ

)
, v(2)

σ (p = γ5u(2)
σ (p) . (13)

At this moment, neither (9) nor (13) are orthonormalized.
The above procedure can be generalized to any Lorentz group representations, i. e., to any

spins. In some sense the equations (8),(12) are analogous to the S = 1 equations [3, (4-7,10-13)],
which also contain additional parameters.

The physical content of the generalized S = 1/2 massless equations may be different from
that of the Weyl equation. The excellent discussion can be found in [5a,b]. First of all, the theory
does not have chiral invariance. Those authors call the additional parameters the measure of the
degree of chirality. Apart of this, Tokuoka introduced the concept of the gauge transformations
(not to confuse with phase transformations) for the 4-spinor fields. He also found some strange
properties of the anti-commutation relations (see §3 in [5a] and cf. [8] and [9, 10]). And finally,
the equations (8,12) describe four states, two of which correspond to the positive energy p0 = |p|,
and two others correspond to the negative energy p0 = −|p|.

I just want to add the following to the discussion. The operator of the chiral-helicity η̂ = (α·p̂)
(in the spinorial representation) used in [5b] does not commute, e.g., with the Hamiltonian of
the equation (8):2

[H,α · p̂]− = 2
m1c

h̄

1− γ5

2
(γ · p̂) , (14)

thus not having the common eigenstates. For the eigenstates of the chiral-helicity the system of
corresponding equations can be read (η =↑, ↓)

iγµ∂µΨη −
m1c

h̄

1 + γ5

2
Ψ−η = 0 . (15)

The conjugated eigenstates of the Hamiltonian |Ψ↑+Ψ↓ > and |Ψ↑−Ψ↓ > are connected, in fact,
by γ5 transformation Ψ → γ5Ψ ∼ (α · p̂)Ψ (or m1 → −m1). However, the γ5 transformation is
related to the PT (t → −t only) transformation, which, in its turn, can be interpreted as the
change of the sign of the energy, if one accepts the Stueckelberg idea about antiparticles. We
associate |Ψ↑ + Ψ↓ > with the positive-energy eigenvalue of the Hamiltonian and |Ψ↑ − Ψ↓ >,
with the negative-energy eigenvalue of the Hamiltonian. Thus, the free chiral-helicity massless
eigenstates may oscillate one to another with the frequency ω = E/h̄ (as the massive chiral-
helicity eigenstates, see [11a] for details). Moreover, a special kind of interaction which is
not symmetric with respect to the chiral-helicity states (for instance, if the left chiral-helicity

2 Do not confuse with the Dirac Hamiltonian.



eigenstates interact with the matter only) may induce changes in the oscillation frequency, like
in the Wolfenstein (MSW) formalism.

The question is: how can these frameworks be connected with the Ryder method of derivation
of relativistic wave equations [12], and with the subsequent analysis of the problems of the choice
of normalization and that of the choice of phase factors in the papers [11, 9, 13]? However, the
conclusion may be similar to that which was achieved before: the dynamical properties of the
massless particles (e. g., neutrinos and photons) may differ from those defined by the well-known
Weyl and Maxwell equations [13, 14].

2. Negative Energies in the Dirac Equation.
The recent problems of superluminal neutrinos, negative mass-squared neutrinos, various
schemes of oscillations including sterile neutrinos, e. g. [15], etc require much attention. Next,
the problem of the lepton mass splitting (e, µ, τ) has long history [16]. This suggests that
something is missed in the foundations of relativistic quantum theories. Modifications seem to
be necessary in the Dirac sea concept, and in the even more sophisticated Stueckelberg concept
of the backward propagation in time. The Dirac sea concept is intrinsically related to the Pauli
principle. However, the Pauli principle is intrinsically connected with the Fermi statistics and
the anticommutation relations of fermions. Recently, the concept of bi-orthonormality has been
proposed; the (anti) commutation relations and statistics are assumed to be different for neutral
particles [9] (cf. [23]).

We observe some interisting things related to the negative-energy concept. Usually, everybody
uses the following definition of the field operator [17] in the pseudo-Euclidean metrics:

Ψ(x) =
1

(2π)3
∑
h

∫
d3p
2Ep

[uh(p)ah(p)e−ip·x + vh(p)b†h(p)]e+ip·x] , (16)

as given ab initio. After actions of the Dirac operator on
exp(∓ip·x) the 4-spinors ( u− and v− ) satisfy the momentum-space equations: (p̂−m)uh(p) = 0
and (p̂ + m)vh(p) = 0, respectively; h is the polarization index. However, it is easy to prove
from the characteristic equations Det(p̂ ∓m) = (p2

0 − p2 −m2)2 = 0 that the solutions should
satisfy the energy-momentum relation p0 = ±Ep = ±

√
p2 +m2 in both cases.

Let me recall the general scheme of construction of the field operator, which was presented
in [18]. In the case of the (1/2, 0)⊕ (0, 1/2) representation we have:

Ψ(x) =
1

(2π)3

∫
d4p δ(p2 −m2)e−ip·xΨ(p) =

=
1

(2π)3
∑
h

∫
d4p δ(p2

0 − E2
p)e−ip·xuh(p0,p)ah(p0,p) = (17)

=
1

(2π)3

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)]

[θ(p0) + θ(−p0)]e−ip·x ∑
h

uh(p)ah(p) =

=
1

(2π)3
∑
h

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)][

θ(p0)uh(p)ah(p)e−ip·x + θ(p0)uh(−p)ah(−p)e+ip·x
]

=

=
1

(2π)3
∑
h

∫
d3p
2Ep

θ(p0)
[
uh(p)ah(p)|p0=Epe

−i(Ept−p·x)+

+ uh(−p)ah(−p)|p0=Epe
+i(Ept−p·x)

]



During the calculations above we had to represent 1 = θ(p0) + θ(−p0) in order to get positive-
and negative-frequency parts.3 Moreover, during these calculations we did not yet assume, which
equation this field operator (namely, the u− spinor) does satisfy, with negative- or positive- mass
(energy). In general we should transform uh(−p) to the v(p). The procedure is the following
one [20]. In the Dirac case we should assume the following relation in the field operator:∑

h=±1/2

vh(p)b†h(p) =
∑

h=±1/2

uh(−p)ah(−p) . (18)

We know that [12]4

ū(µ)(p)u(λ)(p) = +mδµλ , (19)
ū(µ)(p)u(λ)(−p) = 0 , (20)
v̄(µ)(p)v(λ)(p) = −mδµλ , (21)
v̄(µ)(p)u(λ)(p) = 0 , (22)

but we need Λ(µ)(λ)(p) = v̄(µ)(p)u(λ)(−p). By direct calculations, we find

−mb†(µ)(p) =
∑
λ

Λ(µ)(λ)(p)a(λ)(−p) . (23)

Hence, Λ(µ)(λ) = −im(σ · n)(µ)(λ), n = p/|p|, and

b†(µ)(p) = +i
∑
λ

(σ · n)(µ)(λ)a(λ)(−p) . (24)

Multiplying (18) by ū(µ)(−p) we obtain

a(µ)(−p) = −i
∑
λ

(σ · n)(µ)(λ)b
†
(λ)(p) . (25)

The equations are self-consistent.5

However, other ways of thinking are possible. First of all to mention, we have, in fact,
uh(Ep,p) and uh(−Ep,p), and vh(Ep,p) and vh(−Ep,p) originally, which satisfy the equations:6[

Ep(±γ0)− γ · p−m
]
uh(±Ep,p) = 0 . (27)

Due to the properties U †γ0U = −γ0, U †γiU = +γi with the unitary matrix U =
(

0 −1
1 0

)
=

γ0γ5 in the Weyl basis,7 we have[
Epγ

0 − γ · p−m
]
U †uh(−Ep,p) = 0 . (28)

3 See Ref. [19] for some discussion.
4 (µ) and (λ) are the polazrization indices here. According to the referee advice I use parenthesis here to stress
this.
5 In the (1, 0)⊕ (0, 1) representation the similar procedure leads to somewhat different situation:

a(µ)(p) = [1− 2(S · n)2](µ)(λ)a(λ)(−p) . (26)

This signifies that in order to construct the Sankaranarayanan-Good field operator (which was used recently), it

satisfies [γµν∂µ∂ν − (i∂/∂t)
E

m2]Ψ(x) = 0, we need additional postulates. For instance, one can try to construct the
left- and the right-hand side of the field operator separately each other [19].
6 Remember that, as before, we can always make the substitution p → −p in any of the integrands of (17).
7 The properties of the U -matrix are opposite to those of P †γ0P = +γ0, P †γiP = −γi with the usual P = γ0,
thus giving

[
−Epγ0 + γ · p−m

]
Puh(−Ep,p) = − [p̂ + m] ṽ?(Ep,p) = 0. While, the relations of the spinors

vh(Ep,p) = γ5uh(Ep,p) are well-known, it seems that the relations of the v− spinors of the positive energy to u−
spinors of the negative energy are frequently forgotten, ṽ?(Ep,p) = γ0uh(−Ep,p). Bogoliubov and Shirkov [18,
p.55-56] used to construct the complete set of solutions of the relativistic equations, fixing the sign of p0 = +Ep.



Thus, unless the unitary transformations do not change the physical content, we have that
the negative-energy spinors γ5γ0u− (see (28)) satisfy the accustomed “positive-energy” Dirac
equation. We should then expect the same physical content. Their explicit forms γ5γ0u− are
different from the textbook “positive-energy” Dirac spinors, while, of course, they should be
superpositions of the latter. They are the following ones:

ũ1(p) =
N√

2m(−Ep +m)


−p+ +m
−pr

p− −m
−pr

 , (29)

ũ2(p) =
N√

2m(−Ep +m)


−pl

−p− +m
−pl

p+ −m

 . (30)

Ep =
√

p2 +m2 > 0, p0 = ±Ep, p± = Ep ± pz, pr,l = px ± ipy. Their normalization is
to (−2N2). What about the ṽ(p) = γ0u− transformed with the γ0 matrix? They are not
equal to vh(p) = γ5uh(p). Obviously, they also do not have well-known forms of the usual v−
spinors in the Weyl basis, differing by phase factors and in the signs at the mass terms. Their
transformation properties are different:

ṽτ (p) = −i(σ
∗ · p)τσ

p
vσ(p) . (31)

Next, one can prove that the matrix

P = eiθγ0 = eiθ
(

0 12×2

12×2 0

)
(32)

can be used in the parity operator as well as in the original Weyl basis. The parity-transformed
function Ψ′(t,−x) = PΨ(t,x) must satisfy

[iγµ∂ ′
µ −m]Ψ′(t,−x) = 0 , (33)

with ∂ ′
µ = (∂/∂t,−∇i). This is possible when P−1γ0P = γ0 and P−1γiP = −γi. The matrix

(32) satisfies these requirements, as in the textbook case. However, if we would take the phase
factor to be zero we obtain that while spinors uh(p) have the eigenvalues +1 of the parity, but
(R = (x → −x,p → −p))

PRũ(p) = PRγ5γ0u(−Ep,p) = −ũ(p) , (34)

Perhaps, one should choose the phase factor θ = π. Thus, we again confirm that only the relative
(particle-antiparticle) intrinsic parity has physical significance.

Similar formulations have been presented in Refs. [21], and [22]. Namely, the reflection
properties are different for some solutions of relativistic equations therein. Two opposite signs
at the mass terms have been taken into account. The group-theoretical basis for such doubling
has been given in the papers by Gelfand, Tsetlin and Sokolik [23], who first presented the
theory of 5-dimensional spinors (or, the one in the 2-dimensional projective representation of
the inversion group) in 1956 (later called as “the Bargmann-Wightman-Wigner-type quantum
field theory” in 1993). The corresponding connection with the time reversion has been clarified
therein. It was one of the first attempts to explain the K-meson decays. M. Markov proposed
two Dirac equations with the opposite signs at the mass term [21] to be taken into account:

[iγµ∂µ −m] Ψ1(x) = 0 , (35)
[iγµ∂µ +m] Ψ2(x) = 0 . (36)



In fact, he studied all properties of this relativistic quantum model (while the quantum field
theory has not yet been completed in 1937). Next, he added and subtracted these equations.
What did he obtain?

iγµ∂µϕ(x)−mχ(x) = 0 , (37)
iγµ∂µχ(x)−mϕ(x) = 0 . (38)

Thus, the corresponding ϕ and χ solutions can be presented as some superpositions of the Dirac
4-spinors u− and v−. These equations, of course, can be identified with the equations for the
Majorana-like λ− and ρ−, which we presented in Ref. [11a].8

iγµ∂µλ
S(x)−mρA(x) = 0 , (39)

iγµ∂µρ
A(x)−mλS(x) = 0 , (40)

iγµ∂µλ
A(x) +mρS(x) = 0 , (41)

iγµ∂µρ
S(x) +mλA(x) = 0 . (42)

Neither of them can be regarded as the Dirac equation. However, they can be written in the
8-component form as follows:

[iΓµ∂µ −m] Ψ
(+)

(x) = 0 , (43)

[iΓµ∂µ +m] Ψ
(−)

(x) = 0 , (44)

with

Ψ(+)(x) =
(
ρA(x)
λS(x)

)
,Ψ(−)(x) =

(
ρS(x)
λA(x)

)
, Γµ =

(
0 γµ

γµ 0

)
. (45)

It is possible to find the corresponding Lagrangian, projection operators, and the Feynman-
Dyson-Stueckelberg propagator. For example,

L =
i

2
[Ψ(+)Γ

µ∂µΨ(+) − (∂µΨ(+))Γ
µΨ(+)+ (46)

+ Ψ(−)Γ
µ∂µΨ(−) − (∂µΨ(−))Γ

µΨ(−)

]
−m[Ψ(+)Ψ(+) −Ψ(−)Ψ(−)] .

The projection operator P+ can be easily found, as usual,

P+ =
Γµp

µ +m

2m
. (47)

However, due to the fact that P− satisfies the Dirac equation with the opposite sign, we cannot
have P+ + P− = 1. This is not surprising because the corresponding states Ψ± do not form the
complete system of the 8-dimensional space. One should consider the states Γ5Ψ±(p) too. See
also [25] for the methods of obtaining the propagators in the non-trivial cases.

In the previous papers I explained: the connection with the Dirac spinors has been
found [11, 24] through the unitary matrix. For instance,

λS
↑ (p)
λS
↓ (p)
λA
↑ (p)
λA
↓ (p)

 =
1
2


1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1



u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)

 , (48)

8 Of course, the signs at the mass terms depend on, how do we associate the positive- or negative- frequency
solutions with λ and ρ.



provided that the 4-spinors have the same physical dimension.9 Thus, this represents itself
the rotation of the spin-parity basis. However, it is usually assumed that the λ− and ρ−
spinors describe the neutral particles, meanwhile, the u− and v− spinors describe the charged
particles. Kirchbach [24] found the amplitudes for neutrinoless double beta decay (00νβ) in
this scheme. It is obvious from (48) that there are some additional terms comparing with the
standard calculations of those amplitudes. One can also re-write the above equations into the
two-component forms. Thus, one obtains the Feynman-Gell-Mann [26] equations.

Barut and Ziino [22] proposed yet another model. They considered γ5 operator as the operator
of the charge conjugation. In their case the self/anti-self charge conjugate states are, at the same
time, the eigenstates of the chirality. Thus, the charge-conjugated Dirac equation has a different
sign compared with the ordinary formulation:

[iγµ∂µ +m]Ψc
BZ = 0 , (49)

and the so-defined charge conjugation applies to the whole system, fermion + electromagnetic
field, e → −e in the covariant derivative. The superpositions of the ΨBZ and Ψc

BZ also give
us the “doubled Dirac equation”, as the equations for λ− and ρ− spinors. The concept of the
doubling of the Fock space has been developed in the Ziino works (cf. [23, 27]) in the framework
of the quantum field theory [28]. Next, it is interesting to note that we have for the Majorana-like
field operators (aη(p) = bη(p)):[

ν
ML

(xµ) + CνML †
(xµ)

]
/2 =

∫
d3p

(2π)3
1

2Ep
(50)

∑
η

[(
iΘφ∗ η

L
(pµ)

0

)
aη(pµ)e−ip·x +

(
0

φη
L(pµ)

)
a†η(p

µ)eip·x
]
,

[
ν

ML
(xµ)− CνML †

(xµ)
]
/2 =

∫
d3p

(2π)3
1

2Ep
(51)

∑
η

[(
0

φη
L
(pµ)

)
aη(pµ)e−ip·x +

(
−iΘφ∗ η

L
(pµ)

0

)
a†η(p

µ)eip·x
]
.

This naturally leads to the Ziino-Barut scheme of massive chiral fields, Ref. [22]. See, however,
the recent paper [29] which deals with the problems of the Majorana field operator.

Finally, I would like to mention that, in general, in the Weyl basis the γ− matrices are not
Hermitian, γµ† = γ0γµγ0. So, γi† = −γi, i = 1, 2, 3, the pseudo-Hermitian matrix. The energy-
momentum operator i∂µ is obviously Hermitian. So, the question, if the eigenvalues of the Dirac
operator iγµ∂µ (the mass, in fact) would be always real? The question of the complete system
of the eigenvectors of the non-Hermitian operator deserve careful consideration [30].

The main points of this Section are: there are “negative-energy solutions” in that is previously
considered as “positive-energy solutions” of relativistic wave equations, and vice versa. Their
explicit forms have been presented in the case of spin-1/2. Next, relations to previous works
have been found. For instance, the doubling of the Fock space and the corresponding solutions of
the Dirac equation obtained additional mathematical bases. Similar conclusion can be deduced
for the higher-spin equations.

3. Non-commutativity in the Dirac equation.
The non-commutativity [31, 32] manifests interesting peculiarities in the Dirac case. We analized
Sakurai-van der Waerden method of derivations of the Dirac (and higher-spins too) equation [33].
We can start from

(EI(2) − σ · p)(EI(2) + σ · p)Ψ(2) = m2Ψ(2) , (52)

9 The reasons of the change of the fermion mass dimension are unclear in the recent works on elko.



or (in the 4-component case)

(EI(4) + α · p +mβ)(EI(4) −α · p−mβ)Ψ(4) = 0 . (53)

Obviously, the inverse operators of the Dirac operators of the positive- and negative- masses
exist in the non-commutative case too. As in the original Dirac work, we have

β2 = 1 , αiβ + βαi = 0 , αiαj + αjαi = 2δij . (54)

For instance, their explicite forms can be chosen

αi =
(
σi 0
0 −σi

)
, β =

(
0 12×2

12×2 0

)
, (55)

where, again, σi are the ordinary Pauli 2× 2 matrices.
We postulate the non-commutativity relations for the components of 4-momenta:

[E,pi]− = Θ0i = θi , (56)

as usual. Therefore the equation (53) will not lead to the well-known equation E2 − p2 = m2.
Instead, we have {

E2 − E(α · p) + (α · p)E − p2 −m2 − i(I(2) ⊗ σ)[p× p]
}

Ψ(4)

= 0 (57)

For the sake of simplicity, we may assume the last term to be zero. Thus, we come to{
E2 − p2 −m2 − (α · θ)

}
Ψ(4) = 0 . (58)

However, let us apply a unitary transformation. It is known, Refs. [34, 11], that one can
transform10

U1(σ · a)U−1
1 = σ3|a| . (59)

For α matrices we re-write (59) to

U1(α · θ)U−1
1 = |θ|


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 = α3|θ| . (60)

The explicit form of the U1 matrix is (ar,l = a1 ± ia2):

U1 =
1√

2a(a+ a3)

(
a+ a3 al

−ar a+ a3

)
=

1√
2a(a+ a3)

× [a+ a3 + iσ2a1 − iσ1a2] ,

U1 =
(
U1 0
0 U1

)
. (61)

10 Some relations for the components a should be assumed. Moreover, in our case θ should not depend on E and
p. Otherwise, we must take the non-commutativity [E,pi]− 6= 0 into account again.



Let me apply the second unitary transformation:

U2α3U†
2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

α3


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

(62)

The final equation is
[E2 − p2 −m2 − γ5

chiral|θ|]Ψ′
(4) = 0 . (63)

In the physical sense this implies the mass splitting for a Dirac particle over the non-commutative
space, m1,2 = ±

√
m2 ± θ. This procedure may be attractive for explanation of the mass creation

and the mass splitting for fermions. One can also use the non-commutativity

[pi,pj ] = Ξij = εijkξk (64)

with the corresponding substitutions: θi = 0, U1(θ) → U1(ξ) and

U ′
2 =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 . (65)

In such a way we obtain the same splitting as in (63), |θ| → |ξ|.
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