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Abstract: The paper deals with the easily verifiable necessary cemddi the
preservation of the nonnegativity of the solutions of aeysbf parabolic equations
involving the bi-Laplace operator. This necessary coadits vitally important for
the applied analysis community because it imposes the s&ge®rm of the system
of equations that must be studied mathematically.
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1. Introduction

The solutions of many systems of convection-diffusiorctiea equations arising
in biology, physics or engineering describe such quastagpopulation densities,
pressure or concentrations of nutrients and chemicalss,Tdunatural property to
require for the solutions is their nonnegativity. Modelattdo not guarantee the
nonnegativity are not valid or break down for small valuethef solution. In many
cases, showing that a particular model does not preserveadieegativity leads
to the better understanding of the model and its limitatid@ae of the first steps
in analyzing ecological or biological or bio-medical maglehathematically is to
test whether solutions originating from the nonnegativigaihdata remain nonneg-
ative (as long as they exist). In other words, the model undesideration ensures
that the nonnegative cone is positively invariant. We rabait if the solutions (of
a given evolution PDE) corresponding to the nonnegativeirdata remain non-
negative as long as they exist, we say that the system satibBenonnegativity
property.

For scalar equations with the standard Laplace operatardheegativity prop-
erty is a direct consequence of the maximum principle (sdearjd the references
therein). However, for the equations involving the bi-Lagpan the maximum prin-
ciple is not valid.



In this work we aim to prove a simple and easily verifiableesidn, that is,
the necessary condition for the nonnegativity of solutiohsystems of nonlinear
convection—diffusion—reaction equations involving thd.aplace operator arising
in the modelling of life sciences. We believe that it couldypde the modeler with
a tool, which is easy to verify, to approach the question afnegative invariance
of the model.

Presently we deal with the preservation of the nonneggtfisolutions of the
following system of reaction-diffusion equations
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whereA, T, 1 <i < dareN x N matrices with constant coefficients. Here
U(ZL‘, t) = (Ul(l’, t)v UQ(fE, t)) EaS) UN(ZE, t))T

Note that in the present article we deal with the space of hitrary dimension.

Solvability conditions for the linearized Cahn-Hilliardj@ation involving the bi-

Laplcian were studied in [2]. The solvability of the singlguation containing the
standard Laplacian with drift relevant to the fluid mechanias treated in [3].
We assume here that (1.1) contains the square matricesheigmtries constant in
space and time

(A = ar;, ey =7, 1<kj<N, 1<i<d deN

and that the matrixd + A* > 0 for the sake of the global well posedness of system
(1.1). HereA* stands for the adjoint of matrid. Hence, system (1.1) can be
rewritten in the form
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In the present work the interaction vector function term
F(U) = (Fl(u)7 FQ(“)) HES) FN(U))Ta

which can be linear, nonlinear or in principle even nonlo@# assume its smooth-
ness in the theorem below for the sake of the well posednegsrafystem (1.1),
although, we are not focused on the well posedness issue préisent article. Let
us denote the inner product as

() gl = [ felgla)ds 13)



As for the vector functions, their inner product is defineshgsheir components as

N
(u U L2(R4,RN) = Z ’U,k,’Uk L2(R4)- (14)
k=1

Evidently, (1.4) induces the norm

HuH%Q(Rd,RN) = Z HukH%Q(Rd)'
k=1

By the nonnegativity of a vector function below we mean themegativity of the
each of its components. Our main proposition is as follows.

Theorem 1.Let F : RY — R¥, such thatF' € C!, the initial condition for system
(1.1)isu(z,0) = up(x) > 0 andug(z) € L*(R? RY). We also assume that the off
diagonal elements of the matrik are nonnegative, such that

Then the necessary condition for system (1.1) to possedstéosa:(z,t) > 0 for
all t € [0,00) is that the matricest andT?, 1 < i < d are diagonal and for all
1<k<N

Fr(s1y .oy 8k-1,0, Sgi1y o, Sn) <0 (1.6)

holds , wheres; > 0and1 <[ < N, [ # k.

Remark 1. In the case of the linear interaction term, namely whéfu) = Lu,
whereL is a matrix with elements; ;, 1 < ¢,7 < N constant in space and time,
our necessary condition leads to the condition that the mdtmust be essentially
nonpositive, thati; ; < 0fori # j, 1 <4,j < N.

Remark 2. Our proof implies that, the necessary condition for presegthe non-
negative cone is carried over from the ODE (the spatially bgemeous case, as
described by the ordinary differential equatief{t) = —F'(u)) to the case of the
diffusion involving the bi-Laplacian and the convectivétderm.

Remark 3. In the forthcoming works we intend to consider the follongages:
a) the necessary and sufficient conditions of the preserit,wor

b) the nonautonomous version of the present work,

c) the density-dependent diffusion matrix,

d) the effect of the delay term in the cases a), b) and c).

We proceed to the proof of our main result.

2. The preservation of the nonnegativity of the solution ofthe system of parabolic equations
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Proof of Theorem 1Let us note that the maximum principle actively used for the
studies of solutions of single parabolic equations withsttaedard Laplace operator
does not apply to such equations with the bi- Laplacian. Isetansider a time
independent, square integrable, nonnegative vectorimetx) and estimate

0 . 1) —
(_u ,v) = (IImHm u@, 1) uO(x),v(x)) .

ot t
t=0 L2(R4,RN) L2(R4,RN)

By virtue of the continuity of the inner product, the rightisiof the formula above
equals to

(ula, ), o@D pgeryy o (o(a), v(a)) pamee)
t - |mt*>0+ t .

lim,_ o+ (2.7)

We choose the initial condition for our system(z) > 0 and the constant in time
vector functionv(z) > 0 to be orthogonal to each other irf (R4, RY). It can be
achieved, for instance for

up(x) = (U1 (), ..., Up—1(x), 0, Ugt1(2), ..., Un(2)), v;(x) =0(x)d;K, (2.8)
with 1 < 5 < N. Here),;, denotes the Kronecker symbol ahel £ < N is fixed.
Thus, the second term in (2.7) vanishes and (2.7) is equal to

Ykt Jaa (@, t)vr(w)da

|imt_)0+ t

>0,

since all the components, (z, t) andv,(z) involved in the formula above are non-
negative. Hence, we obtain

Z/Rdauj

By means of (2.8), only the th component of the vector functierix) is nontrivial.
This gives us

x)dz > 0.

/ Our o(x)dx > 0.
R4 6t =0
Therefore, using (1.2) we derive
N d N il
_ A27 i J_
/Rd [ '—; gt Z _Z I O
J=1, j7#k =1 j=1,

—Fp(ty(x), ..y Ug1(2), 0, U1 (), ..., ﬂN(x))] o(x)dx > 0.
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Since the nonnegative, square integrable funciiar) can be chosen arbitrarily, we

arrive at
N d

2 wABEAD, D igp-
i=1, j#k i=1 j=1 !
—Fi(ty(x), ..., Ugp—1(2), 0, Uy (), ,UN(:E)) >0 a.e. (2.9)

For the purpose of the scaling, we replace alldher) by @, <§> in the estimate

above, where > 0 is a small parameter. This gives us

N d N
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Jj=1, j#k i=1 j=1, j#k
_Fk<ﬂ’1(y)7 E) Iakfl(y)v 07 IakJrl(y)a X3 ﬂ’N(y)) >0 ae. (210)

First we suppose that some of ttag; involved in the sum in the left side of (2.10)
are strictly positive. Evidently, the first term in the leitis of (2.10) is the leading
one ag — 0. Let us choose here all thg(y), 1 < j < N, j # k to be identical,
equal toe¥” in a neighborhood of the origin, smooth and decaying to zétbe
infinity. A straightforward computation yields

A%;(y)|  =4d(d+2)>0, 1<j<N, j#k

y=0

Therefore,A%a,(y) > 0 in a neighborhood of the origin via the trivial continuity
argument. By making the parametesmall enough, we are able to violate the
inequality in (2.10). Because the negativity of the off diagl elements of the
matrix A is ruled out via assumption (1.5), we obtain

ar; =0, 1<k j<N, k#j

Hence, from (2.10) we derive

d N
”Yiw -
R T
—Fp(ty(y), ooy t—1(y), 0, Ugy1(y), ..o, un(y)) >0 a.e. (2.11)

In the case ofy,id > 0, j # k we can choose helig (y) = e~V ¥*+1in a neighbor-
hood of the origin, smooth and decaying to zero at the infisiigh that

0 . \/—
—U; = - < 0, ;>0



near the origin. Ify,@vj <0, j # k, then we can také;(y) = eV v*+1in a neighbor-
hood of the origin, smooth and tending to zero at the infisitigh that

0 i )
— )ziy eVYV Tl >0, 4y, >0

9y iy ViZ+1

near the origin. Then the left side of (2.11) can be made aativegas possible
whene — 0, which will violate bound (2.11). Let us note that the lashien the
left side of (2.11) will remain bounded. Therefore, for thatricesI™ involved in
system (1.1), the off diagonal elements should vanish, thath

Thus, by means of (2.11) we arrive at

Fi(ty (), ..., ug—1(x), 0, g1 (x), ..., an(2)) <0 a.e.,
wherei;(z) > 0 andi;(z) € L*(RY) with1 < j < N, j # k. |

Acknowledgement. Valuable discussions with Messoud Efendiev are gratefully
acknowledged.

References

[1] M. A. Efendiev.Evolution equations arising in the modelling of life scieac
International Series of Numerical Mathematick63, Birkhauser/Springer,
Basel, (2013), 217 pp.

[2] V. Volpert, V. Vougalter.On the solvability conditions for a linearized Cahn-
Hilliard equation,Rend. Istit. Mat. Univ. Trieste43(2011), 1-9.

[3] V. Vougalter, V. Volpert.On the solvability conditions for the diffusion equa-
tion with convection termsCommun. Pure Appl. Anal.11 (2012), No. 1,
365-373.



